Relationships. Responsiveness. Results.

Lincoln Village

Final Subdivision Permit Application Saco, Maine

VOLUME 1

PREPARED FOR: 321 Lincoln Street Development, LLC

40 Farm Gate Road, Falmouth, ME 04105

July 2023

SUBMITTED BY: **Gorrill Palmer** 300 Southborough Drive Suite 200 So. Portland, ME 04106 207.772.2515

July 25, 2023

300 Southborough Drive, Suite 200 South Portland, Maine 04106 207.772.2515

Ms. Emily Cole-Prescott, City Planner Saco City Hall 300 Main Street Saco, Maine 04072-1538

Subject: Lincoln Village 321 Lincoln Street, Saco, ME Final Subdivision Application

Dear Ms. Cole-Prescott:

Gorrill Palmer has been retained by **321 Lincoln Street Development, LLC** to assist in the preparation of plans and permitting for the construction of a proposed mixed residential community located at 321 Lincoln Street in Saco, ME.

The property is identified as Map 52 and Lot 19 on the Town of Saco's tax map. The proposed project will include a mixed residential development with a network of roadways and walkways, landscaped areas, trails, and stormwater maintenance facilities.

On June 29th, 2023, the Planning Board granted Conditional Use Approval, Site Plan Approval, and Preliminary Subdivision Approval for this project.

PROPOSED PROJECT

Located between Lincoln and Bradley Street in Saco, ME, the subject property is ± 56.70 acres of land proposed for development of a new mixed residential community. This project will include different housing options, recreational locations, and natural areas. The project is designed to accommodate 332 housing units through the construction of multifamily units, duplexes, and single-family homes. The breakdown of unit types are as follows:

- Single Family 12 units
- Duplex (two-family) 32 units
- Multifamily Units 288 units
- Total Proposed 332 units

Recreational areas and open spaces have been designed for residents of all ages (and uses):

- Two parks are centrally located within the project for passive and active recreational uses as well as a dog park for the residents.
- A fenced-in basketball court and playground area provides an active recreational area.
- Trailways spanning approximately 5,200 feet are proposed including a mix of terrain between natural pathways in the woods and boardwalks over wetlands.

Ms. Emily Cole-Prescott July 25, 2023 Page 2

The proposed development is in the Medium Density Residential District Zone. The development requires the City of Saco Site Plan (approved), Preliminary Subdivision (approved) and Final Subdivision (pending) as well as conditional use review (approved) for the construction of 3-8 unit multifamily buildings. In addition, the proposed development requires Site Location of Development Act (SLDA) approval, which was requested that the City of Saco provide delegated review. A Natural Resource Protection Act Tier II (approved) and Army Corp Permit (approved) is also required for the proposed wetland impacts as a result of the development. This application was submitted concurrently to the Maine DEP and ACOE.

The narrative provided in Attachment 5 provides further information on the project's conformance with applicable Federal, State and Local regulations.

As discussed with your office, an electronic version of this response letter and attachments are submitted for your review. We look forward to continuing discussion of this project at the next available Planning Board hearing.

If you have any questions on the information being submitted, please contact our office.

Sincerely,

GORRILL PALMER

sul lenter

Drew Gagnon, PE Project Manager Phone 207-772-2515 x288 dgagnon@gorrillpalmer.com

c: Loni Graiver, 321 Lincoln Street Development, LLC Angelo Coppola, 321 Lincoln Street Development, LLC

u:\3831_helios_mixed residential development - lincoln & bradley - sacolp applications\local\final subdivision application\ready for review\0_cover letter_final sub app.docx

TABLE OF CONTENTS

Attachment	Section	
I	Final Subdivision Application & Checklist	
2	Title, Right, or Interest	
3	Project Location Map	
4	Abutters Mailing List	
5	Project Narrative	
6	Historic & Natural Areas Correspondences	
7	Stormwater Management Report	
8	Ability to Serve Letters – MWC & WRRD	
9	Solid Waste Disposal Plan	
10	Erosion and Sedimentation Control Report	
11	ourficial Geology, Significant Sand and Gravel Aquifers, & FEMA Maps	
12	High Intensity Soil Report & Survey and Test Pit Map & Analysis	
13	Financial Capacity	
14	Traffic Impact Study	
15	Revised Sight Distance Figures	
16	Revised AutoTURN Exhibits	
17	Lighting Fixtures Cut Sheet	
18	Wetlands & Vernal Pool Survey	
	 Wetland Delineation Report (Flycatcher, LLC) 	
	 Vernal Pool Survey (include Land Bureau Determination of VPs) 	
19	Draft Condo/HOA Documents	
20	Landscaped Management Plan	
21	Construction Sequencing Plan	
22	Tree Protection Plan	
23	Aerial Project Rendering	

ATTACHMENT I

FINAL SUBDIVISION REVIEW APPLICATION & CHECKLIST

Planning Department

Saco City Hall 300 Main Street Saco, Maine 04072-1538 Phone: (207) 282-3487

Emily Cole-Prescott, AICP City Planner EPrescott@sacomaine.org

Shannon Chisholm, Asst. Planner SChisholm@sacomaine.org

TO:	Applicant
FROM:	Emily Cole-Prescott, City Planner Shannon Chisholm, Assistant Planner
RE:	Planning Department - Application & Process Requirements

On behalf of the City of Saco's Planning Department, we want to thank you for your interest in being a part of Saco's smart growth and development. Our Department is here to discuss potential projects and help explain the standards to navigate the processes of development in Saco. We are people-focused and strive to provide the best level of customer service to our applicants.

Planning & Development Review Committee (PDRC): The City hosts meetings two (2) times a month to review conceptual development plans for feedback about the City's regulations and ordinance standards. This is often considered the first step in the review process. To be added to an upcoming PDRC meeting, please contact the Department by emailing: <u>SChisholm@sacomaine.org</u>. To review the PDRC's meeting schedule and deadline requirements, please see the Planning section of the website: <u>www.sacomaine.org</u>.

Submission Requirements: To assist with assembling your application, the attached checklist is provided. We look forward to answering any questions about the requirements. Please keep in mind that the Department only accepts complete applications.

Timeline: The ordinances require that applications be submitted at least three (3) weeks before the Planning Board meeting. However, Saco has adopted a streamlined staff review process that allows many of the initial questions and standards to be reviewed by City Staff. Therefore, we encourage you to plan for a five-week review process before the Planning Board meeting, as this will ensure time for both staff review and applicant responses. To review the Planning Board's meeting schedule and deadlines, please see the Planning section of the website: <u>www.sacomaine.org</u>.

For your reference, attached are the following documents:

- Application
- Submission Requirements Checklist

CITY OF	Subdivision Review App Preliminary _X_Fin		
Saco	Planning Department		
friendly by nature	Planning Board		
Street Address of Proposed 1	Project:	Tax Map & Lot:	
York County Registry of Dee	eds Book & Page Number:	Zoning District:	
Applicant:			
Applicant's Address:			
Applicant's Email & Phone 7	#:		
Architect/Engineer's Name:			
Architect/Engineer's Email	& Phone #:		
Architect/Engineer's Addres	s:		106
Property Owner:			
Property Owner's Email & P	Phone #:		
Property Owner's Address: _			
Area of Parcel:	Proposed Developed Area:	Proposed Height:	
Description of Proposal:			

<u>Signature & Application Requirements</u>: Applications are due at least three weeks in advance of Planning Board meetings, but the Department encourages applicants to plan for five weeks before a Planning Board meeting. Staff will schedule your application for a Planning Board meeting once all reviews are complete and comments have been sufficiently addressed.

Dows linger

Signature of Owner/Applicant

Date

Subdivision Review Checklist

Article 5: Submission Requirements

Applicant	City staff	Submission Requirement		
		The Department requires three hard copies and one electronic copy		
		(PDF) of the following list of items sent to: <u>SChisholm@sacomaine.org</u> .		
		Two location plans of the subdivision and neighboring areas within at		
		least a 2,000 foot radius at scales of 800 feet to the inch and 200 feet		
		to the inch, showing right of way lines of all proposed streets in the		
		subdivision and their location in relation to existing streets and readily		
		identifiable as to locus on the Zoning Map of Saco, Maine, as most		
		recently amended.		
Π		The preliminary plan must be a contact print of an original drawing in		
		permanent black ink on mylar, or other reproducible, stable based		
		transparent originals. It must be clearly designated as "preliminary		
		plan," drawn at the scale not less than one inch equals 100 feet. Sheets		
		shall be 24" by 36" and plans shall be prepared by an engineer,		
		architect, landscape architect, or land surveyor registered in Maine.		
		Surveyed plans shall be stamped and signed. If multiple sheets are		
		used, they must be accompanied by an index sheet as a cover showing		
		the entire subdivision.		
		The preliminary plan shall be prepared using the following standards:		
		a. Projection shall be Maine State Plane West.		
		b. Vertical Datum shall be NAD 83.		
		c. Units shall be measured in feet.		
		d. Coordinates shall be shown on at least four corners of the site plan.		
		Coordinates shall be referenced to the Maine State Coordinate System.		
		The preliminary plan shall contain the following information:		
		Subdivision name, boundaries, acreage, tax map and lot numbers, date		
		and graphic scale, and a magnetic and true north arrow.		
		Name and address of record owner, subdivider, and engineer,		
		surveyor, firm, and/or individual who prepared the plan.		
		An actual field survey of the boundary lines of the tract, giving complete		
		descriptive data by bearings and distances, made and certified by a registered		
		land surveyor.		
		Boundary lines of adjacent land and names of owners as determined from		
		most recent tax list.		
		Location, name, and present width of each street and public or private way		
		bounding, approaching or within 500 feet of the subdivision, and any		
		easements within or adjacent to the subdivision.		
		Locations and outlines of all existing buildings and significant site features such as stone walls, fences, large trees (24 inch diameter breast height) or		
		such as stone walls, fences, large trees (24 inch diameter breast height) or wooded areas, rock ridges and outcroppings, cemeteries, water courses,		
		wooded areas, rock huges and outcroppings, centerenes, water courses, wetlands and water bodies on the site. Wooded areas, watercourses, wetlands		
		wenances and water bounds on the site. wooded aleas, watercourses, wenands		

	and water bodies within 200 feet of the site shall also be identified, when possible.		
	Topography with two-foot contours of existing and proposed grades to include the demarcation of wetlands, 100-year flood elevations, and flood hazard areas.		
	The location, direction, and length of every proposed street line, lot line and boundary line established on the ground, the location of temporary markers adequate to enable the Board to locate the layout in the field, and the names of proposed streets.		
	Lot lines with dimensions, zoning setback lines, and the area of each lot in square feet and acres, and lot numbers.		
	Locations of existing and proposed monuments, hydrants and the location and size of public utility facilities, sewers, culverts, drains, and water pipes.		
	Park, open, recreation, or common areas within a subdivision and a plan of any formal recreation area.		
	A plan for the management of surface drainage waters, including existing waterways and the proposed disposition of water from proposed subdivision to new or existing subsurface drainage systems with sufficient capacity to dispose of the storm flows.		
	Locations and species of proposed street trees and/or wooded areas to be retained within the sidelines of each street, and other no-cut areas.		
	Street plans and profiles showing the percent slope of each grade, and the radius, length, point of curvature and point of tangency of each curve.		
	Street plans and profiles showing proposed centerline grades and existing ground grades at fifty (50) foot stations. All existing and proposed elevations shall be based on the U.S.C. & G.S. Datum.		
	Location of all of the following proposed improvements unless specifically waived in writing by the Board: proposed monuments, parking areas, street lights, sidewalks, street signs, all utilities above and below ground, curbs, gutters, street trees, storm drainage, and all easements, service buildings and structures, and dumpsters.		
	Erosion control plan showing the placement of all berms, silt fences, hay bales, sedimentation ponds and other erosion control devices, detention ponds, to the standards of the "Maine Erosion and Sediment Control Handbook for Construction: Best Management Practices," by the Cumberland County Soil and Water Conservation District and the Maine Department of Environmental Protection, latest revision.		
	Areas within or adjacent to the proposed subdivision which have been identified as high or moderate value wildlife habitat by the Maine Department of Inland Fisheries and Wildlife or within the Comprehensive Plan. If any portion of the subdivision is located within an area designated as a critical natural area by the Comprehensive Plan or the Maine Natural Areas Program, the plan shall indicate appropriate measures for the preservation of the values which qualify the site for such designation.		
	The location of any identified historic and/or archaeological resources together with a description of such features.		

	Verification of subdivider's legal right, title, or interest in the property (deed or
	purchase and sale agreement)
	A copy of the deed upon which the survey was based. A copy of all
	easements, covenants, and restrictions applying to the area proposed to be subdivided.
	Proposed arrangements for water supply as required by the Maine Water
	Company, and a letter from the water company stating that the water supply is
	adequate to serve the subdivision.
	Proposed arrangements for storm drainage, with supporting data and design
	analysis, including plans and profiles showing location and size of drain lines
	and culverts, catch basins and manholes, and such other information as may
	be required to define the drainage provisions, stamped by an engineer
	registered in Maine, and an operating and maintenance plan for any detention
	basins.
	A copy of that portion of the county Soil Survey covering the subdivision
	superimposed on a copy of the plan. When the medium intensity soil survey
	shows soils which are questionable for the uses proposed, the Planning Board
 	may require the submittal of a high intensity soil survey.
	An estimate of the amount and type of traffic to be generated daily and at peak hours. For developments involving 40 or more parking spaces or
	projected to generate more than 200 vehicle trips per day, a traffic impact
	analysis, prepared by a traffic engineer, shall be submitted.
	analysis, prepared by a traffic engineer, shan be sublinted.
	The analysis shall show, at a minimum, the expected average number of
	vehicle trips per day, peak-hour volumes, access conditions at the site,
	distribution of traffic, types of vehicles expected, effect upon the level of
	service of the street giving access to the site, neighboring streets which may be
	affected, the intersection(s) nearest to the site and other intersections which
	may be affected, and recommended improvement to maintain the level of
	service on the road.
	The names, addresses and tax map and lot numbers of owners of record of
	adjacent property, including any property directly across an existing street
	from the subdivision, and (B) the names, addresses and tax map and lot
	numbers of owners of record of all property within 600 feet of the
 	subdivision.
	Description of how proposed open space will be owned and managed.
	When sewage disposal is to be accomplished by subsurface disposal systems,
	test pit analyses prepared by a Licensed Site Evaluator shall be provided. A
	map showing the location of all test pits dug on the site shall be submitted.
 	(The plumbing inspector must be notified before test pits are dug.)
	Proof of financial and technical capacity as described in Article 8.7 and 8.8.
	A letter from Maine Water stating that it can serve the proposed development
	The anticipated amount of land to be covered by buildings and structures
	expressed in square feet and as a percentage of the site and lots.
	The anticipated amount of land to be covered by buildings, pavement, and
	other impervious coverage expressed in square feet, percentage of site, and
	percentage of lot.

	If the project is subject to the stormwater quality standards of section 10.12.4,
	a stormwater quality management plan that includes the following:
	a. A narrative describing how the site is oriented within the
	0
	watershed, identifying downstream waterbodies including
	wetlands, and addressing the potential effects of site runoff. The
	narrative shall identify and discuss the stormwater treatment
	methods proposed to be used on the site.
	b. A plan showing relevant existing contours, proposed contours,
	existing and proposed subwatersheds, proposed topographic
	features, and existing and proposed site features including
	buildings and other facilities, natural and manmade drainageways,
	streams, channels, culverts, catch basins, and stormwater
	treatment facilities. The plan shall include detail drawings of the
	stormwater Best Management Practices proposed to be used and
	the location of both structural and non-structural BMP's.
	c. Calculations demonstrating that the proposed stormwater
	treatment facilities will meet the standards of Section 10.12.4.
	A stormwater facilities management plan which sets forth the types and
	frequencies of proposed maintenance activities needed to maintain the
	efficiency of the stormwater treatment facilities and which identifies the party
	that will be responsible for carrying out each maintenance activity and for
	submitting the Annual Maintenance Report and the proposed institutional
	arrangements that will assure that all maintenance occurs as proposed.

Waiver Requests

If you are asking for a waiver, please indicate the type of waiver and the reason for the waiver request. Waiver requests are reviewed uniquely to each project, so the request should clearly demonstrate the unique aspect of the project.

Waiver Request #1: Section-___:

Waiver Request #2: Section-___:

Waiver Request #3: Section-___:

Waiver Request #4: Section-___:

Waiver Request #5: Section-___:

February 25, 2022

Re: Mixed-Use Residential Development 321 Lincoln Street – Saco, Maine Agent Authorization

To Whom it May Concern:

We have retained Gorrill Palmer to prepare local, state and federal permit applications for the above referenced project. Gorrill Palmer is authorized to act as an agent on our behalf in matters related to these permits.

Sincerely,

Loni Gravier

321 Lincoln Street Development

ATTACHMENT 2

TITLE, RIGHT, OR INTEREST

DLN: 1002240186006

TRUSTEES' DEED

Jay D. St. John, Anthony M. LeBlanc, Robert C. Quentin, Diana L. Huot, Timothy S. Murphy and Thomas E. Wells, Trustees of THE LUCIA KIMBALL DEERING TRUST (formerly known as the Lucia Kimball Deering Fund as established by City of Saco on December 30, 1929), by the power conferred by law, and every other power, for consideration paid, grant to 321 LINCOLN STREET DEVELOPMENT LLC, a Maine limited liability company with a mailing address of 40 Farm Gate Road, Falmouth, Maine 04105, a certain lot or parcel of land, situated in the City of Saco, County of York and State of Maine, bounded and described as follows:

Beginning at an iron pipe driven into the ground on the Northeasterly side of Lincoln Street, also called the Boom Road, at the Southerly corner of land formerly of Fred Sawyer, and now or formerly of the John D. Downing Agency, Inc.; thence North 42° 39' East by said land now or formerly of said Agency 173.21 feet to an iron pipe driven into the ground; thence North 42° 42' West by said land of said Agency, 30.55 feet to an iron pipe driven into the ground and land of said John D. Downing Agency, Inc.; thence North 51° 46' East by said land of said Agency and by an old fence 236.62 feet to an iron pipe driven into the ground; thence North 52° 02' East by said land of said Agency and by an old fence 1,742.03 feet to an iron pipe driven into the ground; thence the same course and by land formerly of F. O. L. Hobson, 875.42 feet to an iron pipe driven into the ground on the Southwesterly side of Bradley Street, also called the New County Road; thence South 36° 44' East by said Road, 296.21 feet to an iron pipe driven into the ground; thence South 35° 45' East by said Road, 195.69 feet to an iron pipe driven into the ground; thence South 31° 12' East by said Road, 179.48 feet to an iron pipe driven into the ground and land formerly of one Goldthwaite and later of Vernon Rand; thence South 53° 11' West by said land formerly of said Rand, 135.77 feet to an iron pipe driven into the ground; thence South 36° 08' East by said land formerly of Rand, 673.53 feet to an iron pipe driven into the ground and land formerly of Burnis R. Bean; thence by said Bean land (portions of said Bean land being later owned by Martha E. Bean, one Emmons and one Welch) on the following courses and distance: South 52° 17' West 550.89 feet to an iron pipe driven into the ground, South 53° 42' West by the remains of an old fence 144.47 feet to an iron pipe driven into the ground, South 50° 00' West by said remains of a fence 141.31 feet to an iron pipe driven into the ground, South 52° 36' West 298.56 feet to an iron pipe driven into the ground, South 51°51' West 934.98 feet to an iron pipe driven into the ground at remaining land of Henry A. McKeen and Evelyn McKeen Wormwood; and thence North 68° 37' West by said remaining land 258.76 feet to an iron pipe driven into the ground; thence South 21° 23' West by said remaining land 100 feet to an iron pipe driven into the ground and said Lincoln Street; thence North 68° 37' West by said Street, 487.57 feet to an iron pipe driven into the ground; thence North 62° 49' West by said Street, 103.26 feet to an iron pipe driven into the ground; thence North 57° 38' West by said Street, 637.15 feet to the point of beginning.

The above bearings refer to the 1968 Magnetic Meridian.

EXCEPTING those portions of the above-described premises described in the following deeds:

1. Deed to Kimball Health Center, dated February 11, 1980, and recorded in the York County Registry of Deeds in Book 2622, Page 271, and corrective deed dated March 7, 1980, recorded in said Registry in Book 2626, Page 173;

2. Deed to Eugene J. Doyon and Carol A. Doyon, dated June 16, 1989, and recorded in said Registry in Book 5094, Page 64;

Deed to Greek Orthodox Community, Biddeford and Saco, dated March 17, 1997, 3. and recorded in said Registry in Book 8247, Page 349;

4. Deed to Greek Orthodox Community, Biddeford and Saco, dated September 6, 2016, and recorded in said Registry in Book 17322, Page 57.

TOGETHER WITH the benefit of the easements reserved in Deed to Kimball Health Center, dated February 11, 1980, and recorded in the York County Registry of Deeds in Book 2622, Page 271, and corrective deed dated Mach 7, 1980, recorded in said Registry in Book 2626, Page 173.

To have and to hold, with all the benefits and privileges appurtenant thereto, for itself, and for its successors and assigns, now and forever.

In witness whereof, The Lucia Kimball Deering Trust (formerly known as the Lucia Kimball Deering Fund) has caused this instrument to be signed and sealed by its Trustees on the dates shown below.

WITNESS:

THE LUCIA KIMBALL DEERING TRUST (formerly known as the Lucia Kimball Deering Fund

0 3-07-2022By Jav

n. its Trustee

03-09-2022

By Anthony M. LeBlanc, its Trustee

Robert C. Ouentin, its Trustee

03-04-2022

03-07-2022 By: × t Diana L. Huot, its Trustee By 03-04-2022 Timothy S. Murphy, its Trustee 02-25-2022 By: Thomas E. Wells, its Trustee

STATE OF MAINE YORK, ss.

March <u>7</u>, 2022

Then personally appeared before me Jay D. St. John, Trustee of the Lucia Kimball Deering Trust (formerly known as the Lucia Kimball Deering Fund), who gave oath and acknowledged the foregoing to be his free act and deed in his said capacity.

Before me, y Public Attorney At Law CARLY B. HALL NOTARY PUBLIC State of Maine My Commission Expires October 30, 2028 March q, 2022

STATE OF MAINE YORK, ss.

Then personally appeared before me Anthony M. LeBlanc, Trustee of the Lucia Kimball Deering Trust (formerly known as the Lucia Kimball Deering Fund), who gave oath and acknowledged the foregoing to be her free act and deed in his said capacity.

Before me,

Notary Public/Attorney At Law CARLY B. HALL NOTARY PUBLIC State of Maine My Commission Expires October 30, 2028

STATE OF MAINE YORK, ss.

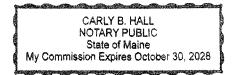
March <u>4</u>, 2022

Then personally appeared before me Robert C. Quentin, Trustee of the Lucia Kimball Deering Trust (formerly known as the Lucia Kimball Deering Fund), who gave oath and acknowledged the foregoing to be his free act and deed in his said capacity.

Before me, Notary Public/Attorney At Law CARLY B. HALL NOTARY PUBLIC State of Maine My Commission Expires October 30, 2028 March 7, 2022

STATE OF MAINE YORK, ss.

Then personally appeared before me Diana L Huot, Trustee of the Lucia Kimball Deering Trust (formerly known as the Lucia Kimball Deering Fund), who gave oath and acknowledged the foregoing to be her free act and deed in her said capacity.


Before me, Notary Public/Attorney At Law CARLY B. HALL NOTARY PUBLIC State of Maine My Commission Expires October 30, 2028 March 4, 2022

STATE OF MAINE YORK, ss.

Then personally appeared before me Timothy S. Murphy, Trustee of the Lucia Kimball Deering Trust (formerly known as the Lucia Kimball Deering Fund), who gave oath and acknowledged the foregoing to be his free act and deed in his said capacity.

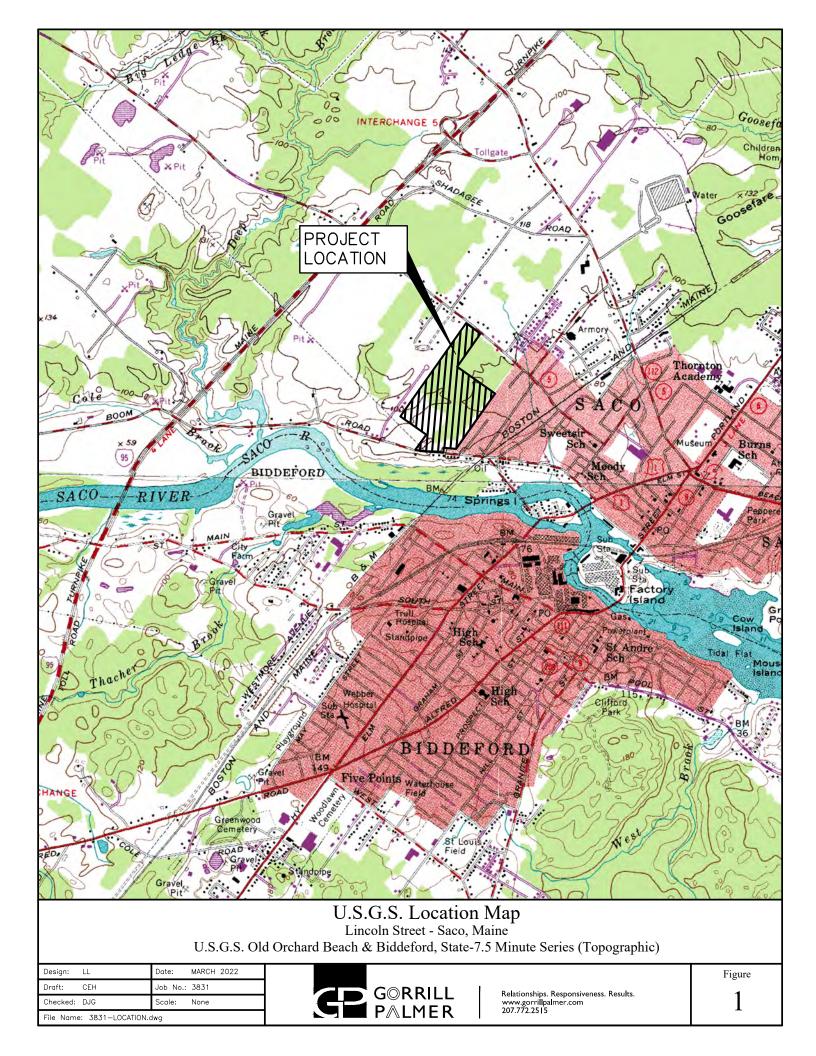
Before me,

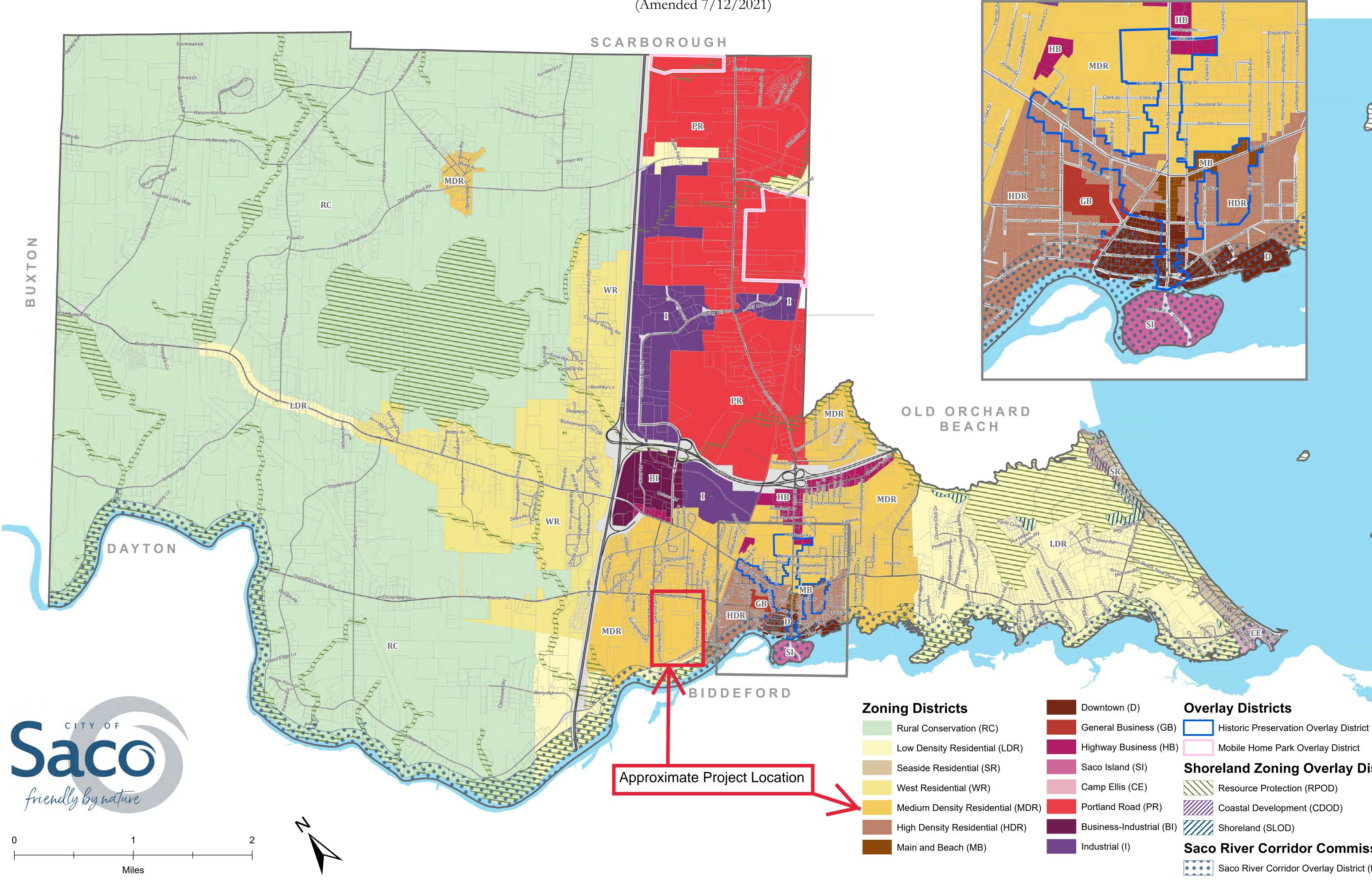
Notary Public/Attorney At Law

February <u>25</u>, 2022

STATE OF MAINE YORK, ss.

Then personally appeared before me Thomas E. Wells, Trustee of the Lucia Kimball Deering Trust (formerly known as the Lucia Kimball Deering Fund), who gave oath and acknowledged the foregoing to be his free act and deed in his said capacity.

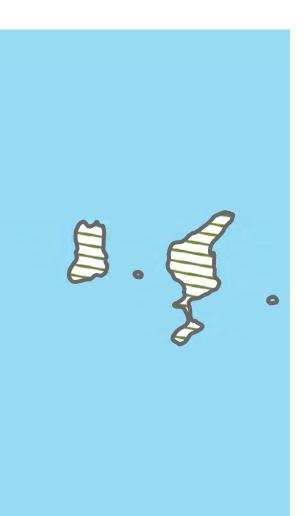

Before me,


Notary Public/Attorney At Law

Barbara J. Dresser Attorney At Law

ATTACHMENT 3

PROJECT LOCATION MAP



City of Saco Zoning Map

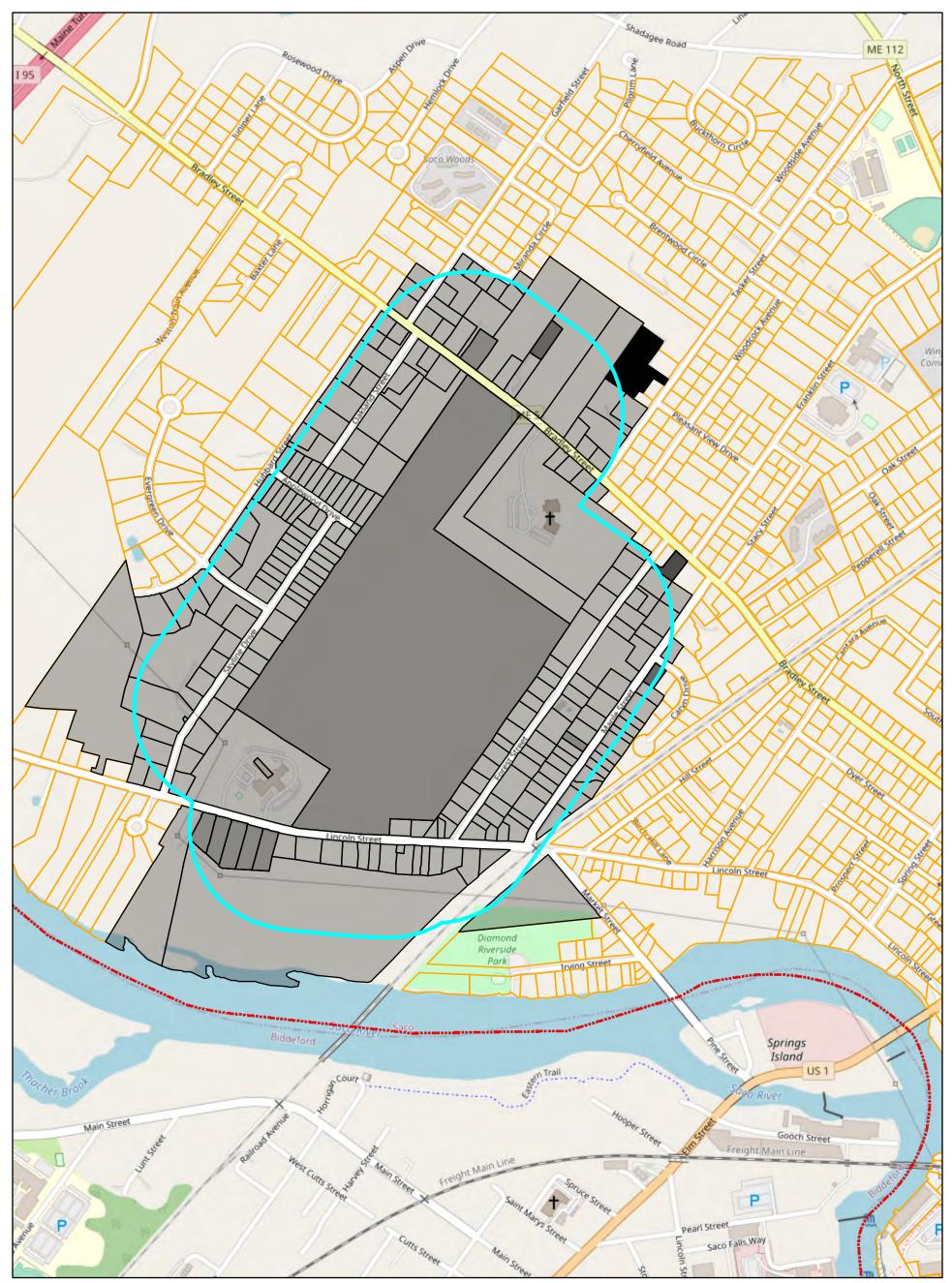
Adopted 4/12/2021

(Amended 7/12/2021)

0

Mobile Home Park Overlay District

Shoreland Zoning Overlay Districts

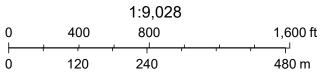

Saco River Corridor Commission

Saco River Corridor Overlay District (for reference only)

ATTACHMENT 4

ABUTTERS MAILING LIST

Saco GIS

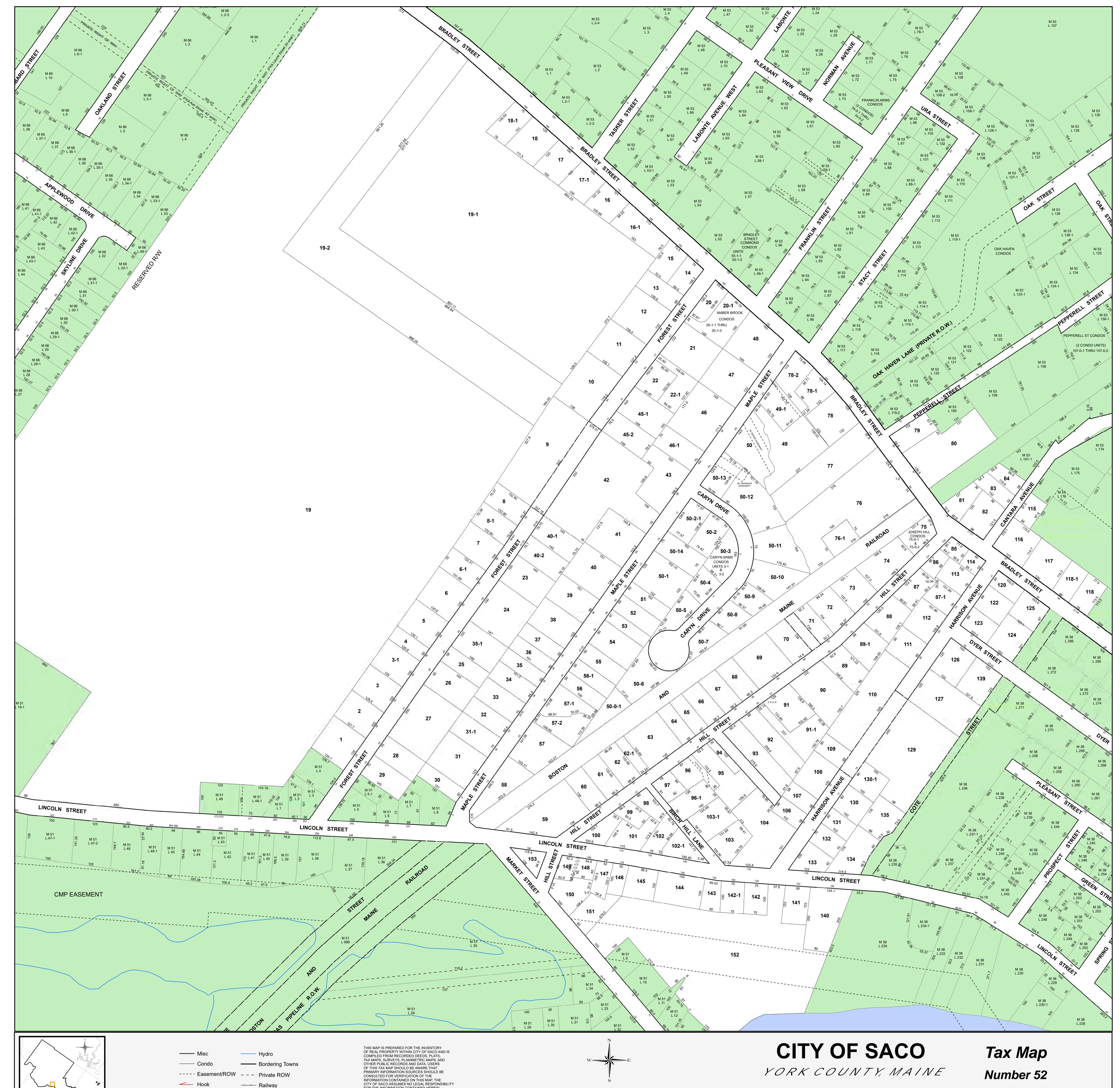


April 27, 2022

Override 1

Parcels

City_Townline_Polygons



© OpenStreetMap (and) contributors, CC-BY-SA

This map is for planning purposes only. The City of Saco is not responsible for the accuracy of the data within.

Map-Lot 6501000000 67020014000	Grantee EON MIKE ASSOCIATES INC LETELLIER ROBERT A	Co-Grantee LETELLIER SYLVIE M	Mailing 260 MAIN ST 5 MIRANDA CIR	City BIDDEFORD SACO	State ME ME	Zip 4005 04072-2436
67022001000	MORNEAU LAURENT	MORNEAU GERMAINE	3 GARFIELD ST	SACO	ME	04072-2405
66032001000	SAWYER MARY JANE	SAWYER CARL R	2 APPLEWOOD DR	SACO	ME	4072
52018001000	KILCOLLINS TRENT O	KILCOLLINS JORDAY R	182 BRADLEY ST	SACO	ME	4072
66008000000	DUBE ERIKA J	DUBE STEVEN T	270 BRADLEY ST	SACO	ME	4072
66045000000	WALLS-OTT LINDSAY		32 SKYLINE DR	SACO	ME	4072
66005001000	PAN CHUNCHANG	XUEYAN GUAN	14 OAKLAND ST	SACO	ME	4072
66031001000	MCGONAGLE DIANE		39 SKYLINE DR	SACO	ME	04072-3146
67028000000	GILBERT RITA H		191 BRADLEY ST	SACO	ME	4072
67007000000	SEARCY ANTHONY E	BUNKER EVERETT E III	2 GARFIELD ST	SACO	ME	4072
67026000000	BUNKER ANNE J		243 BRADLEY ST	SACO	ME	4072
67021000000	CECCHETTI STEVEN J	CECCHETTI MARY APPELL SUZANNE M	PO BOX 147	NORTH WATERBORO	ME	4061
52019001000	GREEK ORTHODOX COMMUNITY		186 BRADLEY ST	SACO	ME	4072
66047000000	APPELL DAVID P		24 SKYLINE DR	SACO	ME	4072
66033001000	BURNHAM JUNE		3 APPLEWOOD DR	SACO	ME	4072
67020013000	BOIVIN LINDA		110 GRANITE POINT RD	BIDDEFORD	ME	4005
6604600000 67021001000 66028000000	WOOD JESSICA GOMEZ SISO A. HARRIMAN KENNETH L JR	MILLER LEO HARRIMAN JAYNE E	28 SKYLINE DR 5 GARFIELD ST 25 SKYLINE DR	SACO SACO SACO	ME ME ME	4072 4072 4072
52019000000	DEERING JOSEPH G TRUSTEES OF	C/OWARREN ERWIN C	KIMBALL HEALTH CENTER	SACO	ME	4072
66045001000	LEE JEANNIE K		30 SKYLINE DR	SACO	ME	4072
66039001000	REED LINDA C		18 APPLEWOOD DR	SACO	ME	4072
66037001000	WEISS JADE J	BLANEY KIMBERLY M & PAUL R	19 APPLEWOOD DR	SACO	ME	4072
66042000000	BERUBE CLARICE M		8 APPLEWOOD DR	SACO	ME	4072
67020011000	KIMBALL SUSAN E	BURGESS CAROL D	11 MIRANDA CIR	SACO	ME	04072-2436
66049002000	HOUDE TONYA A		32 HUBBARD ST	SACO	ME	4072
66049010000	BURGESS DALE K		8 EVERGREEN DR	SACO	ME	4072
66005000000 66001000000 66044000000	MARAGNI ANTHONY ULDBJERG DONALD	ULDBJERG CHARLENE	18 OAKLAND ST 11 GLENHAVEN CIRCLE	SACO	ME ME	4072
66009000000	BRYANT B ABIGAIL	BRYANT D JEREMY	11 OAKLAND ST	SACO	ME	4072
66038001000	MARTIN LORI A		23 APPLEWOOD DR	SACO	ME	4072
66006001000	DOYON RICHARD P	DOYON DIANE M	15 OAKLAND ST	SACO	ME	04072-3115
66049014000	CURRY DONALD A	CURRY KATHLEEN A	42 HUBBARD ST	SACO	ME	4072
67026001000	BROCKMAN WILLIAM FREDRICK	BROCKMAN LAURA SUE	245 BRADLEY ST	SACO	ME	4072
66043001000 66006000000 66009003000	THE MICHELLE L HERWOOD REVOCABLE TRUST SAUNDERS JANICE E		38 SKYLINE DR 43 MARSHALL FARM LN	SACO ELIOT	ME ME	4072 03903-1640
66004000000	LILLY ROBERT A		25 COUNTRY CLUB RD	SACO	ME	4072
66002001000	LILLY PATRICIA		258 BRADLEY ST	SACO	ME	4072
67020015000	BOGER AMANDA C	BOGER DAVID R	3 MIRANDA CIR	SACO	ME	4072
66049012000	BURGESS CRAIG A	BURGESS ANGELA M	40 HUBBARD ST	SACO	ME	4072
66002002000	KIERSTEAD BARBARA P	GAGNE EDWARD	4 OAKLAND ST	SACO	ME	4072
67023001000	MADDIX MICHAEL	BRIMIGION SUSAN D.	7 ISABELLA LN	SACO	ME	4072
66030000000	SHAUGHNESSY PAUL J.		33 SKYLINE DR	SACO	ME	4072
66037000000	JOHNSTON MARK A		17 APPLEWOOD DR	SACO	ME	4072
66001001000 66035000000	SHAW MARY		PO BOX 1583	BIDDEFORD	ME	4005
67025001000	SOUTHWICK JASON R	SOUTHWICK CHRISTINE A	247 BRADLEY ST	SACO	ME	4072
66032000000	QUEZADA JON		4 APPLEWOOD DR	SACO	ME	4072
66028001000	DUNN PAUL D		27 SKYLINE DR	SACO	ME	4072
66049001000	SMITH JASON S	SMITH LACEY L	30 HUBBARD ST	SACO	ME	4072
67020000000	NASON RICHARD L	NASON BARBARA A	251 BRADLEY ST	SACO	ME	4072
66048000000	APPLEWOOD SUBDIVISION	MADORE BOURGOIN DAWN M	SKYLINE DR	SACO	ME	4072
67020012000	BOURGOIN SCOTT		9 MIRANDA CIR	SACO	ME	4072
66027000000	LASKEY DANIEL J		23 SKYLINE DR	SACO	ME	4072
66033000000 67022000000 66002000000	ZAITLIN DAVID HENRY KEVIN D MCINTYRE NICHOLAS	ZAITLIN DIANE H HENRY BONNIE C	1 APPLEWOOD DR 253 BRADLEY ST 260 BRADLEY ST	SACO SACO SACO	ME ME ME	04072-3100 04072-3104 4072
52019002000	GREEK ORTHODOX COMMUNITY BIDDEFORD SACO		186 BRADLEY STREET	SACO	ME	4072
66030001000	CLINGENSMITH ADAM J		35 SKYLINE DR	SACO	ME	04072-3145
67026001000	CONDO MAIN		245 BRADLEY ST	SACO	ME	4072
67024000000	PENNELL JEREMY J		255 BRADLEY ST	SACO	ME	04072-3104
66043000000	SIMMONS LISA C		40 SKYLINE DR	SACO	ME	4072
6702000000	NASON RICHARD L	NASON BARBARA A	251 BRADLEY ST	SACO	ME	4072
66049003000	IFANTIDES MELISSA M	LIBBY TIMOTHY M JR	7 EVERGREEN DR	SACO	ME	4072
66035001000 66044001000 66009001000	GONYEA GAETANE HELENE MCDONOUGH ADAM W DIMITROVA ROBIN	GONYEA MATTHEW ERIC MCDONOUGH LYNNSEY M	11 APPLEWOOD DR 34 SKYLINE DR 4 HUBBARD ST	SACO SACO SACO	ME ME ME	4072 4072 4072
67023000000	GODIN SHAUN A	GODIN ANGIE F	259 BRADLEY ST	SACO	ME	4072
66034000000	DUMONT LAURA Z		5 APPLEWOOD DR	SACO	ME	4072
66031000000	MITCHELL DARCY L		37 SKYLINE DR	SACO	ME	4072
66040001000 67008000000	SCAMMAN LINDA L DOYON CLEMENT J		14 APPLEWOOD DR 281 BRADLEY ST	SACO SACO	ME ME ME	4072 04072-3144 04072-2406
66039000000 66048001000 66049015000	LESINSKI JOEL M EON MIKE ASSOCIATES INC EON ABBY L	LESINSKI SAMAN M SHREFLER COLBY J	20 APPLEWOOD DR PO BOX 444 44 HUBBARD ST	SACO BIDDEFORD SACO	ME ME ME	4072 4005 4072
66007000000	CHENARD JON H	CHENARD ELIZABETH A	264 BRADLEY ST	SACO	ME	4072
66046001000	STARBIRD PATRICIA		93 PIPELINE DR	RAYMOND	ME	04071-6665
66009002000	TRAN CHI	LEE NGAN FONG	10 HUBBARD ST	SACO	ME	4072
66029001000	STANTON JOY E		31 SKYLINE DR	SACO	ME	4072
66029000000	MA DAVID		15 STACY ST	SACO	ME	4072
66041000000	GUERNSEY GARRETT J	GUERNSEY KATHRYN G	8 HILLVIEW DR	BANGOR	ME	4401
66038000000	OLSEN BEVERLY ANN		21 APPLEWOOD DR	SACO	ME	4072
66048000000	APPLEWOOD SUBDIVISION		SKYLINE DR	SACO	ME	4072
66007001000	ROUSSEAU MELISSA A		3 OAKLAND ST	SACO	ME	4072
66041001000	SMOTHERS JOYCE M		10 APPLEWOOD DR	SACO	ME	4072
6603600000 66002003000 66008001000	RUSSELL KIMBERLY KATANOV ALEXANDER MARRO CHRISTOPHER J	KATANOV ALINA MARRO JANICE T	13 APPLEWOOD DR 8 OAKLAND ST 2 HUBBARD ST	SACO SACO SACO	ME ME ME	4072 4072 4072
67026001000 52018000000 66010000000	SMITH SHARON L ROUSSELLE HELENE SKIDGEL ROBERT	LONGMORE WILLIAM SKIDGEL ROSEMARY A	245 BRADLEY ST 180 BRADLEY ST 18 HUBBARD ST	SACO SACO SACO	ME ME ME	4072 4072 04072-3112
66036001000 66003000000	GAUDREAU ERIN K DOYON MICHAEL	DOYON KARLA	15 APPLEWOOD DR 11 OAKLAND ST	SACO SACO SACO	ME ME ME	04072-3112 4072 04072-3116
66042001000	CLARK JENNIFER L	HERTEL LORA C	6 APPLEWOOD DR	SACO	ME	4072
67007001000	SOUZA PAMELA L		4 GARFIELD ST	SACO	ME	4072
67025000000	HERTEL VAN JR E		5 SHADY CREEK LN	SCARBOROUGH	ME	4074
67020016000 66040000000	GAGNE ROBERT A KELLEY BRYAN ALAN	GAGNE JACQUELINE D	1 MIRANDA CIR 16 APPLEWOOD DR	SACO SACO	ME ME	04072-2436 4072 4842
66034001000 67027000000 51008000000	LYNCH JOSEPH E GILBERT RITA H MCINNIS CRAIG W	LYNCH MARY LEE A MCINNIS HEATHER J	15 SPRINGBROOK HILL RD 191 BRADLEY ST 55 OLD CAPE RD	CAMDEN SACO KENNEBUNKPORT	ME ME ME	4843 4072 4046
51039000000	MASSIE CHARLES C JR	MAILMAN GARON C	264 LINCOLN ST	SACO	ME	4072
51046001000	ARNOLD LAUREN		300 LINCOLN ST	SACO	ME	4072
51047000000	MAILMAN LINDSAY R		328 LINCOLN ST	SACO	ME	4072
65022000000	MILLIGAN THOMAS JR	MILLIGAN POLLY J	8 SKYLINE DR	SACO	ME	4072
51004000000	HERRERA ALEJANDRA P & GUZMAN CARLOS A		14 FOREST STREET	SACO	ME	4072
52001000000	IFANTIDES VASSILIS I	SIMKOWITZ SUSAN E	20 FOREST ST	SACO	ME	4072
51044012000	CANTARA YVONNE L		342 LINCOLN ST	SACO	ME	4072
52005000000	SIMKOWITZ DAVID R		48 FOREST ST	SACO	ME	04072-3126
51044015000	J BROWN INVESTMENTS LLC		161 SACO AVE	OLD ORCHARD BEACH	ME	4064
51037000000	MARIER JAMES A		248 LINCOLN ST	SACO	ME	4072
52034000000	BERNAICHE DARRELL		36 MAPLE ST	SACO	ME	4072
52006001000	VILLARREAL ABBY M		52 FOREST ST	SACO	ME	4072
52029000000	WHITE MATTHEW R		15 FOREST ST	SACO	ME	4072
51041000000 65018000000 51035000000	PITMAN DAVID C OUELLETTE ARTHUR R CITY OF SACO	PITMAN AURELIA U OUELLETTE MOLLY A	272 LINCOLN ST 16 SKYLINE DR 300 MAIN ST	SACO SACO SACO	ME ME ME	04072-3127 04072-3120 4072
51044014000 52026000000 52031000000	J BROWN INVESTMENTS LLC BEAULIEU ARMAND J JR FOURNIER RITA R	BEAULIEU DONNA R CHARITY-MCGUIRK VICTORIA F	161 SACO AVE 39 FOREST ST 561 SEAPORT TERRACE SE	OLD ORCHARD BEACH SACO PALM BAY	ME ME FL	4064 04072-3125 32909
51036000000	MARIER JAMES A	PORTER KYLE C	248 LINCOLN ST	SACO	ME	04072-3127
51001000000	CLOUGH PAMALA A		263 LINCOLN ST	SACO	ME	4072
51047002000	CONLEY VALARIE L	CONLEY MATTHEW M	310 LINCOLN ST	SACO	ME	4072
51044016000	J BROWN INVESTMENTS LLC		161 SACO AVE	OLD ORCHARD BEACH	ME	4064
52008001000	TOPPI CHARLES		58 FOREST ST	SACO	ME	4072
65023000000	RAY JEREMY A	HUSSEY SUZANNE M	6 SKYLINE DR	SACO	ME	4072
52032000000	BOUCHER ROGER G	BOUCHER COLETTE B	24 MAPLE ST	SACO	ME	4072
65012000000	JANELLE ARMAND R	JANELLE SIMONE F	3 SKYLINE DR	SACO	ME	04072-3119
65012000000 65017000000 52023000000	SICARD ROGER J GRAVES RICHARD A JR	GRAVES RICHARD A SR	13 SKYLINE DR 57 FOREST ST	SACO SACO	ME ME ME	04072-3119 04072-3119 4072
66025000000 51044002000 51046000000	CLARK ELLEN J LILLY JARROD S ALBERT TRACY L	FARRAR RICHARD H LILLY KRISTIE V	21 SKYLINE DR 25 COUNTRY CLUB DR 304 LINCOLN ST	SACO SACO SACO	ME ME ME	4072 4072 4072
52058000000	COTE GHISLAIN		15 MAPLE ST	SACO	ME	4072
65013000000	LOOMIS ELIZABETH A		5 SKYLINE DR	SACO	ME	4072
51006000000	EMERSON ALBERTINA A		245 LINCOLN ST	SACO	ME	04072-3128
66024000000	MCCORMACK ROBERT J TRUSTEE		15 SKYLINE DR	SACO	ME	4072
52002000000	GRANT RICHARD		26 FOREST ST	SACO	ME	04072-3126
51044015000	J BROWN INVESTMENTS LLC	ORLANDO SUZANNE TARDIF DONALD	161 SACO AVE	OLD ORCHARD BEACH	ME	4064
51044013000	CAMIRE BERNARD N		35 TASKER ST	SACO	ME	04072-2423
51005000000	TARDIFF ARTHUR J		249 LINCOLN ST	SACO	ME	4072
65010004000	SMITH HEATHER L		7 BOOM RD	SACO	ME	4072
51042000000	GRIFFETH CRAIG		276 LINCOLN ST	SACO	ME	4072
52035000000 65016000000 52030000000	CONAWAY CLARA E OUELLETTE ROGER R BERNIER LINDA J	OSKOUIE BIJAN OUELLETTE BONNIE	40 MAPLE ST 11 SKYLINE DR 4 MAPLE ST	SACO SACO SACO	ME ME ME	4072 04072-3119 04072-3130
65014000000 52057000000 65024000000	WHITE GORDON M LOUIS HARRY P DOODY GEORGE J	WHITE THERESA D DOODY JUDITH G	812 WEST MILLBROOK ST 23 MAPLE ST 4 SKYLINE DR	HANFORD SACO SACO	CA ME ME	93230 04072-3130 4072
66026000000	MORSE FRANK H	MORSE BETTY A	20 SKYLINE DR	SACO	ME	4072
51040000000	PERREAULT RAYMOND		268 LINCOLN ST	SACO	ME	04072-3127
51044013000 52024000000 65010002000	JOHNSEN CHARLES S BEAUSOLEIL ERIC R LITTLEFIELD BRETT L	OUELETTE ELIZABETH A LITTLEFIELD ELENA	340 LINCOLN ST 55 FOREST ST 13 BOOM RD	SACO SACO SACO	ME ME ME	4072 4072 4072
6502000000	RICCI ALEXANDRA KENT	MAHONEY III CHARLES D	12 SKYLINE DR	SACO	ME	4072
52003000000	MAHONEY TRACY M		26 PINE RIDGE RD	SACO	ME	04072-2119
51044001001	CITY OF SACO		300 MAIN ST	SACO	ME	4072
51044016000	J BROWN INVESTMENTS LLC		161 SACO AVE	OLD ORCHARD BEACH	ME	4064
65022001000	CITY OF SACO		300 MAIN ST	SACO	ME	4072
52033000000 51003000000 51044012000	DALLAIRE KIMBERLY CLOUGH WILLIAM J CONDO MAIN	DALLAIRE MARK H CLOUGH HEIDI	28 MAPLE ST 257 LINCOLN ST 342 LINCOLN ST	SACO SACO SACO	ME ME ME	4072 4072 4072
51019001000	KIMBALL HEALTH CENTER	C/O ERWIN C WARREN	333 LINCOLN ST	SACO	ME	04072-3158
52006000000	CAROLAN MARY ELIZABETH		50 FOREST ST	SACO	ME	4072
51048000000	SHAW STEPHANIE G		P O BOX 1688	SACO	ME	4072
51048000000 52008000000 51007000000	LINO CRUZ WILLIAM A KELLEY, THOMAS R		62 FOREST ST 241 LINCOLN ST	SACO SACO SACO	ME ME ME	4072 4072 4072

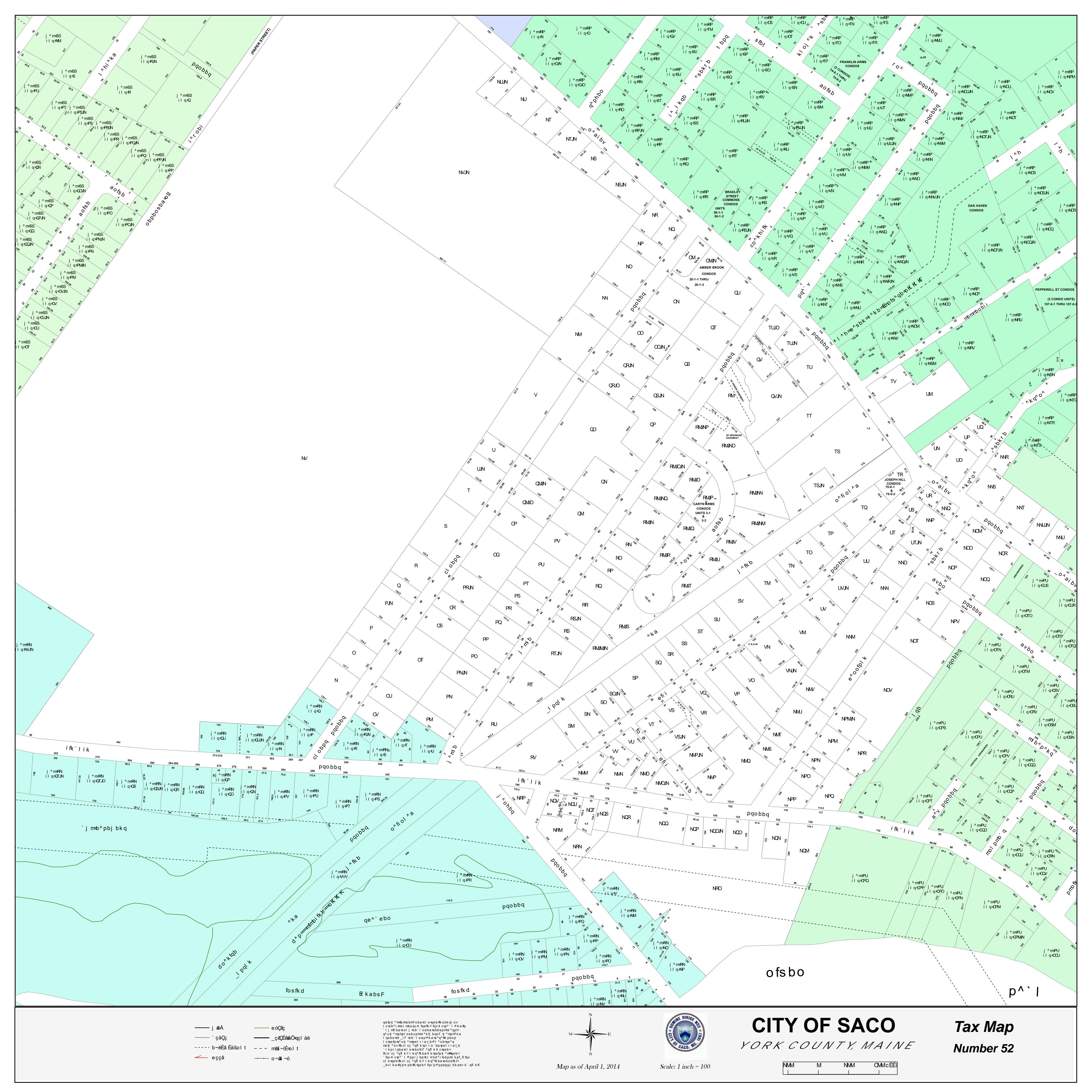
65019000000	HEMENWAY CHARLES G	HEMENWAY BETH A	14 SKYLINE DR	SACO	ME	4072
65010001000	GOODWIN BENJAMIN D	GOODWIN KAREN T	3 BOOM RD	SACO	ME	4072
51048001000	SOUZA JAMES	SOUZA ALICE	271 LINCOLN ST	SACO	ME	04072-3129
52027000000	ABDULLAH GHASSAN M	AL-FRAJI SHAYMAA S	21 FOREST ST	SACO	ME	4072
51005001000	TARDIF ARTHUR	ORLANDO SUZANNE & TARDIFF DONALD	249 LINCOLN ST	SACO	ME	4072
52009000000	DEERING LUCIA KIMBALL TRUST	C/OWARREN ERWIN C	KIMBALL HEALTH CENTER	SACO	ME	4072
52004000000	SCHMIDT NICOLE D		44 FOREST ST	SACO	ME	4072
51044000000	ZIMMERMANN LISELOTTE		280 LINCOLN ST	SACO	ME	04072-3127
65021000000	BILOTTA PAUL V	BILOTTA JOANNA	10 SKYLINE DR	SACO	ME	04072-3120
52031001000	CLOSE WILLIAM P	CLOSE HEATHER L, A/K/A HEATHER MITCHELL	20 MAPLE ST	SACO	ME	4072
52025000000	STUDTMANN KENNETH M	STUDTMANN TERRI C	45 FOREST ST APT 201	SACO	ME	4072
51044014000	J BROWN INVESTMENTS LLC		161 SACO AVE	OLD ORCHARD BEACH	ME	4064
52035001000	LABRECQUE MARCEL R		49 FOREST ST	SACO	ME	04072-3125
51002000000	BERNATEK FREDERICK	BERNATEK EVA	259 LINCOLN ST	SACO	ME	4072
52028000000	CHARETTE LISA M	CHARETTE RICHARD R	19 FOREST ST	SACO	ME	4072
51038000000	DE LIMA CARLOS LEONARDO HABACHE	DE LIMA NYIESHA CELESTINE GRADNEY	256 LINCOLN ST	SACO	ME	4072
51045000000	ZIMMERMANN LISELOTTE L		280 LINCOLN ST	SACO	ME	04072-3127
51047001000	TROTTIER WILFRED R	TROTTIER JEANINE R	15 KING AVE	SACO	ME	4072
65015000000	KALAGIAS PETER M		9 SKYLINE DR	SACO	ME	4072
51043000000	LALIME JASON	LALIME AMY	278 LINCOLN ST	SACO	ME	4072
52036000000	FRAZIER MICHAEL VINCENT	FRAZIER CHRISTINA	44 MAPLE ST	SACO	ME	4072
52007000000	CLOUTIER MAURICE J	CLOUTIER THERESA M	56 FOREST ST	SACO	ME	04072-3126
51019001001	VOLUNTEERS OF AMERICA	NORTHERN NEW ENGLAND INC	14 MAINE ST	BRUNSWICK	ME	4011
52003001000	GREEN ARTHUR E	GREEN AMY F	36 FOREST ST	SACO	ME	4072
53002005000	HARVEY THOMAS E	BAXTER SUSAN Y	22 TASKER ST	SACO	ME	4072
53002005000	ANGERS MARC A	ANGERS SUSAN P	22 TASKER ST	SACO	ME	4072
52021000000	FAUCHER STEVEN	FAUCHER JENNIFER	81 FOREST ST	SACO	ME	4072
52017001000	WILBAR-SANDIDGE THEODORE R	LEVY MICHELLE L	176 BRADLEY ST	SACO	ME	4072
53002005000	KASHINSKY SHANNON L		22 TASKER ST UNIT 7	SACO	ME	4072
53002005000 52017000000	ROBERTS JULIE A DANLEY, RYAN		22 TASKER ST 178 BRADLEY ST	SACO SACO	ME ME	4072 4072
52020001000		SCHELL DAWN-MARIE	87 FOREST ST	SACO	ME	4072
52022000000		DE ROSA BRADLEY J	75 FOREST ST	SACO	ME	4072
53002005000	FINN MARY E		22 TASKER ST	SACO	ME	4072
52011000000	CRANDALL VAUGHAN JR	CRANDALL WINNIFRED	82 FOREST ST	SACO	ME	04072-3109
52047000000	BERNIER WANDA		98 MAPLE ST	SACO	ME	4072
53002005000	STEWART CHRISTINE M	STEWART PHILIP A	22 TASKER ST	SACO	ME	4072
53002005000	DESCOTEAUX THOMAS J	DESCOTEAUX JUDITH A	22 TASKER ST #2	SACO	ME	4072
52012000000	LEDOUX MARK R	LEDOUX JUNE M	84 FOREST ST	SACO	ME	04072-3109
52013000000	ROY KEVIN		88 FOREST ST	SACO	ME	4072
53001000000	CHAMBERLAIN CRAIG C	CHAMBERLAIN DORIS E	187 BRADLEY ST	SACO	ME	04072-3104
52020001000	CONDO MAIN		87 FOREST ST	SACO	ME	4072
53002005000	MAZYCK C SHANNON		22 TASKER ST	SACO	ME	4072
53002001000	ARCHER KELLEY L		185 BRADLEY ST	SACO	ME	4072
53002000000	MCINTYRE GILBERT		1136 INVERNESS ST	PORT CHARLOTTE	FL	33952
52020001000	BEAVER NANCY		87 FOREST ST	SACO	ME	4072
53002005000	LIBBY JASON A		22 TASKER ST	SACO	ME	4072
53002004000	GOSSELIN RAYMOND	GOSSELIN VIVIAN	10 TASKER ST	SACO	ME	4072
53002005000	CONDO MAIN		22 TASKER ST	SACO	ME	4072
53003000000	POITRAS DONALD		12TASKER ST	SACO	ME	4072
53002005000	ROY DONALD J	ROY PATRICIA T	22 TASKER ST	SACO	ME	4072
52022001000	YORK CUMBERLAND ASSOCIATION FOR	HANDICAPPED PERSONS	619 BRIGHTON AVE	PORTLAND	ME	4102
53002005000	ANGIS LORRAINE A		22 TASKER ST	SACO	ME	4072
53002005000	LAREAU PETE		22 TASKER ST	SACO	ME	4072
53002005000	BEAUMONT COLETTE M	MCNALLY RODERICK C	22 TASKER ST	SACO	ME	4072
52020001000	CARLSON WAYNE A		87 FOREST ST	SACO	ME	4072
53002002000	LIBBY CHARLOTTE M		183 BRADLEY ST	SACO	ME	4072
52010000000	GRAFFAM WILLIAM A	GRAFFAM DIANA	80 FOREST ST	SACO	ME	04072-3109
53002005000	DRESSER BARBARA J		22 TASKER ST	SACO	ME	4072
53002005000	CHRISTIE, COREY		22 TASKER ST	SACO	ME	4072
52050013000	BRANCO GEORGE G TRUSTEE		20 TRAILSIDE CIRCLE	SACO	ME	4072
52045001000	LAMIRANDE SUZANNE L	LABELLE HOPE A & ELLIOTT JOYCE M	73 FOREST ST	SACO	ME	4072
52037000000	MOHABBATI ESMAEIL S	GHORBANZAHEH BITA	46 MAPLE ST	SACO	ME	4072
52040002000	KELLEY MARK C		59 FOREST ST	SACO	ME	4072
52040000000	FOURNIER WILLIAM R	BRANN MICHELLE B	18 WENDY WAY	SACO	ME	4072
52053000000	PERKINS DANA R	PERKINS SHARI R	59 MAPLE ST	SACO	ME	04072-3130
52052000000	FOURNIER WILLIAM R	FOURNIER MICHELLE B	18 WENDY WAY	SACO	ME	4072
52054000000	GALLANT JEANNIE M		55 MAPLE ST	SACO	ME	4072
52050002001	LAROSE JESSICA LYNN		77 MAPLE ST #1	SACO	ME	4072
52056001000				SACO	ME	04072-3130
52057001000	KALOYARES STEPHEN S					
	KALOYARES STEPHEN S TRASK MATTHEW I		45 MAPLE ST 35 MAPLE ST			4072
	TRASK MATTHEW J		35 MAPLE ST	SACO	ME	4072 4072
52051000000	TRASK MATTHEW J GOODWIN NANCY A	ΕΙ ΠΟΤΤ ΙΟΥCE Μ	35 MAPLE ST 65 MAPLE ST	SACO SACO	ME ME	4072
52051000000 52045002000	TRASK MATTHEW J GOODWIN NANCY A TABOR CHRISTOPHER G	ELLIOTT JOYCE M	35 MAPLE ST 65 MAPLE ST 71 FOREST ST	SACO SACO SACO	ME ME ME	4072 4072
52051000000 52045002000 52042000000	TRASK MATTHEW J GOODWIN NANCY A TABOR CHRISTOPHER G DEERING LUCIA KIMBALL TRUST	C/OWARREN ERWIN C	35 MAPLE ST 65 MAPLE ST 71 FOREST ST KIMBALL HEALTH CENTER	SACO SACO SACO SACO	ME ME ME ME	4072 4072 4072
52051000000 52045002000 52042000000 52037000000	TRASK MATTHEW J GOODWIN NANCY A TABOR CHRISTOPHER G DEERING LUCIA KIMBALL TRUST MOHABBATI ESMAEIL S		35 MAPLE ST 65 MAPLE ST 71 FOREST ST KIMBALL HEALTH CENTER 46 MAPLE ST	SACO SACO SACO SACO SACO	ME ME ME ME ME	4072 4072 4072 4072
52051000000 52045002000 52042000000 52037000000 52050002001	TRASK MATTHEW J GOODWIN NANCY A TABOR CHRISTOPHER G DEERING LUCIA KIMBALL TRUST MOHABBATI ESMAEIL S WHITMORE MICHAEL F	C/OWARREN ERWIN C GHORBANZAHEH BITA	35 MAPLE ST 65 MAPLE ST 71 FOREST ST KIMBALL HEALTH CENTER 46 MAPLE ST 77 MAPLE ST	SACO SACO SACO SACO SACO SACO	ME ME ME ME ME	4072 4072 4072 4072 4072
5205100000 52045002000 52042000000 52037000000 52050002001 52050001000	TRASK MATTHEW J GOODWIN NANCY A TABOR CHRISTOPHER G DEERING LUCIA KIMBALL TRUST MOHABBATI ESMAEIL S WHITMORE MICHAEL F PLANTE GARITH E	C/OWARREN ERWIN C GHORBANZAHEH BITA PLANTE NICOLE N	35 MAPLE ST 65 MAPLE ST 71 FOREST ST KIMBALL HEALTH CENTER 46 MAPLE ST 77 MAPLE ST 73 MAPLE ST	SACO SACO SACO SACO SACO SACO	ME ME ME ME ME ME	4072 4072 4072 4072 4072 4072
5205100000 52045002000 52042000000 52037000000 52050002001 52050001000 52057002000	TRASK MATTHEW J GOODWIN NANCY A TABOR CHRISTOPHER G DEERING LUCIA KIMBALL TRUST MOHABBATI ESMAEIL S WHITMORE MICHAEL F PLANTE GARITH E TUBBS, JASON	C/OWARREN ERWIN C GHORBANZAHEH BITA PLANTE NICOLE N TUBBS, RICHARD W , TUBBS ANDREA	35 MAPLE ST 65 MAPLE ST 71 FOREST ST KIMBALL HEALTH CENTER 46 MAPLE ST 77 MAPLE ST 73 MAPLE ST 33 MAPLE ST	SACO SACO SACO SACO SACO SACO SACO	ME ME ME ME ME ME ME	4072 4072 4072 4072 4072 4072 4072
52051000000 52045002000 52042000000 52037000000 52050002001 52050001000 52057002000 52050014000	TRASK MATTHEW J GOODWIN NANCY A TABOR CHRISTOPHER G DEERING LUCIA KIMBALL TRUST MOHABBATI ESMAEIL S WHITMORE MICHAEL F PLANTE GARITH E TUBBS, JASON MATHER ROBERT	C/OWARREN ERWIN C GHORBANZAHEH BITA PLANTE NICOLE N TUBBS, RICHARD W , TUBBS ANDREA BURNS JEANNETTE M	35 MAPLE ST 65 MAPLE ST 71 FOREST ST KIMBALL HEALTH CENTER 46 MAPLE ST 77 MAPLE ST 73 MAPLE ST 33 MAPLE ST 75 MAPLE ST	SACO SACO SACO SACO SACO SACO SACO SACO	ME ME ME ME ME ME ME	4072 4072 4072 4072 4072 4072 4072 4072
52051000000 52045002000 52042000000 52037000000 52050002001 52050001000 52057002000 52050014000 52043000000	TRASK MATTHEW J GOODWIN NANCY A TABOR CHRISTOPHER G DEERING LUCIA KIMBALL TRUST MOHABBATI ESMAEIL S WHITMORE MICHAEL F PLANTE GARITH E TUBBS, JASON MATHER ROBERT LETELLIER TRAVIS A	C/OWARREN ERWIN C GHORBANZAHEH BITA PLANTE NICOLE N TUBBS, RICHARD W , TUBBS ANDREA	35 MAPLE ST 65 MAPLE ST 71 FOREST ST KIMBALL HEALTH CENTER 46 MAPLE ST 77 MAPLE ST 73 MAPLE ST 33 MAPLE ST 75 MAPLE ST 88 MAPLE ST	SACO SACO SACO SACO SACO SACO SACO SACO	ME ME ME ME ME ME ME ME	4072 4072 4072 4072 4072 4072 4072 4072
5205100000 52045002000 52042000000 52037000000 52050002001 52050001000 52057002000 52057002000 52043000000 52039000000	TRASK MATTHEW J GOODWIN NANCY A TABOR CHRISTOPHER G DEERING LUCIA KIMBALL TRUST MOHABBATI ESMAEIL S WHITMORE MICHAEL F PLANTE GARITH E TUBBS, JASON MATHER ROBERT LETELLIER TRAVIS A RISINGER MARK C	C/OWARREN ERWIN C GHORBANZAHEH BITA PLANTE NICOLE N TUBBS, RICHARD W , TUBBS ANDREA BURNS JEANNETTE M LETELLIER MARY	35 MAPLE ST 65 MAPLE ST 71 FOREST ST KIMBALL HEALTH CENTER 46 MAPLE ST 77 MAPLE ST 73 MAPLE ST 33 MAPLE ST 75 MAPLE ST 88 MAPLE ST 56 MAPLE ST	SACO SACO SACO SACO SACO SACO SACO SACO	ME ME ME ME ME ME ME ME	4072 4072 4072 4072 4072 4072 4072 4072
52051000000 52045002000 52042000000 52037000000 52050002001 52050001000 52057002000 52050014000 52043000000 52039000000	TRASK MATTHEW J GOODWIN NANCY A TABOR CHRISTOPHER G DEERING LUCIA KIMBALL TRUST MOHABBATI ESMAEIL S WHITMORE MICHAEL F PLANTE GARITH E TUBBS, JASON MATHER ROBERT LETELLIER TRAVIS A RISINGER MARK C MURPHY-DEAN JAMES SIMMONS	C/OWARREN ERWIN C GHORBANZAHEH BITA PLANTE NICOLE N TUBBS, RICHARD W , TUBBS ANDREA BURNS JEANNETTE M LETELLIER MARY MURPHY-DEAN THEIA ELIZABETH	35 MAPLE ST 65 MAPLE ST 71 FOREST ST KIMBALL HEALTH CENTER 46 MAPLE ST 77 MAPLE ST 73 MAPLE ST 33 MAPLE ST 75 MAPLE ST 88 MAPLE ST 56 MAPLE ST 43 MAPLE ST	SACO SACO SACO SACO SACO SACO SACO SACO	ME ME ME ME ME ME ME ME ME	4072 4072 4072 4072 4072 4072 4072 4072
5205100000 52045002000 52042000000 52037000000 52050002001 52050001000 52057002000 52057002000 52043000000 52039000000 52056000000 52038000000	TRASK MATTHEW J GOODWIN NANCY A TABOR CHRISTOPHER G DEERING LUCIA KIMBALL TRUST MOHABBATI ESMAEIL S WHITMORE MICHAEL F PLANTE GARITH E TUBBS, JASON MATHER ROBERT LETELLIER TRAVIS A RISINGER MARK C MURPHY-DEAN JAMES SIMMONS HOUDLETTE GREGORY	C/OWARREN ERWIN C GHORBANZAHEH BITA PLANTE NICOLE N TUBBS, RICHARD W , TUBBS ANDREA BURNS JEANNETTE M LETELLIER MARY	35 MAPLE ST 65 MAPLE ST 71 FOREST ST KIMBALL HEALTH CENTER 46 MAPLE ST 77 MAPLE ST 73 MAPLE ST 33 MAPLE ST 75 MAPLE ST 88 MAPLE ST 56 MAPLE ST 43 MAPLE ST 52 MAPLE ST	SACO SACO SACO SACO SACO SACO SACO SACO	ME ME ME ME ME ME ME ME ME ME	4072 4072 4072 4072 4072 4072 4072 4072
52051000000 52045002000 52042000000 52037000000 52050002001 5205001000 52057002000 52050014000 52039000000 52039000000 52038000000 52038000000	TRASK MATTHEW J GOODWIN NANCY A TABOR CHRISTOPHER G DEERING LUCIA KIMBALL TRUST MOHABBATI ESMAEIL S WHITMORE MICHAEL F PLANTE GARITH E TUBBS, JASON MATHER ROBERT LETELLIER TRAVIS A RISINGER MARK C MURPHY-DEAN JAMES SIMMONS HOUDLETTE GREGORY MILNE FAMILY TRUST	C/OWARREN ERWIN C GHORBANZAHEH BITA PLANTE NICOLE N TUBBS, RICHARD W , TUBBS ANDREA BURNS JEANNETTE M LETELLIER MARY MURPHY-DEAN THEIA ELIZABETH	35 MAPLE ST 65 MAPLE ST 71 FOREST ST KIMBALL HEALTH CENTER 46 MAPLE ST 77 MAPLE ST 73 MAPLE ST 33 MAPLE ST 75 MAPLE ST 56 MAPLE ST 56 MAPLE ST 52 MAPLE ST 90B MAPLE ST	SACO SACO SACO SACO SACO SACO SACO SACO	ME ME ME ME ME ME ME ME ME ME	4072 4072 4072 4072 4072 4072 4072 4072
52051000000 52045002000 52042000000 52037000000 52050002001 5205001000 52057002000 52050014000 52039000000 52039000000 52038000000 52046001000 52055000000	TRASK MATTHEW J GOODWIN NANCY A TABOR CHRISTOPHER G DEERING LUCIA KIMBALL TRUST MOHABBATI ESMAEIL S WHITMORE MICHAEL F PLANTE GARITH E TUBBS, JASON MATHER ROBERT LETELLIER TRAVIS A RISINGER MARK C MURPHY-DEAN JAMES SIMMONS HOUDLETTE GREGORY MILNE FAMILY TRUST SERUNJOGI RONALD K	C/OWARREN ERWIN C GHORBANZAHEH BITA PLANTE NICOLE N TUBBS, RICHARD W , TUBBS ANDREA BURNS JEANNETTE M LETELLIER MARY MURPHY-DEAN THEIA ELIZABETH	35 MAPLE ST 65 MAPLE ST 71 FOREST ST KIMBALL HEALTH CENTER 46 MAPLE ST 77 MAPLE ST 73 MAPLE ST 33 MAPLE ST 33 MAPLE ST 88 MAPLE ST 56 MAPLE ST 43 MAPLE ST 90B MAPLE ST 47-49 MAPLE ST	SACO SACO SACO SACO SACO SACO SACO SACO	ME ME ME ME ME ME ME ME ME ME ME	4072 4072 4072 4072 4072 4072 4072 4072
5205100000 52045002000 52042000000 52037000000 52050002001 52050001000 52057002000 52057002000 52039000000 52039000000 52038000000 52038000000 52046001000 52055000000	TRASK MATTHEW J GOODWIN NANCY A TABOR CHRISTOPHER G DEERING LUCIA KIMBALL TRUST MOHABBATI ESMAEIL S WHITMORE MICHAEL F PLANTE GARITH E TUBBS, JASON MATHER ROBERT LETELLIER TRAVIS A RISINGER MARK C MURPHY-DEAN JAMES SIMMONS HOUDLETTE GREGORY MILNE FAMILY TRUST SERUNJOGI RONALD K CONDO MAIN	C/OWARREN ERWIN C GHORBANZAHEH BITA PLANTE NICOLE N TUBBS, RICHARD W , TUBBS ANDREA BURNS JEANNETTE M LETELLIER MARY MURPHY-DEAN THEIA ELIZABETH HOUDLETTE CHARLENE A	35 MAPLE ST 65 MAPLE ST 71 FOREST ST KIMBALL HEALTH CENTER 46 MAPLE ST 77 MAPLE ST 73 MAPLE ST 33 MAPLE ST 33 MAPLE ST 56 MAPLE ST 56 MAPLE ST 52 MAPLE ST 90B MAPLE ST 47-49 MAPLE ST 77 MAPLE ST	SACO SACO SACO SACO SACO SACO SACO SACO	ME ME ME ME ME ME ME ME ME ME ME ME	4072 4072 4072 4072 4072 4072 4072 4072
5205100000 52045002000 52042000000 52037000000 52050002001 5205001000 52057002000 52057002000 52039000000 52039000000 52038000000 52046001000 52055000000 520550002001 52041000000	TRASK MATTHEW J GOODWIN NANCY A TABOR CHRISTOPHER G DEERING LUCIA KIMBALL TRUST MOHABBATI ESMAEIL S WHITMORE MICHAEL F PLANTE GARITH E TUBBS, JASON MATHER ROBERT LETELLIER TRAVIS A RISINGER MARK C MURPHY-DEAN JAMES SIMMONS HOUDLETTE GREGORY MILNE FAMILY TRUST SERUNJOGI RONALD K CONDO MAIN LAMARRE BARRY P	C/OWARREN ERWIN C GHORBANZAHEH BITA PLANTE NICOLE N TUBBS, RICHARD W , TUBBS ANDREA BURNS JEANNETTE M LETELLIER MARY MURPHY-DEAN THEIA ELIZABETH	35 MAPLE ST 65 MAPLE ST 71 FOREST ST KIMBALL HEALTH CENTER 46 MAPLE ST 77 MAPLE ST 73 MAPLE ST 33 MAPLE ST 33 MAPLE ST 56 MAPLE ST 56 MAPLE ST 52 MAPLE ST 90B MAPLE ST 47-49 MAPLE ST 77 MAPLE ST 68 MAPLE ST	SACO SACO SACO SACO SACO SACO SACO SACO	ME ME ME ME ME ME ME ME ME ME ME ME	4072 4072 4072 4072 4072 4072 4072 4072
5205100000 52045002000 52042000000 52037000000 52050002001 52050001000 52057002000 52050014000 52039000000 52039000000 52038000000 52056000000 52055000000 520550002001 52046000000	TRASK MATTHEW J GOODWIN NANCY A TABOR CHRISTOPHER G DEERING LUCIA KIMBALL TRUST MOHABBATI ESMAEIL S WHITMORE MICHAEL F PLANTE GARITH E TUBBS, JASON MATHER ROBERT LETELLIER TRAVIS A RISINGER MARK C MURPHY-DEAN JAMES SIMMONS HOUDLETTE GREGORY MILNE FAMILY TRUST SERUNJOGI RONALD K CONDO MAIN LAMARRE BARRY P BOUCHER RITA M	C/OWARREN ERWIN C GHORBANZAHEH BITA PLANTE NICOLE N TUBBS, RICHARD W , TUBBS ANDREA BURNS JEANNETTE M LETELLIER MARY MURPHY-DEAN THEIA ELIZABETH HOUDLETTE CHARLENE A	35 MAPLE ST 65 MAPLE ST 71 FOREST ST KIMBALL HEALTH CENTER 46 MAPLE ST 77 MAPLE ST 73 MAPLE ST 33 MAPLE ST 33 MAPLE ST 56 MAPLE ST 56 MAPLE ST 52 MAPLE ST 90B MAPLE ST 47-49 MAPLE ST 68 MAPLE ST 68 MAPLE ST 94 MAPLE ST	SACO SACO <t< td=""><td>ME ME ME ME ME ME ME ME ME ME ME ME ME</td><td>4072 4072 4072 4072 4072 4072 4072 4072</td></t<>	ME ME ME ME ME ME ME ME ME ME ME ME ME	4072 4072 4072 4072 4072 4072 4072 4072
5205100000 52045002000 52042000000 52037000000 52050002001 5205001000 52057002000 52057002000 52039000000 52039000000 52038000000 52046001000 52055000000 520550002001 52041000000	TRASK MATTHEW J GOODWIN NANCY A TABOR CHRISTOPHER G DEERING LUCIA KIMBALL TRUST MOHABBATI ESMAEIL S WHITMORE MICHAEL F PLANTE GARITH E TUBBS, JASON MATHER ROBERT LETELLIER TRAVIS A RISINGER MARK C MURPHY-DEAN JAMES SIMMONS HOUDLETTE GREGORY MILNE FAMILY TRUST SERUNJOGI RONALD K CONDO MAIN LAMARRE BARRY P	C/OWARREN ERWIN C GHORBANZAHEH BITA PLANTE NICOLE N TUBBS, RICHARD W , TUBBS ANDREA BURNS JEANNETTE M LETELLIER MARY MURPHY-DEAN THEIA ELIZABETH HOUDLETTE CHARLENE A	35 MAPLE ST 65 MAPLE ST 71 FOREST ST KIMBALL HEALTH CENTER 46 MAPLE ST 77 MAPLE ST 73 MAPLE ST 33 MAPLE ST 33 MAPLE ST 56 MAPLE ST 56 MAPLE ST 52 MAPLE ST 90B MAPLE ST 47-49 MAPLE ST 77 MAPLE ST 68 MAPLE ST	SACO SACO SACO SACO SACO SACO SACO SACO	ME ME ME ME ME ME ME ME ME ME ME ME	4072 4072 4072 4072 4072 4072 4072 4072

CITY OF SACO ASSUMES NO LEGAL RESPONSIBILITY FOR THE INFORMATION CONTAINED HEREIN, BEYOND IT'S USE IN THE CITY'S ASSESSMENT FUNCTION.

1 in = 5 miles

Map as of April 1, 2019

100 *Scale: 1 inch* = *100'* 0


400 Feet

200

100

300

ATTACHMENT 5

PROJECT NARRATIVE

FINAL SUBDIVISION APPLICATION REVIEW PROPOSED LINCOLN VILLAGE FINAL SUBDIVISION NARRATIVE

TABLE OF CONTENTS

I.	PROJECT DESCRIPTION	. 2
II.	EXISTING CONDITIONS	. 3
III.	EVIDENCE OF RIGHT, TITLE, AND INTEREST	.4
IV.	FINANCIAL AND TECHNICAL CAPACITY	.4
V.	STATE AND FEDERAL AGENCY REVIEWS	. 5
VI.	PROPOSED SEQUENCING	. 8
VII.	ZONING & LOT COVERAGE	.9
VIII.	OFF STREET PARKING	10
IX.	SUBDIVISION OF LAND (CHAPTER 188)	12

I. <u>PROJECT DESCRIPTION</u>

321 Lincoln Street Development, LLC (applicant) has retained Gorrill Palmer to assist in the preparation of plans and permitting for the development of a proposed residential community located in Saco, Maine. The applicant is seeking review and approval for this proposed development.

Located between Lincoln and Bradley Street in Saco, ME, is ± 56.70 acres of land proposed for development of a new mixed residential community. This project will include different housing options, recreational locations, and natural areas. The project is currently designed to accommodate 332 housing units through the construction of multifamily units, duplexes, and single-family homes. The breakdown of building types and number of units can be seen in the following table:

	Unit Count			
	Buildings	Units		
Single Family	12	12		
Duplex	16	32		
Multifamily Units	36	288		
Total Proposed	64	332		

Recreational areas and open spaces have been designed for residents of all ages (and uses):

- Two parks are centrally located within the project for passive and active recreational uses as well as a dog park for the residents.
- A fenced-in basketball court and playground area provides an active recreational area.
- Trailways spanning approximately 5,200 feet are proposed including a mix of terrain between natural pathways in the woods and boardwalks over wetlands.

Due to the size and scope of the project, the development is anticipated to be constructed in multiple phases. Since the property is heavily forested and undeveloped, and the planned development area is approximately 30+ acres, infrastructure will need to occur in a sequence of working from the outside toward the center. A Construction Sequencing Plan is provided in Attachment 21 showing the intended construction of the site. In addition, notes have been added to the plan that are in line with the approved Traffic Movement Permit and City of Saco recommendations.

II. EXISTING CONDITIONS

TOPOGRAPHY

The topography and terrain for the planned development area varies in elevation from approximately 95 to 115 feet. For drainage purposes, the southern portion of the property conveys runoff to a series of streams and swales that drain south near Lincoln Street. The northern portion of the property generally drains to the central/eastern portion of the site to a tributary stream that conveys flow offsite and subsequently the Saco River. Most of the site contains slopes ranging from approximately 0.5% to 5%, and minimal area with steeper 30% slopes associated with the stream banks and existing quarry.

ENVIRONMENTAL CONSIDERATIONS

From a design standpoint, natural resource conservation and environmental protection are primary concerns. A focus on the conservation of large, contiguous natural areas, wildlife habitats, riparian corridors, buffers, and natural resource connectivity with the surrounding landscape were considered.

Wetlands

Wetlands were delineated by Flycatcher, LLC in September and October of 2021. The report dated November 4, 2021 can be found in Attachment 18. Vernal Pools were mapped by Power Engineers in September of 2018 and April & May of 2019. The accompanying report can also be found in Attachment 18. The defining natural features of the planned development area are the wetlands. Approximately 44,244 SF (1.02 AC) of forested wetlands are proposed to be filled for the project. Impacts within 25 ft of the stream crossing are non-jurisdictional for the NRPA application, therefore 41,434 sf is filed with the MaineDEP. Over 90% of the impacts are associated primarily with accessway development. Boardwalks connecting walking trails over wetland areas are proposed to minimize direct impacts. The NRPA Tier II Application, which has been approved by the Maine DEP and ACOE provides additional detail and information on proposed wetland fills.

Hydrology

The surface hydrology for the site is part of the Saco River Watershed. A series of delineated streams, natural swales and closed drainage systems convey surface flow to the Saco River. Appropriate buffers and setbacks are provided from the natural resource. There are no mapped significant groundwater aquifers present in this planned development.

High Intensity Soil Survey

A Class B High Intensity Soil Survey was conducted by Flycatcher, LLC in the winter of 2021/2022 and used to identify onsite soils. The proposed developed area is comprised of Hydrologic Soil Type B, C and D. A High Intensity Soil Survey Report dated February 10, 2022 and Test Pit Memorandum can be found in Attachment 12. A Medium Intensity Soil Survey for York County was used for the offsite locations surrounding the property to perform necessary runoff analysis calculations. Based on the soil report, it was determined that the on-site soils have moderate

susceptibility to erosion. Specific erosion control measures are included in the project Erosion and Sedimentation Control Report included in Attachment 10.

III. EVIDENCE OF RIGHT, TITLE, AND INTEREST

Please see Attachment 2 for a copy of the Applicant's Deed.

IV. FINANCIAL AND TECHNICAL CAPACITY

The applicant has adequate funds to complete and operate this project in compliance with the applicable City/State regulations. A letter from Gorham Savings Bank, as well as additional information provided to the Board during preliminary deliberation, is included in Attachment 13 that demonstrates that the applicant has the financial capacity to complete the project.

In addition, a Certificate of Good Standing is included in Attachment 13. A preliminary estimate indicates the total site infrastructure project cost on the order of \$17M. The Applicant understands a formal and itemized cost estimate will be required as a condition of approval for financial guarantee pursuant to Section 188-504 of the City Code.

321 Lincoln Street Development, LLC has retained a highly qualified team of professionals to undertake planning, permitting, and design tasks on this project. Services will be provided by the following firms:

The 321 Lincoln Village project consists of a partnership between Gravier Homes. Gravier Homes is a family-owned home builder business with more new homes built since 2011 than any other builders in Maine. Loni Gravier, President of Gravier Homes developed 96 market rate apartments in Cumberland Foreside Village, developed 72 market rate apartments in Westbrook, and developed 108 market rate apartments in Brunswick Landing. Gorrill Palmer has been contracted to prepare the required permit applications and development plans. Our firm has five Professional Engineers in the land development group with over 110 years of experience. We have successfully designed and permitted numerous residential and commercial projects since 1998, and our senior staff has permitted more than 10,000,000 SF of building area with agencies. Resumes are available upon request.

Firm	Services	Contact
Gorrill Palmer	Civil Site &	Drew Gagnon, P.E.
300 Southborough Drive	Traffic	dgagnon@gorrillpalmer.com
Suite 200	Engineering	
South Portland, ME 04106		Randy Dunton, PTOE
207.772.2515		rdunton@gorrillpalmer.com
Flycatcher LLC	Wetland	Rich Jordan, (PWS/CPESC)
106 Lafayette Street, Suite 1C	Delineation &	rich@flycatcherllc.com
Yarmouth, ME 04096	HISS Mapping	
207.217.0959		Rodney Kelshaw, (CWB/CPSS/PWS/CPESC/LSE/LSS)
		rodney@flycatcherllc.com

Below is a list of additional consultants and their responsibilities related to this project:

Power Engineers	Vernal Pool	Cole Peters, Professional Wetland Scientist
303 U.S. Route One	Surveys	cole.peters@powereng.com
Freeport, ME 04032		
207.869.1200		Mike Banaitis, (PWS/CPESC)
		mike.banaitis@powereng.com
Owen Haskell	Surveyor	Randy Loubier, PLS
390 US Route 1, Unit 10		rloubier@owenhaskell.com
Falmouth, ME 04105		
207.774.0424		
Allied Engineering	Electrical	Cathy Faucher, P.E.
160 Veranda Street	Engineering	cfaucher@allied-eng.com
Portland, ME 04103		
207.221.2260		
Long Meadow Planning & Landscape	Landscape	Christopher DiMatteo
Architecture, LLC	Architect	cdimatteo@longmeadowpla.com
207.604.4245		

After construction, the project will be managed and maintained by the applicant, 321 Lincoln Street Development, LLC. Further, future homeowners and property owners, associations will be established to manage aspects of the development that are not the responsibility of the town or public utilities. Based on the above, 321 Lincoln Street Development, LLC and the above subconsultants have the technical capacity to complete the proposed project.

V. STATE AND FEDERAL AGENCY REVIEWS

Under the Site Location of Development Law (SLODA) (38 M.R.S.A §481-490) instituted by the Maine Department of Environmental Protection, a project creating more than 3 acres of impervious area or 20 acres of more of developed area, will require a Site Law permit from the Department. The City of Saco has been delegated the authority to review developments needing approval under Title 38 M.R.S.A. §§ 420 and 481 through 500 by the Maine Department of Environmental Protection. The Applicant has worked with the City Planner, City Engineer and MaineDEP for delegated review.

The proposed wetland fills of approximately 44,244 sf (41,434 sf of NRPA jurisdictional fill) will require a Natural Resource Protection Act (NRPA) Tier II permit and an Army Corp General Permit. The Applicant has received these two permits and copies of the approvals have been submitted to the City previously. The below provides additional information and outreach with various state and federal agencies.

The proposed development will also trigger a MaineDOT Traffic Movement Permit for the creation of 100-200 trip ends in the peak hour. This Traffic Movement Permit is in draft form and will be provided to the City upon receipt.

Habitat

Related to the natural resources mentioned above is an overview of significant wildlife habitats. The following entities were contacted for information on potential wildlife that could be impacted by the project:

- Maine Natural Areas Program
- Maine Department of Inland Fisheries and Wildlife
- United States Department of the Interior Fish and Wildlife Service

The Maine Natural Areas Program stated that, "According to the information currently in our Biological and Conservation Data System files, there are no rare botanical features documented specifically within the project area."

The Maine Department of Inland Fisheries and Wildlife wrote, "Our Department has not mapped any Essential Habitats that would be directly affected by your project." They also noted several of the eight species of bats that occur in Maine likely are in the project location during migration and/or breeding season, though the project is not anticipated to significantly impact the species of bats. There was an amendment to the February 5, 2018, FHWA, FRA, FTA Programmatic Biological Opinion (dated March 23, 2023) for Transportation Projects within the Range of the Indiana Bat and Northern Long-eared Bat (NLED). On April 3, 2023 the IPaC system was used to check against this amendment. The Consistency and other information can be seen in Attachment 6. In addition, MDIFW Significant Wildlife Habitat (SWH) maps indicated there is no known presence of SWHs under protection by the Natural Resources Protection Act. Lastly, a 100-foot undisturbed vegetated buffer is recommended to be maintained along streams."

The United States Department of the Interior Fish and Wildlife Service provided an Official Species List for the approximate location of the site. For mammals, the Northern Long-eared Bat *Myotis septentrionalis* was named but no critical habitat was designated for the species. For insects, the Monarch Butterfly *Danaus plexippus* was listed but again, no critical habitat was designated for the species.

The correspondence for these entities can be found in Attachments 6.

In addition, and based on Abutter/City comments, the development team has located American Chestnut trees on the property. The Maine Natural Areas Program has classified this species as of *special concern*. Particular attention was given to the areas in which they reside. In effort to mitigate potential disturbances to the American Chestnuts, design efforts were taken to avoid the trees to the greatest extent practical, all while avoiding major impacts to other natural areas and neighborhood flow. Majority of this species of tree on the property are in the proposed park area. Maintaining the natural grading of this location with minimal slope alterations, allows for the trees to remain untouched. Selective cutting in the area will also open space for growth of the American Chestnuts. In addition, a tree protection plan has been provided in Attachment 22. This protection plan has been developed by the project's landscape architect and consulting arborist Jeff Tarling.

Other locations of these plants are outside the planned development window, thus remaining in their current state. Locations where these trees are impacted remain minimal with notes to relocate the plant if possible are included on the plans.

Historic Correspondence

To preserve local significant history and to comply with Site Law regulations, informational request letters were sent to the following sources:

- Maine Historic Preservation Commission
- Maine Tribal Historic Offices
 - Passamaquoddy Tribe of Indians
 - Houlton Band of Maliseet Indians
 - o Penobscot Nation
 - o Mi'kmaq Nation

Representatives from the above list were asked to provide cultural and historical insight within their areas of expertise relative to the planned location of the project. There were no raised concerns, though responses were received with requests to be notified immediately if cultural or historical material is discovered. Please refer to Attachment 6 for the correspondence between the previously mentioned sources.

TRAFFIC IMPACTS AND ANALYSIS

Lincoln Village is a 332-unit mixed residential development consisting of 12 single family homes, 32 duplex units and 288 low rise multi-family units on a +/- 56 acre parcel located between Lincoln Street and Bradley Street in Saco, ME. The proposed project is forecast to generate 138 and 176 trip ends during the AM and PM peak hours of adjacent street traffic respectively and 147 trip ends during the Saturday peak hour. The development is forecast to generate 162 trips and 196 trips ends in the AM and PM peak hours of the generator, respectively. The trip generation was calculated utilizing the Institute of Transportation Engineers' (ITE) publication, *Trip Generation*, Eleventh Edition, the most recent edition accepted by the MaineDOT.

The Applicant, design team, City of Saco, City Peer Reviewer, and MaineDOT attended a TMP Scoping Meeting on June 9th, 2022 for the proposed project. Members of the public were in attendance as well. Based on discussions at that Scoping Meeting, a Traffic Impact Study (TIS).

The study area for the TIS included the following intersections:

- Garfield Street / North Street (Rt 112) (unsignalized)
- Garfield Street / Bradley Street (unsignalized)
- North Street (Rt 112) / Industrial Park Road (signalized)
- Tasker Street / North Street (Rt 112) (unsignalized)
- Tasker Street / Bradley Street (unsignalized)
- Market Street / Lincoln Street / Maple Street (unsignalized)
- Site Driveway / Lincoln Street (unsignalized)
- Site Driveway / Bradley Street (unsignalized)

Based on review by the MaineDOT, City of Saco, and third party reviewers, the following mitigation is proposed for this development:

- Construction of offsite sidewalks along Bradley Street with updated pedestrian crossings and ADA improvements
- Construction of offsite sidewalks along Lincoln Street with updated pedestrian crossings and ADA improvements
- Construction of crosswalks, radii revisions and ADA improvements to Maple Street and Lincoln Street intersection.
- Installation of two speed radar feedback signs for both eastbound and westbound traffic on Bradley Street
- Contribute an \$8,000 traffic calming impact fee to Bradley Street
- Signalization of Franklin & North Street and updated geometric improvements
- Upgrades to existing flashing beacon at Bradley Street and Spring Street intersection
- Contribute additional safety impact fees along Route 1 and Route 112.
- Develop an additional traffic study at Industrial Parkway and North Street intersection subsequent to the I95 interchange.

The Traffic Movement Permit is in draft form and a copy of the executed permit will be provided to the City upon receipt. The approved Traffic Impact Study is also provided in Attachment 14.

VI. PROPOSED SEQUENCING

As previously mentioned, this project will develop residential buildings, recreational areas, and natural areas. The buildings will be a mix between Single Family, Duplexes, and multi-family buildings. Roadways, sidewalks, trails, and utilities will be constructed to meet community needs. Based on the overall size of the proposed development, construction is anticipated to be completed in phases. The general construction sequencing pattern will work from the outside of the parcel in (off Bradley Street and Lincoln Street). A construction sequencing plan is provided in Attachment 21 of this application. The Applicant is requesting the entire project be approved under one approval.

Based on discussions with City Staff, the Applicant is committed to constructing the private access drive completely through the site (from Lincoln to Bradley), subsequent to the 66th building occupancy issued. This sequencing is in line with the approved Traffic Movement Permit. It is important to the development that certificate of occupancies are permitted in the early portions of construction, while the access drive is under construction.

Covered garages as shown throughout the plans, for use by the residents of the multi-family buildings. The Applicant reserves the right for the garages to be replaced with surface parking based on market conditions. The garages have been shown on the plans and designed for turning movements and stormwater management as they are the most conservative option from a developed and impervious area standpoint.

VII. ZONING & LOT COVERAGE

The location of the site is in the Residential District and is further classified as the Medium Density Residential District (MDR). MDR Zone permits uses of single-family and two-family dwellings. Multi-family dwellings (3 to 8 units) are a conditional use. The Applicant applied for a conditional use approval as part of this development application and was granted approval on June 29th, 2023.

Lot lines with dimensions and zoning setback lines can be found in the provided plan set. The overall lot area of the site is approximately 56.70 acres. The anticipated amount of land to be covered by buildings and accessory structures (lot coverage) for this proposed site is 12%, which is less than the zoning maximum of 35%. Additional Space and Bulk standards are shown in the attached plan set, and provided below for ease of review:

	Required	Provided
MIN. LOT SIZE (SEWERED) (SF)	7,500	56+ AC
MIN. LOT AREA/DWELLING UNIT	5,000	E ()7
(SEWERED) (SF)	5,000	5,637
MIN. LOT FRONTAGE (FT)	75	370
MIN. YARD SETBACKS (FT)		
FRONT	25	25+
SIDE	10	10+
REAR	10	10+
MAX. LOT COVERAGE	35%	12%
MAX. BUILDING HEIGHT (FT)	35	<35

The below table shows the net residential density allowed on the site in accordance with Section 230-402.D in the Zoning Ordinance:

Number of Dwelling Units Calculations: MDR Zone						
Total Parcel Acreage within						
the MDR Zone	56.68 ac					
Unusable Land (per Chapter						
230-402. Dimensional						
Requirements, of City						
Zoning Ordinance)						
	Areas with sustained slope of 33% or more.					
	Slope areas 20-33% shall be deducted unless	0.43 AC				
	demonstrated to planning board's satisfaction					
	Wetlands	13.26 AC				
	Stream Channels	0.02 AC				
	Areas that are, because of existing land uses of					
	access, isolated and unavailable for building	0 AC				
	purposes for use in common with the	U AC				
	remainder of the parcel					
	Areas within Zone V or VE and Coastal Floor					
	w/ velocity hazard, a floodway or a 100-yr flood	0 AC				
	hazard area					
	Unusable land Subtotal	13.71 AC				
Total Net Residential Acreage		42.97 AC				
		5,000 SF/				
Net residential Density Factor		dwelling unit				
Maximum # of Dwelling Units		374 Units				
Proposed # of Dwelling Units		332 Units				

As can be seen in the table above, the proposed number of dwelling units for Lincoln Village is less than the allowable maximum number of dwelling units according to the net residential density.

VIII. OFF STREET PARKING

General Conformance

A total of 720 parking spots have been provided, 36 of which are accessible spots. Parking on site complies with the off street parking requirements set forth in Article X, Table 10-1. A parking summary table is provided on the included plan set, and below for reference:

Parking Summary					
	Units	Required	Provided		
Single Family	12	24	24		
(2 spaces/1 unit)	12	27	27		
Duplex (two-family)	32	64	64		
(2 spaces/1 unit)	52	т	т		
Multi-family	288	576	580		
(2 spaces/ 2-bedroom unit)	200	570	500		
Guest Parking	288	48	52		
(1 space/6 units)	200	ОТ	52		
		15	36		
Accessible Spaces		15	50		
Total		712	720		

Parking areas are proposed throughout the site of the project and have been strategically located near building entrances for convenience. Larger parking areas are generalized near the multifamily units with sidewalk access.

Parking Design

- A) Dimensions: All proposed parking spots are at least 9 feet in width and 18 feet in length, with accessible parking meeting the requirements set forth in ANSI 117.1.A. Drive aisles are 24 ft in width in accordance with Section 230-1002.A.
- B) Handicap: 36 accessible spots were designed at 9 feet width and 18 feet length with an apron of either 5- or 8-feet width, meeting the requirements set forth in ANSI 117.1.A.
- C) Pavement: Parking areas will be paved and graded to provide stormwater drainage.
- D) Visual Obstructions and Internal Walkways: All driveway entrances and exits are proposed to be free from visual obstructions higher than three feet above street level for a distance greater than 15 feet.
- E) Lighting: Artificial lighting has been arranged so that no direct rays from the proposed parking areas fall upon neighboring properties. Please see Photometrics Plan enclosed with this application.
- F) Buffers: All parking spaces and access drives are set back a minimum of 5 feet from side and rear lot lines and the dimensional requirements have been met.
- G) Landscaping: Grade changes in parking areas consist of a relatively similar appearance with those of neighboring developed areas. Since the site is in the Residential District, it will remain landscaped with the existing vegetation along the borders of abutting properties to maintain minimal disturbances and provide a separation between residential lots. Additional landscaping is provided along these locations, specifically near Forest Street, in effort to

provide additional buffering near parking areas. Please see landscaping plans provided in this application.

- H) The total proposed parking areas exceed 10,000 sf in size. Section 230-1001.F.2 of the Zoning Ordinance states that these parking lots shall include 10% internal landscaping. The development has exceeded this goal at over 11%. The landscaped islands are a minimum of 9 ft in width and exceed 75 sf in area. Shade trees over 2 ½ inches in caliper have been provided throughout the parking fields. Please see landscaping plans included with this Application.
- Shared Parking: The proposed parking lots are intended to serve the residents and guests of Lincoln Village only. There are no proposed off-site parking spaces associated with this development.
- J) Parking Lot Interconnections: Parking Lots are connected via access roads and drive aisles throughout the site.

The following Sections of this Narrative review Subdivision Approval Criteria according to the Chapter 188 of City Code.

IX. <u>SUBDIVISION OF LAND (CHAPTER 188)</u>

ARTICLE VI; §188-603 APPROVAL CRITERA

- A Pollution. The proposed subdivision will not result in undue water or air pollution. In making this determination, the Planning Board shall consider:
 - (1) The elevation of the land above sea level and its relation to the floodplain;
 - (2) The nature of soils and subsoils and their ability to adequately support waste disposal;
 - (3) The slope of the land and its effect on effluents;
 - (4) The availability of streams for disposal of effluents; and
 - (5) The applicable state and local health and water resource rules and regulations;

The residential use of the site is consistent with the abutting properties, which is not anticipated to result in undue air pollution. In addition, the Applicant is proposed connection to the public sewer system and groundwater infiltration is not proposed as part of the Stormwater Management Plan. Please refer to the Stormwater Management Report and Erosion and Sedimentation Control Report, Attachments 7 and 10 respectively, for appropriate mitigation. Given the above information, the project is not anticipated to result in under water or air pollution.

B. Sufficient water. The proposed subdivision has sufficient water available for the reasonably foreseeable needs of the subdivision;

Please refer to Attachment 8 where a March 17, 2023, letter from Maine Water states, "Based on the criteria provided and the hydraulic analysis report from Tata & Howard running the Biddeford Saco Division hydraulic model, the expected increase in water usage is within the water system's available capacity."

C Public water supply. The proposed subdivision will not cause an unreasonable burden on an existing water supply;

Please refer to the response shown in B, directly above.

D. Erosion. The proposed subdivision will not cause unreasonable soil erosion or a reduction in the land's capacity to hold water so that a dangerous or unhealthy condition results;

The Stormwater Management Report and supporting calculations can be found in Attachment 7. This report includes an Operation and Maintenance manual and a Draft Maintenance Agreement. An Erosion and Sediment Control Plan will be implemented during and after construction in conformance with MaineDEP's Basic Standards. Erosion control BMP's and stormwater treatment and detention BMP's are shown on the site plans. We have prepared an Erosion & Sediment Control report which is included in Attachment 10. This Erosion and Sedimentation Control plan was reviewed and approved by the City's independent peer reviewer.

E. Traffic. The proposed subdivision will not cause unreasonable highway or public road congestion or unsafe conditions with respect to the use of the highways or public roads existing or proposed;

Please refer to Attachments 14, 15, and 16 for information regarding this standard. In addition, the MaineDOT has approved the Traffic Movement Permit for the development. A copy of this approval is included in this application. In addition, the development is responsible for performing the following offsite mitigation:

- Construction of offsite sidewalks along Bradley Street with updated pedestrian crossings and ADA improvements
- Construction of offsite sidewalks along Lincoln Street with updated pedestrian crossings and ADA improvements
- Construct crosswalk, turning movements and ADA improvements to Maple Street and Lincoln Street intersection.
- Installation of two speed radar feedback signs for both eastbound and westbound traffic on Bradley Street
- > Contribute an \$8,000 traffic calming impact fee to Bradley Street
- > Signalization of Franklin & North Street and updated geometric improvements
- Upgrades to existing flashing beacon at Bradley Street and Spring Street intersection
- > Contribute additional safety impact fees along Route 1 and Route 112.
- Develop an additional traffic study at Industrial Parkway and North Street intersection subsequent to the I95 interchange.

F. Sewage disposal. The proposed subdivision will provide for adequate sewage waste disposal and will not cause an unreasonable burden on the municipality;

The proposed project will connect to the public sanitary sewer system available in Lincoln Street and Bradley Street. Project Approval from the WRRD is provided in Attachment 8.

G. Municipal solid waste disposal. The proposed subdivision will not cause an unreasonable burden on the municipality's ability to dispose of solid waste;

All solid waste will be collected and disposed of in accordance with all applicable laws and regulations. Pine Tree Waste Inc. will facilitate all waste disposal needs for the facility. An ability to serve correspondence with Pine Tree Waste is provided in Attachment 9.

H. Aesthetic, cultural and natural values. The proposed subdivision will not have an undue adverse effect on the scenic or natural beauty of the area, aesthetics, historic sites, significant wildlife habitat, or rare and irreplaceable natural areas or any public rights for physical or visual access to the shoreline;

Wetlands and waterbodies at the site were delineated by Flycatcher LLC in the winter of 2021/2022. A wetland report that provides additional detail, mapping and methodology is provided in Attachment 18. Of the 56 total acre site, approximately 13.3 acres are existing wetlands. Wetland impacts were avoided and minimized to the extent practicable.

A stream crossing is proposed along the private main access drive. This crossing has been designed as an open bottom arch culvert which limits the disruption to the stream flow and habitat changes for the local wildlife. Between the stream crossings and other localized areas, the total unavoidable impacts equate to approximately 1.0 acre. Approximately 95% of the wetland impacts are associated with accessways and driveways. In addition, two vernal pools were identified on site by Power Engineers in 2019. The vernal pools were deemed non-significant by Bureau of Land Resources and the confirmation letter is also included in Attachment 18.

Undeveloped buffers will be retained for majority protected natural resources (e.g., wetlands, significant vernal pools, and streams) to the best extent practicable. Where project development within buffers is unavoidable, mitigation measures have been employed to minimize impacts. Retaining walls are proposed to be constructed to help the project minimize wetland fill from raising nearby grades to facilitate project infrastructure requirements.

The applicant is designing the project for undisturbed buffer areas for the two streams on site. For the stream in the east portion of the site, there is a 100-foot stream

setback designated. The stream located in the southwest portion of the project has a 75-foot stream setback on the side with the new development, and a 125-foot stream setback on the opposite side. A 100-foot setback on the side with the new development would severely hinder the layout of the development. To prevent this, it is proposed to shift the setback 25-feet over to have 125-feet on the opposite side. This will help maintain the existed forested buffer between neighbors, allowing for the natural area to remain more intact.

A copy of the approved MaineDEP NRPA Tier II permit and ACOE permit are on file with the City.

The Applicant has corresponded with Maine Historical Preservation Authority, Maine Natural Areas Program and Maine Tribal Historic Offices including:

- a. Passamaquoddy Tribe of Indians
- b. Houlton Band of Maliseet Indians
- c. Penobscot Nation
- d. Mi'kmaq Nation

Additionally, please refer to the Landscaping Plans prepared by Long Meadow Planning and Landscape Architecture, LLC for a full list and proposed location of plants on site. In addition, trees and other existing natural flora will remain in the buffer area around the site, providing a softening between the abutters. Additionally, conformance with the zoning ordinance provisions is in the good neighbor standards and parking sections of this narrative. In addition, a landscaped management plan is included in Attachment 20.

Correspondences, including responses from the above offices are included in Attachment 6 of this submission. It was determined the proposed project would "not adversely affect historic properties" or "will not have impact on cultural and historical concerns" for the Tribes.

Based on discussion with the Planning Board at the June 29th meeting, 20% more trees have been added to the proposed landscaping plan. This is reflected on the submitted landscaping plan within the application.

I. Conformity with local ordinances and plans. The proposed subdivision conforms with this chapter, the zoning ordinance⁵ and the Comprehensive Plan;

This narrative and additional application attachments are intended to show compliance with all ordinances, statutes and comprehensive plans for the Federal, State and Local Codes. It should be noted no waivers are requested for this development.

J. Financial and technical capacity. The subdivider has adequate financial and technical capacity to meet the standards of this chapter;

Please refer to section IV, Financial and Technical Capacity for information. The Applicant has demonstrated financial and technical capacity through the letters from Gorham Savings Bank, a revolving term sheet, and presentations from the Vice President of Gorham Savings Bank during preliminary subdivision deliberation.

K. Surface waters. Whenever situated entirely or partially within the watershed of any pond or lake or within 250 feet of any wetland, great pond or river as defined in Title 38 M.R.S.A. Chapter 3, Subchapter I, Article 2-B, the proposed subdivision will not adversely affect water quality or unreasonably affect the shoreline of that body of water.

(1) When lots in a subdivision have frontage on an outstanding river segment, the proposed subdivision plan must require principal structures to have a combined lot shore frontage and setback from the normal high-water mark of 500 feet.

- (a) To avoid circumventing the intent of this provision, whenever a proposed subdivision adjoins a shoreland strip narrower than 250 feet which is not lotted, the proposed subdivision shall be reviewed as if lot lines extended to the shore.
- (b) The frontage and setback provisions of this section do not apply either within areas zoned as general development or its equivalent, as defined by Department of Environmental Protection Chapter 1000 Rules under Shoreland Zoning, Title 38 M.R.S.A Chapter 3, Subchapter I, Article 2-B, or within areas designated by ordinance as densely developed. The determination of which areas are densely developed must be based on a finding that existing development met the definitional requirements of Title 30-A M.R.S.A § 4401, Subsection 1, on September 23, 1983;

The proposed development meets these standards by providing the required setbacks which can be seen in Section VII. Zoning & Lot Coverage. In addition, the Applicant has an approved Tier 2 Wetland Fill permit from the MaineDEP and ACOE.

L. Groundwater. The proposed subdivision will not adversely affect the quality or quantity of groundwater;

The development is proposed to be served by public sewer and public water, therefore no wells or on site subsurface septic fields are proposed. The proposed stormwater treatment facilities are designed for filtration and detention, and not specifically for groundwater infiltration.

A High Intensity Soil Survey was completed by Flycatcher, LLC in the winter of 2021/2022. In addition, test pits were performed by Flycatcher, LLC in February 2021 to determine seasonal high groundwater elevations and stormwater facility design and investigations. Both reports and maps provided the design team with the necessary resources to site stormwater facilities and develop and erosion control plan based on the groundwater and soils on this site. In general, the seasonal high groundwater table was found within 24 inches of the existing grade of the lot. However, the elevations varied throughout the lot. Perforated underdrains are proposed throughout the site in cut areas to mitigate groundwater with roadway, building, stormwater ponds and parking lot design.

The mixed-residential use of the project, with a small amount of community office space are not anticipated to result in potential contamination of groundwater. The project also does not propose any activities that would degrade groundwater on the proposed development area. In addition, it is anticipated that the Applicant will store, for use or on-site, petroleum products, pesticides, herbicides, fertilizer, road salt, solvents, or acids, which would require the applicant to provide a groundwater protection plan in accordance with Maine DEP regulations.

The Applicant has reviewed the Maine Geological Survey and Sand and Gravel Aquifer Maps (included in Attachment 11), which indicate the project site is not located over a moderate to high yield groundwater aquifer.

M. Flood areas. The proposed subdivision plan must include a condition of plan approval requiring that principal structures in the subdivision will be constructed with their lowest floor, including the basement, in compliance with Chapter 106, Floodplain Management, of the Gty's ordinances.

The proposed development is not within a Flood Plain. Please see Attachment 11 for a copy of the FEMA map.

N. Freshwater wetlands. All freshwater wetlands within the proposed subdivision have been identified on maps submitted as part of the application, regardless of the size of these wetlands;

Wetlands were delineated by Flycatcher, LLC in September and October of 2021. The report dated November 4, 2021 can be found in Attachment 18. Vernal Pools were mapped by Power Engineers in September of 2018 and April & May of 2019. The accompanying report can also be found in Attachment 18. For additional information, please refer to section *II. Existing Conditions. The plan set submitted with this Application identifies the natrual resources.*

Q. River, stream or brook. Any river, stream or brook within or abutting the proposed subdivision has been identified on maps submitted as part of the application. For purposes of this section, "river, stream or brook" has the same meaning as in Title 38 M.R.S.A § 480-B, Subsection 9;

The surface hydrology for the site is part of the Saco River Watershed. A series of delineated streams and natural swales convey surface flow to the Saco River. For additional information, please refer to section *II. Existing Conditions and the Plan Set. The plan set submitted with this Application identifies the natural resources.*

P. Stormwater. The proposed subdivision will provide for adequate stormwater management;

The proposed development is located within the Saco River watershed. Given the size and creation of over 16 acres of impervious and 27 acres of impervious area, the

proposed development will be required to meet Chapter 500 DEP standards for Water Quantity and Quality as well as City of Saco Stormwater and Erosion Control standards set forth in Section 188-803. A complete stormwater Management Report with supporting calculations and analyses is provided in Attachment 7.

To meet the Water Quality standards, 95% of the project's non-linear impervious area and 80% of the projects developed area are being treated by two gravel wetlands, nine grassed underdrain soil filters, four focal points and drip edge filtration systems. To meet the water quantity standard, the peak flow from 2, 10, 25 and 50-year storm events at the POIs have been reduced to be at or below predevelopment peak levels. Water Quality and Pre/Post Development Watershed Maps can be found in Attachment 7.

The proposed location of development does not fall under any watersheds designated by the Maine Department of Environmental Protection as an "urban impaired stream".

The Stormwater Management System Operation & Maintenance Manual (attached to the Erosion Control Report) provides detailed instructions regarding post construction maintenance of the stormwater facilities and conforms to the requirements set by the MaineDEP. A draft maintenance agreement in City of Saco format is also included within this manual. A small portion of the proposed untreated Single Family development area closest to Bradley Street is tributary to the Bradley Street storm drain system. As part of the drainage and stormwater analysis, the design team quantified the area and developed an approximate flow to analyze capacity within this system. Based on this analysis, the proposed flow to the basin just east of the access drive connection was approximately 62% of the total pipe capacity. It is Gorrill Palmer's opinion this additional flow is within capacity of the existing system. Calculations supporting this flow can be found at the end of the Stormwater Management Report in Attachment 7.

Q. Spaghetti lots prohibited. If any lots in the proposed subdivision have shore frontage on a river, stream, brook, great pond or coastal wetland as these features are defined in Title 38 M.R.S.A § 480-B, none of the lots created within the subdivision shall have a lot depth to shore frontage ratio greater than 5:1.

The proposed development does not have any spaghetti lots, therefore this standard is not applicable to the development.

R. Phosphorus concentration. The long-term cumulative effects of the proposed subdivision will not unreasonably increase a great pond's phosphorus concentration;

The proposed subdivision is not within a great pond's watershed. Please refer to the Stormwater Management Report in Attachment 7 for more information.

S. Impact on adjoining municipality. The proposed subdivision will not cause unreasonable traffic congestion or unsafe conditions.

Please refer to Traffic Impacts and Analysis section of this Narrative. Attachments 14, 15, and 16 contain additional information regarding this standard.

T. Roads. All roads shall be designed in accordance with specifications contained in this chapter and all local ordinances.

The development proposes the construction of private roads to serve the site. These private roads were designed in accordance with specifications contained in this chapter and all local ordinances for Private Roadways. Please refer to Attachments, 14, 15, and 16 for additional information regarding this standard.

ARTICLE VIII; INFRASTRUCTURE SPECIFICATIONS

The proposed subdivision will include the construction of a main private access drive connecting the existing Lincoln and Bradley Streets. A privately owned internal looped access drive is proposed to stem off this access drive to provide access throughout the project. Inclusive with the roadways are new utilities to service the units. These utilities consist of new electrical services, public water, sewer, natural gas, and fiberoptic infrastructure. The below standards provide additional detail related to utility and infrastructure in the project:

- 1) Water Supply: There are existing 8-inch watermains located along Lincoln and Bradley Street, providing public water via Maine Water to the surrounding residents. The proposed development will include a 12-inch watermain along the main access way. Per request from Maine Water, the development proposes to connect the Bradley Street and Lincoln Street watermains, providing additional water pressure, redundancy, and network connections for the surrounding community. A full hydraulic analysis was performed by Tata & Howard (MWC's consultant) showing the proposed development will not impact fire demand for the neighboring community. The remaining development will be provided water via services stemming from the proposed main. These services include domestic water and fire services to all units. Additional information and calculations are provided in the Ability to serve letter request within Attachment 8 of this application.
- 2) **Wastewater:** Sanitary Sewer is proposed to be served by the Water Resource Recovery Department (WRRD). The Applicant has worked closely with WRRD and City Engineer on the proposed sewer service and offsite sanitary improvements for approval. The conditional approval letter is included in Attachment 8.

A new private sewer main is anticipated to be constructed via connections with existing infrastructure in both Lincoln and Bradley Street. An 8-inch sewer main exists in Lincoln Street with direct frontage to the project which conveys sanitary flow east along Lincoln Street. The project proposes an 8-inch private main connection into an existing sewer manhole. This existing manhole is identified as Manhole 1202.111 according to City of Saco GIS. This portion of the project will receive flow from 320 residential units.

On Bradley Street, an 8-inch main exists alongside the project's frontage. This sanitary main conveys sanitary flow southeast along Bradley Street. On the Northeastern side of the access drive, the project proposes connection to an existing 8-inch gravity sewer stub. This sewer stub is tributary to Manhole labeled 1037.114 according to City of Saco GIS. This portion of the project will only receive flow from 12 single family homes on site. Single-family house lots 9 through 12 will utilize a 2" low-pressure force main due to grading and elevation limitations. The force main will connect to the proposed gravity main and sequentially the existing gravity main on Bradley Street.

A pump station is proposed to serve 82 duplexes and multi-family units near the center of the parcel. It will handle approximately 15,930 gpd of average flow and 91,800 gpd at its peak. The proposed 6 ft diameter wet well will contain submersible duplex pumps. A 3-inch force main is proposed exiting the pump station to the valve pit, and subsequently to the terminus manhole near station 10+70 in the main access drive. The applicant is proposing a standby generator for the pump station.

Additionally, based on discussions with the City Engineer and the WRRD, it was determined that the proposed development would require the existing Sanitary pipe in Lincoln Street to be upgraded from 8 inch to 10 inch in diameter between Manhole ID 1202.111 and 1202.109. This is due to the proposed development utilizing nearly 57% of the 8-inch pipe capacity.

In total, the proposed development is anticipated to generate 61,420 gpd of average daily flow and 368,520 gpd of peak daily flow. Additional information and calculations are provided in the Ability to serve letter request within Attachment 8 of this application.

3) Stormwater and Erosion Control: The proposed development is located within the Saco River watershed. Given the size and creation of over 16 acres of impervious and 27 acres of impervious area, the proposed development will be required to meet Chapter 500 DEP standards for Water Quantity and Quality as well as City of Saco Stormwater and Erosion Control standards set forth in Section 188-803. A complete stormwater Management Report with supporting calculations and analyses is provided in Attachment 7 that has been reviewed and signed off by the City's peer reviewer. In addition, a complete Erosion Control Report with supporting calculations is provided in Attachment 10 of this submission. The below provides a brief introduction and overview of the proposed Stormwater Management System.

To meet the Water Quality standards, 95% of the project's non-linear impervious area and 80% of the projects developed area are being treated by two gravel wetlands, nine grassed underdrain soil filters, four focal points and drip edge filtration systems. To meet the water quantity standard, the peak flow from 2, 10, 25, 50 and 100-year storm events at the POIs have been reduced to be at or below predevelopment peak levels. Water Quality and Pre/Post Development Watershed Maps can be found in Attachment 7.

Stormwater was categorized between linear and non-linear areas. Linear areas referred to the impervious and pervious areas along the proposed main roadway and driveways. The "linear" portions of the project were treated at 75% of the impervious area and 50% of the

developed area in accordance with Chapter 500 regulations. The proposed location of development does not fall under any watersheds designated by the Maine Department of Environmental Protection as an "urban impaired stream".

Temporary Sediment basins for use during construction were sized for a 10-year storm event and are shown in the attached plan set and sizing calculations are shown in Attachment 10 -Erosion and Sedimentation Control. Additional Erosion Control details, narratives and guidelines are shown in this section as well.

The Stormwater Management System Operation & Maintenance Manual (attached to the Erosion Control Report) provides detailed instructions regarding post construction maintenance of the stormwater facilities and conforms to the requirements set by the MaineDEP. A draft maintenance agreement in City of Saco format is also included within this manual.

A small portion of the proposed untreated Single Family development area closest to Bradley Street is tributary to the Bradley Street storm drain system. As part of the drainage and stormwater analysis, the design team quantified the area and developed an approximate flow to analyze capacity within this system. Based on this analysis, the proposed flow to the basin just east of the access drive connection was approximately 62% of the total pipe capacity. It is Gorrill Palmer's opinion this additional flow is within capacity of the existing system. Calculations supporting this flow can be found at the end of the Stormwater Management Report in Attachment 7.

4) Cable Utilities: New underground electrical service is anticipated to be extended from existing overhead electrical sources along Bradley Street and Lincoln Street. The transformer and junction box locations shown are preliminary, and the final locations will be coordinated with Central Maine Power during construction. The Applicant has discussed the proposed project with CMP and no initial concerns were raised by CMP.

In addition, fiberoptic and cable service is proposed on site in the same trench as electrical conduit.

- 5) Streetlighting: The proposed access drives within the development will be privately owned and maintained. No new public roadways are proposed as part of this development. Street lighting has been provided along the private access drives as well as the connection locations along Bradley Street and Lincoln Street. Photometric and lighting plans are included in the plan set.
- 6) **Trees:** As described above, no public roadways are proposed as part of this project. Privately owned and maintained street trees have been incorporated into the landscaping design and additional details can be found in the attached plan set.
- 7) Boundary Monuments: The proposed project does not formally subdivide or create any new lots, therefore boundary monuments are not applicable.

X. CHAPTER 230 ZONING ORDINANCES

The following section outlines design conformance with zoning ordinances that have not been previously discussed.

ARTICLE IV; DIMENSIONAL STANDARDS

The dimensional standards with MDR zone have been reviewed and shown to be in compliance with the proposed development in Section VII "Zoning & Lot Coverage" of this narrative.

ARTICLE VI; GOOD NEIGHBOR PERFORMANCE STANDARDS

Section 602 Dust, Fumes, Vapors, and Gasses

It is not anticipated nor likely that the proposed development would generate significant amounts of emission of dust, dirt, fly ash, fumes, vapors, or gases, which could damage human health, animals, vegetation, or property, or which could soil or stain persons or property, at any point beyond the lot line of the establishment. The proposed Erosion and Sedimentation Control report, provided in Attachment 10 of this submission, provides standards that must be followed by the contractor and Applicant for land disturbance.

Section 603 Explosive Materials

The proposed development does not include the storage of explosive liquids, solids, or gases in bulk above ground or underground. If such materials must be stored on the premises, they will be stored in accordance with all applicable federal, state, and local regulations. Natural gas is proposed for the development of all the buildings, and therefore no freestanding propone tanks are proposed.

Section 604 Exterior Lighting

The proposed light pole locations throughout the site are shown on the Site/Utility and Lighting plans within the plan set. The proposed LED light fixtures are full cutoff and dark sky compliant. The maximum illuminance of the parking lots and access drives are 2.91 and 3.34 footcandles, respectively, which is less than the 8.0 footcandles maximum per this ordinance. A photometric plan, that has been approved by the City's peer review consultant, is provided by Allied Engineering and included in in the plan set submitted with this submission that shows compliance with the above-mentioned standards as well as uniformity ratios. Lighting fixture cut sheets is provided in Attachment 17.

Section 605 Noise

The potential sources of noise at the project site will consist of noise generated during construction of the project and typical residential noise generated by the residents. Construction activities during the hours of 7 am and 9 pm Monday through Saturday, and

between 10 am and 7 pm on Sunday are exempt from the noise ordinance. It is not anticipated that the completed project will approach the sound pressure limits set by the City of Saco.

Since the adjacent land use is primarily residential buildings, a Greek Orthodox Church, and a podiatrist, it is anticipated that this residential development would not impact the surrounding area's noise limits.

Section 606 Odors

Given the nature of the proposed land use, the new residential community does not anticipate generating odors that are impactful or a nuisance on or off-site.

Section 607 Screening

The proposed development incorporates the natural landscape and preserves trees and grade changes to the extent practicable. The dumpster locations have been screened appropriately to provide buffering to the abutting neighbors. In addition, fenced dumpster enclosures are provided for screening. The City's landscaping peer review consultant has revised the buffering plan and noted it meets City Ordinances. A Landscape Plan has been prepared and is included in the plan set.

Section 608 Sanitary Waste Disposal

The proposed project will connect to the public sanitary sewer system available in Lincoln Street and Bradley Street. The Approved design from WRRD can be found in Attachment 8.

Section 609 Storage and Handling of Chemicals and Similar Materials

The proposed development does not include the storage of explosive liquids, solids, or gases in bulk above ground or underground.

Section 610 Water Quality

The property is serviced by public water and sewer. Stormwater management and water quality treatment efforts will not utilize infiltration-based design. The site has not been identified as a significant sand and gravel aquifer by Maine Geological Survey. A copy of these maps in included in Attachment 11. The High Intensity Soil Report prepared for the site is included in Attachment 12.

ARTICLE VII; PERFORMANCE STANDARDS

Discussion of the project's compliance with applicable Performance Standards of Article VII of the City of Saco Zoning Ordinance are noted below:

Section 230-720 Soil Suitability for Land Uses and Roads

Soil test pits have been conducted by Flycatcher, LLC for multiples purposes. The soils on site generally consisted of sand and sandy loam. The soil report finds that the limiting factors

relative to the soils are high water table and depth to bedrock. The proposed private access drive is anticipated to consist mostly in fill, where the subbase material will be out of the seasonal high groundwater table. In cut areas, underdrains and perforated storm drain piping is proposed for groundwater relief. Where necessary, bed rock will be removed for the placement of the access drive gravels.

Section 230-723 Traffic and Highway Access

Driveway entrance locations are designed in accordance with City of Saco and MaineDOT standards. Sight distances on Lincoln Street and Bradley Street are per Table 7-3 minimum required distance for each speed in this ordinance section. The City of Saco, Peer review team and MaineDOT have reviewed this plan thoroughly and provided appropriate approvals.

ARTICLE IX; SIGNS

Approximate location of project signage are shown on the attached plan set. The Applicant will apply for a sign permit at a later date.

ARTICLE X; PARKING

The proposed development meets the parking requirements set forth in this Zoning Article. Detailed parking design and breakdown was included in Section VIII of this narrative.

ARTICLE XI; PRIVATE ROAD STANDARDS

The proposed main access drive through the site does not provide access to any formally subdivided lots due to this project being in a condominium configuration. The plan set included in this submission includes plan and profile views of the proposed access drive. The Applicant will coordinate the proposed name of the access drive with City Staff.

ARTICLE XII; STORMWATER & EROSION CONTROL STANDARDS

The proposed development meets the Stormwater and Erosion Control Standards set forth in this Zoning Article. Detailed analysis and discussion is presented in "Infrastructure Specifications" portion of this narrative and Attachment 7 and 10 of this submission.

ARTICLE XIV; CONDITIONAL USES

The City of Saco Planning Board approved the Conditional Use application for this project at the June 29th Planning Board Meeting.

ATTACHMENT 6

HISTORIC & NATURAL AREAS CORRESPONDENCES

ATTACHMENT 6

LETTER TO THE MAINE HISTORIC PRESERVATION COMMISSION AND THEIR RESPONSE

707 Sable Oaks Drive, Suite 30 South Portland, Maine 04106 207.772.2515

September 20, 2021

Mr. Kirk Mohney State Historic Preservation Officer Maine Historic Preservation Commission 55 Capitol Street, State House Station 65 Augusta, ME 04333-0065

Subject: Presence of Historical Areas Mixed Residential Development 321 Lincoln St. Saco, Maine

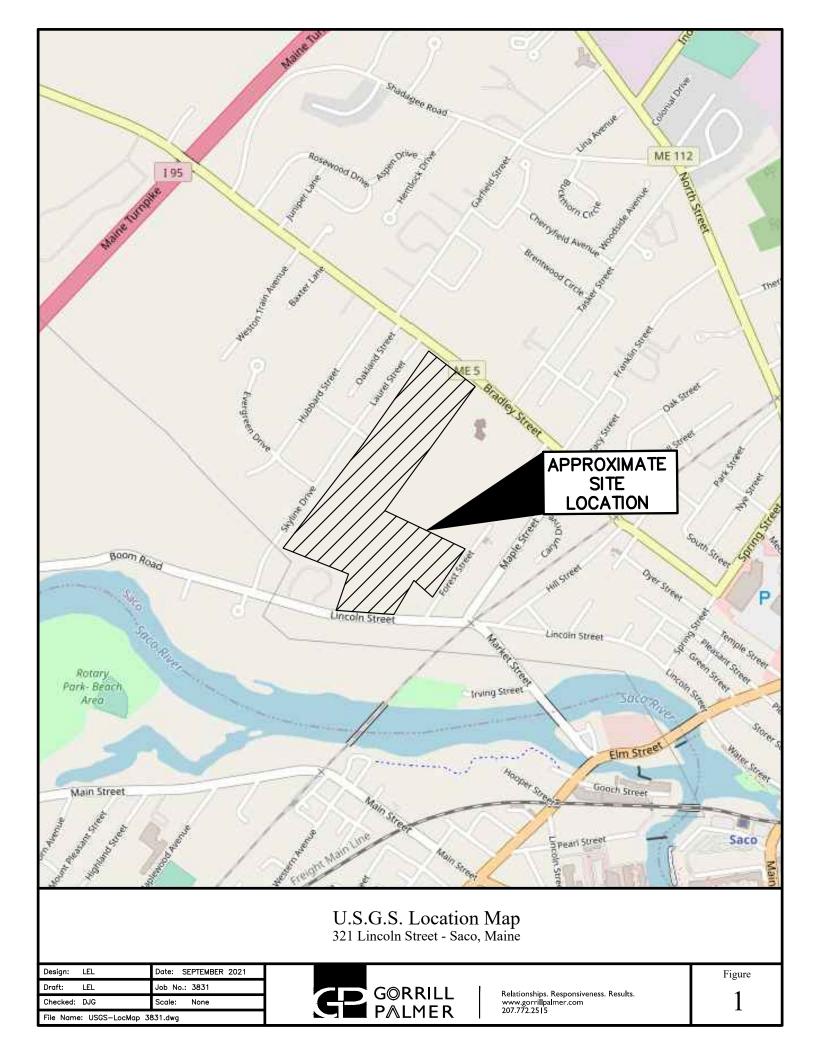
Dear Mr. Mohney,

Gorrill Palmer has been retained to prepare plans and permit applications for a proposed mixed residential development in Saco, Maine. The project site is shown on the attached Location Map.

To aid in the design, and as part of the permit applications, Gorrill Palmer requests information from your department relative to the presence of any nearby structure or area with historical, architectural or archeological significance as defined by the National Historic Preservation Act.

Thank you for your consideration. If you have any questions regarding the proposed project, please contact our office.

Sincerely,


Gorrill Palmer

Sawren Labery

Lauren Labbay Design Engineer 207-772-2515 x240 Ilabbay@gorrillpalmer.com

Enclosure

U:\3831_Helios_Mixed Residential Development - Lincoln & Bradley - Saco\L Environmental\Resource Letters\Maine Historic Preservation Commission\Mohney.doc

707 Sable Oaks Drive, Suite 30 South Portland, Maine 04106 207.772.2515

 $\begin{array}{c} \textbf{D} \in \textbf{G} \in \textbf{I} \vee \textbf{E} \\ \textbf{SEP 2 3 2021} \\ \textbf{By} \quad \textbf{I} \leftarrow \textbf{I} \neg - \partial \textbf{I} \\ \end{array}$

September 20, 2021

Mr. Kirk Mohney State Historic Preservation Officer Maine Historic Preservation Commission 55 Capitol Street, State House Station 65 Augusta, ME 04333-0065

Subject: Presence of Historical Areas Mixed Residential Development 321 Lincoln St. Saco, Maine

Dear Mr. Mohney,

Gorrill Palmer has been retained to prepare plans and permit applications for a proposed mixed residential development in Saco, Maine. The project site is shown on the attached Location Map.

To aid in the design, and as part of the permit applications, Gorrill Palmer requests information from your department relative to the presence of any nearby structure or area with historical, architectural or archeological significance as defined by the National Historic Preservation Act.

Thank you for your consideration. If you have any questions regarding the proposed project, please contact our office.

Sincerely,

Gorrill Palmer

Sawren Lallagy

Lauren Labbay Design Engineer 207-772-2515 x240 llabbay@gorrillpalmer.com

Enclosure

As proposed, the project will not adversely affect historic properties. Pursuant to 800.5(c), if no consulting parties object to this finding within the 30-day raview period, the project may proceed as proposed, unless resources are discovered during, project implement of submitted and the second secon

. Mohney Kirk F. Mohney,

Date

State Historic Preservation Officer

U:\3831_Helios_Mixed Residential Development - Lincoln & Bradley - Saco\L Environmental\Resource Letters\Maine Historic Preservation Commission\Mohney.doc

ATTACHMENT 6

LETTER TO THE MAINE NATURAL AREAS PROGRAM AND THEIR RESPONSE

707 Sable Oaks Drive, Suite 30 South Portland, Maine 04106 207.772.2515

September 20, 2021

Ms. Lisa St. Hilaire Maine Natural Areas Program 93 State House Station Augusta, ME 04333-0093

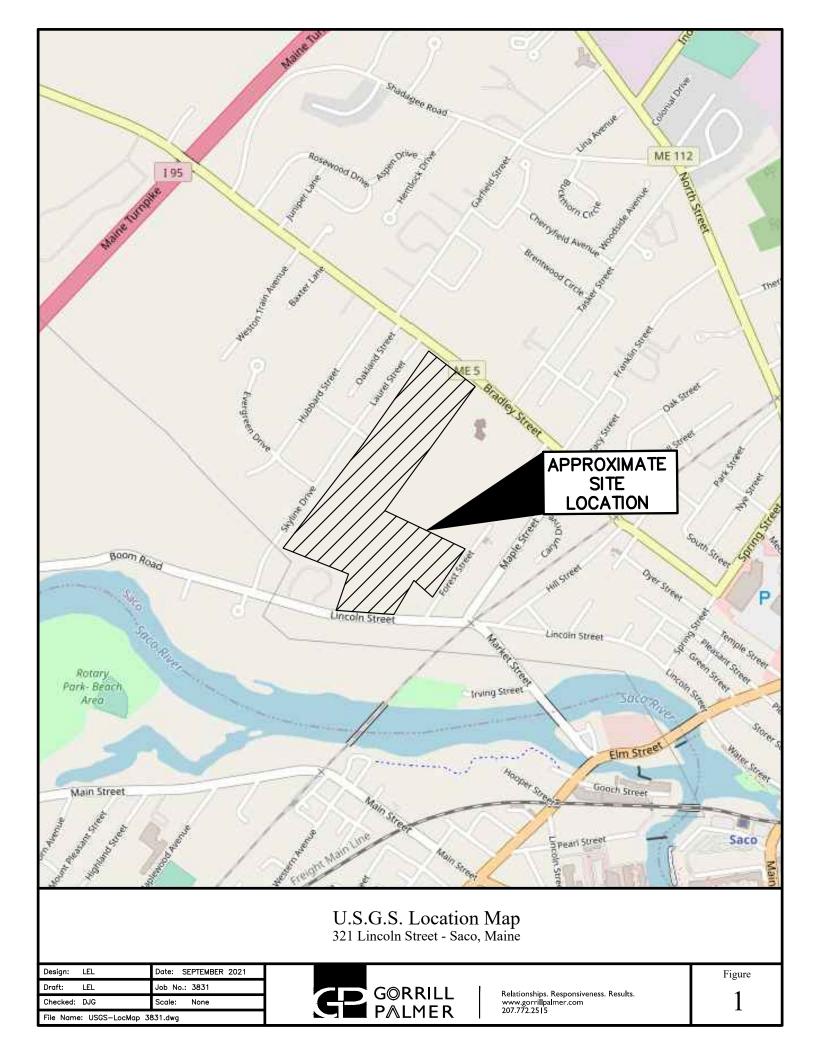
Subject: Endangered or Threatened Species Mixed Residential Development 321 Lincoln St. Saco, Maine

Dear Lisa,

Gorrill Palmer has been retained to prepare plans and permit applications for a proposed mixed residential development in Saco, Maine. The project site is shown on the attached Location Map.

To aid in the design, and as part of the permit applications, Gorrill Palmer requests information from your department regarding the presence of any federally listed endangered or threatened species which might be impacted by this project.

Thank you for your consideration. If you have any questions regarding the proposed project, please contact our office.


Sincerely,

Gorrill Palmer

Lauren Labbay Design Engineer 207-772-2515 x240 Ilabbay@gorrillpalmer.com

Enclosure

\\Gpstorage-srv\job_numbers\3831_Helios_Mixed Residential Development - Lincoln & Bradley - Saco\L Environmental\Resource Letters\Maine Natural Areas Program\MNAP Letter.doc

STATE OF MAINE DEPARTMENT OF AGRICULTURE, CONSERVATION & FORESTRY

177 STATE HOUSE STATION AUGUSTA, MAINE 04333

Amanda E. Beal Commissioner

JANET T. MILLS GOVERNOR

September 27, 2021

Lauren Labbay Gorrill Palmer 707 Sable Oaks Drive, Suite 30 South Portland, ME 04106

Via email: <u>llabbay@gorrillpalmer.com</u>

Re: Rare and exemplary botanical features in proximity to: #3831, Mixed Residential Development, 321 Lincoln Street, Saco, Maine

Dear Ms. Labbay:

I have searched the Maine Natural Areas Program's Biological and Conservation Data System files in response to your request received September 20, 2021 for information on the presence of rare or unique botanical features documented from the vicinity of the project in Saco, Maine. Rare and unique botanical features include the habitat of rare, threatened, or endangered plant species and unique or exemplary natural communities. Our review involves examining maps, manual and computerized records, other sources of information such as scientific articles or published references, and the personal knowledge of staff or cooperating experts.

Our official response covers only botanical features. For authoritative information and official response for zoological features you must make a similar request to the Maine Department of Inland Fisheries and Wildlife, 284 State Street, Augusta, Maine 04333.

According to the information currently in our Biological and Conservation Data System files, there are no rare botanical features documented specifically within the project area. This lack of data may indicate minimal survey efforts rather than confirm the absence of rare botanical features. You may want to have the site inventoried by a qualified field biologist to ensure that no undocumented rare features are inadvertently harmed.

If a field survey of the project area is conducted, please refer to the enclosed supplemental information regarding rare and exemplary botanical features documented to occur in the vicinity of the project site. The list may include information on features that have been known to occur historically in the area as well as recently field-verified information. While historic records have not been documented in several years, they may persist in the area if suitable habitat exists. The enclosed list identifies features with potential to occur in the area, and it should be considered if you choose to conduct field surveys.

This finding is available and appropriate for preparation and review of environmental assessments, but it is not a substitute for on-site surveys. Comprehensive field surveys do not exist for all natural areas in Maine, and in the absence of a specific field investigation, the Maine Natural Areas Program cannot provide a definitive statement on the presence or absence of unusual natural features at this site.

MOLLY DOCHERTY, DIRECTOR MAINE NATURAL AREAS PROGRAM BLOSSOM LANE, DEERING BUILDING

PHONE: (207) 287-804490 WWW.MAINE.GOV/DACF/MNAP Letter to Gorrill Palmer Comments RE: 321 Lincoln Street, Saco September 27, 2021 Page 2 of 2

The Maine Natural Areas Program (MNAP) is continuously working to achieve a more comprehensive database of exemplary natural features in Maine. We would appreciate the contribution of any information obtained should you decide to do field work. MNAP welcomes coordination with individuals or organizations proposing environmental alteration or conducting environmental assessments. If, however, data provided by MNAP are to be published in any form, the Program should be informed at the outset and credited as the source.

The Maine Natural Areas Program has instituted a fee structure of \$75.00 an hour to recover the actual cost of processing your request for information. You will receive an invoice for \$150.00 for two hours of our services.

Thank you for using MNAP in the environmental review process. Please do not hesitate to contact me if you have further questions about the Natural Areas Program or about rare or unique botanical features on this site.

Sincerely,

Lisa St. Hilaire

Lisa St. Hilaire | Information Manager | Maine Natural Areas Program 207-287-8044 | <u>lisa.st.hilaire@maine.gov</u>

Common Name	State Status	State Rank	Global Rank	Date Last Observed	Occurrence Number	Habitat
Atlantic White Ceda	ar					
	SC	S2	G4	2017-07-26	3	Forested wetland
Atlantic White Ceda	ar Bog					
	<null></null>	S1	G3G4	2017-07-26	3	Forested wetland
Beach Plum						
	E	S1	G4	1932-09	12	Rocky coastal (non-forested, upland)
	Е	S1	G4	1933-06-21	9	Rocky coastal (non-forested, upland)
Beach wormwood						
	SC	S1S2	G5T5	2011-10-28	6	<null></null>
Brackish Tidal Mars	sh					
	<null></null>	S3	GNR	2009-07-29	1	Tidal wetland (non-forested, wetland)
Butterfly Weed						
	PE	SX	G5	1986	1	Dry barrens (partly forested, upland)
Button Sedge						
	SC	S2	G5	1880-09-06	2	<null></null>
	SC	S2	G5	2017-07-26	5	<null></null>
Clothed Sedge						
	E	S1	G5	2006-06-07	7	Dry barrens (partly forested, upland)
	E	S1	G5	2006-06-16	8	Dry barrens (partly forested, upland)
Creeping Spike-mo	SS					
	E	S2	G5	1920-07-30	6	Open wetland, not coastal nor rivershore (non-forested, wetland),Old field/roadside (non-forested, wetland or upland)
	Е	S2	G5	1989-08-14	2	Open wetland, not coastal nor rivershore (non-forested, wetland),Old field/roadside (non-forested, wetland or upland)

Maine Natural Areas Program

Page 1 of 5

www.maine.gov/dacf/mnap

Common Name	State Status	State Rank	Global Rank	Date Last Observed	Occurrence Number	Habitat
Dwarf Glasswort						
	SC	S1	G5	1981-09-16	2	Tidal wetland (non-forested, wetland)
Estuary Bur-marigo	ld					
	SC	S3	G4	2009-07-30	35	Tidal wetland (non-forested, wetland)
Freshwater Tidal Ma	arsh					
	<null></null>	S2	G4?	2009-07-30	1	Tidal wetland (non-forested, wetland)
Hollow Joe-pye We	ed					
	SC	S2	G5?	1989-08-14	2	Open wetland, not coastal nor rivershore (non-forested, wetland),Old field/roadside (non-forested, wetland or upland)
	SC	S2	G5?	2013-09-01	23	Open wetland, not coastal nor rivershore (non-forested, wetland),Old field/roadside (non-forested, wetland or upland)
	SC	S2	G5?	1989-08-21	1	Open wetland, not coastal nor rivershore (non-forested, wetland),Old field/roadside (non-forested, wetland or upland)
	SC	S2	G5?	1989-08-22	3	Open wetland, not coastal nor rivershore (non-forested, wetland),Old field/roadside (non-forested, wetland or upland)
Horned Pondweed						
	SC	S2	G5	1907-08-18	10	Tidal wetland (non-forested, wetland)
	SC	S2	G5	2000-08-28	15	Tidal wetland (non-forested, wetland)
	SC	S2	G5	2007-07-05	19	Tidal wetland (non-forested, wetland)
Lilaeopsis						
	SC	S2	G5	2007-07-05	11	Tidal wetland (non-forested, wetland)
	SC	S2	G5	2007-08-14	12	Tidal wetland (non-forested, wetland)
	SC	S2	G5	2012-10-21	10	Tidal wetland (non-forested, wetland)
Long's Bulrush						
	Т	S2	G3	2017-07-26	10	Open wetland, not coastal nor rivershore (non-forested, wetland)
Long-spined Sandb	ur					
Maine Natural Areas Pr	rogram		Page 2 of 5			www.maine.gov/dacf/mnap

Common Name	State Status	State Rank	Global Rank	Date Last Observed	Occurrence Number	Habitat
	PE	SH	G5	1984	1	Rocky coastal (non-forested, upland)
Mudwort						
	SC	S3	G5	2009-07-30	35	Tidal wetland (non-forested, wetland)
Pale Green Orchis						
	SC	S2	G4?T4Q	2008-06-27	52	Non-tidal rivershore (non-forested, seasonally wet),Open wetland, not coastal nor rivershore (non-forested, wetland)
	SC	S2	G4?T4Q	2008-06-27	53	Non-tidal rivershore (non-forested, seasonally wet),Open wetland, not coastal nor rivershore (non-forested, wetland)
	SC	S2	G4?T4Q	2008-06-27	54	Non-tidal rivershore (non-forested, seasonally wet),Open wetland, not coastal nor rivershore (non-forested, wetland)
Parker's Pipewort						
	SC	S3	G3	2017-08-31	33	Tidal wetland (non-forested, wetland)
Pendulous Bulrush						
	SC	S2	G5	2008-06-28	8	Open wetland, not coastal nor rivershore (non-forested, wetland),Old field/roadside (non-forested, wetland or upland)
Pitch Pine Bog						
	<null></null>	S2	G3G5	2017-07-26	4	Forested wetland, Coastal non-tidal wetland (non-forested, wetland)
	<null></null>	S2	G3G5	2015-09-29	20	Forested wetland, Coastal non-tidal wetland (non-forested, wetland)
Pitch Pine Woodlan	d					
	<null></null>	S3	G2	2016-08-09	30	Rocky summits and outcrops (non-forested, upland)
Pocket Swamp						
	<null></null>	S2	G5	2014-05-08	4	Forested wetland, Hardwood to mixed forest (forest, upland)
	<null></null>	S2	G5	2004	18	Forested wetland, Hardwood to mixed forest (forest, upland)
Pygmyweed						
	SC	S2S3	G5	2009-07-29	25	Open water (non-forested, wetland)

Maine Natural Areas Program

Page 3 of 5

www.maine.gov/dacf/mnap

Common Name	State Status	State Rank	Global Rank	Date Last Observed	Occurrence Number	Habitat
	SC	S2S3	G5	2007-07-05	28	Open water (non-forested, wetland)
Raised Level Bog E	cosystem					
	<null></null>	S4	GNR	2017-07-26	3	Forested wetland,Open wetland, not coastal nor rivershore (non-forested, wetland)
Red Maple Swamp						
	<null></null>	S5	G3G5	2007-06-05	17	Forested wetland
Salt-hay Saltmarsh						
	<null></null>	S3	G5	2010-10-14	12	Tidal wetland (non-forested, wetland)
Saltmarsh False-fox	xglove					
	SC	S3	G5	1982	12	Tidal wetland (non-forested, wetland)
	SC	S3	G5	1982	9	Tidal wetland (non-forested, wetland)
Schreber's Wood-a	ster					
	PE	SX	G4	1894-09	1	Rocky coastal (non-forested, upland)
Slender Blue Flag						
	Т	S2	G4G5	1879-08	4	Tidal wetland (non-forested, wetland)
	Т	S2	G4G5	1995-07-18	18	Tidal wetland (non-forested, wetland)
Small Reed Grass						
	SC	S3	G5	2006-08-08	14	Old field/roadside (non-forested, wetland or upland)
Smooth Winterberry	y Holly					
	SC	S3	G5	2012-10	44	Forested wetland
	SC	S3	G5	1979	13	Forested wetland
	SC	S3	G5	2018-09-15	24	Forested wetland
	SC	S3	G5	2009-07-05	39	Forested wetland
	SC	S3	G5	2004	36	Forested wetland
Maine Natural Areas P	rogram		Page 4 of 5			www.maine.gov/dacf/mnap

Common Name	State Status	State Rank	Global Rank	Date Last Observed	Occurrence Number	Habitat
Southern Slender La	dies'-tresses					
	PE	SH	G5T4T5	1918-08-27	1	Dry barrens (partly forested, upland)
Spongy-leaved Arrow	whead					
	SC	S3	G5T4	2012-10-21	42	Tidal wetland (non-forested, wetland)
Stiff Arrowhead						
	SC	S2	G5	2006-06-16	15	Tidal wetland (non-forested, wetland)
Sweet Pepper-bush						
	SC	S2	G5	1917-09	9	Hardwood to mixed forest (forest, upland),Forested wetland
Tidal Marsh Estuary	Ecosystem					
	<null></null>	S3	GNR	2010-10-14	4	Tidal wetland (non-forested, wetland)
Water Pimpernel						
	SC	S3	G5T5	2012-10-21	26	Tidal wetland (non-forested, wetland)
Yellow Wild Indigo						
	PE	SH	G5	1960-06-21	2	Dry barrens (partly forested, upland),Hardwood to mixed forest (forest, upland)

Conservation Status Ranks

State and Global Ranks: This ranking system facilitates a quick assessment of a species' or habitat type's rarity and is the primary tool used to develop conservation, protection, and restoration priorities for individual species and natural habitat types. Each species or habitat is assigned both a state (S) and global (G) rank on a scale of 1 to 5. Factors such as range extent, the number of occurrences, intensity of threats, etc., contribute to the assignment of state and global ranks. The definitions for state and global ranks are comparable but applied at different geographic scales; something that is state imperiled may be globally secure.

The information supporting these ranks is developed and maintained by the Maine Natural Areas Program (state ranks) and NatureServe (global ranks).

Rank	Definition
S1	Critically Imperiled – At very high risk of extinction or elimination due to very restricted
G1	range, very few populations or occurrences, very steep declines, very severe threats, or
	other factors.
S2	Imperiled – At high risk of extinction or elimination due to restricted range, few
G2	populations or occurrences, steep declines, severe threats, or other factors.
S3	Vulnerable – At moderate risk of extinction or elimination due to a fairly restricted range,
G3	relatively few populations or occurrences, recent and widespread declines, threats, or
	other factors.
S4	Apparently Secure – At fairly low risk of extinction or elimination due to an extensive
G4	range and/or many populations or occurrences, but with possible cause for some concern
	as a result of local recent declines, threats, or other factors.
S5	Secure – At very low risk or extinction or elimination due to a very extensive range,
G5	abundant populations or occurrences, and little to no concern from declines or threats.
SX	Presumed Extinct – Not located despite intensive searches and virtually no likelihood of
GX	rediscovery.
SH	Possibly Extinct – Known from only historical occurrences but still some hope of
GH	rediscovery.
S#S#	Range Rank – A numeric range rank (e.g., S2S3 or S1S3) is used to indicate any range of
G#G#	uncertainty about the status of the species or ecosystem.
SU	Unrankable – Currently unrankable due to lack of information or due to substantially
GU	conflicting information about status or trends.
GNR	Unranked – Global or subnational conservation status not yet assessed.
SNR	
SNA	Not Applicable – A conservation status rank is not applicable because the species or
GNA	ecosystem is not a suitable target for conservation activities (e.g., non-native species or
	ecosystems.
Qualifier	Definition
S#?	Inexact Numeric Rank – Denotes inexact numeric rank.
G#?	
Q	Questionable taxonomy that may reduce conservation priority – Distinctiveness of this
	entity as a taxon or ecosystem type at the current level is questionable. The "Q" modifier
	is only used at a global level.
T#	Infraspecific Taxon (trinomial) – The status of infraspecific taxa (subspecies or varieties)
	are indicated by a "T-rank" following the species' global rank.

State Status: Endangered and Threatened are legal status designations authorized by statute. Please refer to MRSA Title 12, §544 and §544-B.

Status	Definition
E	Endangered – Any native plant species in danger of extinction throughout all or a
	significant portion of its range within the State or Federally listed as Endangered.
Т	Threatened – Any native plant species likely to become endangered within the
	foreseeable future throughout all or a significant portion of its range in the State or
	Federally listed as Threatened.
SC	Special Concern – A native plant species that is rare in the State, but not rare enough to
	be considered Threatened or Endangered.
PE	Potentially Extirpated – A native plant species that has not been documented in the State
	in over 20 years, or loss of the last known occurrence.

Element Occurrence (EO) Ranks: Quality assessments that designate viability of a population or integrity of habitat. These ranks are based on size, condition, and landscape context. Range ranks (e.g., AB, BC) and uncertainty ranks (e.g., B?) are allowed. The Maine Natural Areas Program tracks all occurrences of rare plants and natural communities/ecosystems (S1-S3) as well as exemplary common natural community types (S4-S5 with EO ranks A/B).

Rank	Definition
Α	Excellent – Excellent estimated viability/ecological integrity.
В	Good – Good estimated viability/ecological integrity.
С	Fair – Fair estimated viability/ecological integrity.
D	Poor – Poor estimated viability/ecological integrity.
E	Extant – Verified extant, but viability/ecological integrity not assessed.
Н	Historical – Lack of field information within past 20 years verifying continued existence of
	the occurrence, but not enough to document extirpation.
Х	Extirpated – Documented loss of population/destruction of habitat.
U	Unrankable – Occurrence unable to be ranked due to lack of sufficient information (e.g.,
	possible mistaken identification).
NR	Not Ranked – An occurrence rank has not been assigned.

Visit the Maine Natural Areas Program website for more information <u>http://www.maine.gov/dacf/mnap</u>

ATTACHMENT 6

LETTER TO THE MAINE DEPARTMENT OF INLAND FISHERIES & WILDLIFE AND THEIR RESPONSE

707 Sable Oaks Drive, Suite 30 South Portland, Maine 04106 207.772.2515

September 20, 2021

Mr. John Perry Environmental Review Coordinator Maine Dept. of Inland Fisheries & Wildlife 284 State Street 41 State House Station Augusta, ME 04333-0041

Subject: Presence of Essential Habitat Mixed Residential Development 321 Lincoln St. Saco, Maine

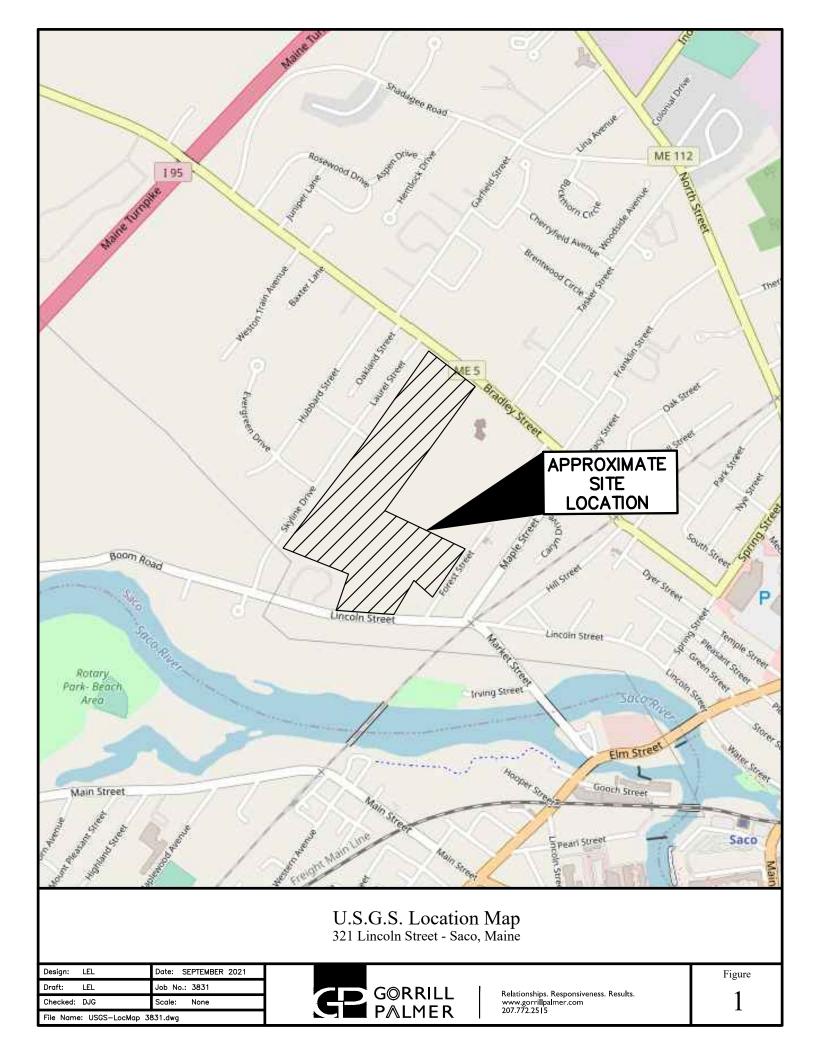
Dear Mr. Perry,

Gorrill Palmer has been retained to prepare plans and permit applications for a proposed mixed residential development in Saco, Maine. The project site is shown on the attached Location Map.

To aid in the design, and as part of the permit applications, Gorrill Palmer requests information from your department regarding any threatened, endangered, and special status wildlife or fisheries species and/or habitats, within the project area which might be impacted by this project.

Thank you for your consideration. If you have any questions regarding the proposed project, please contact our office.

Sincerely,


Gorrill Palmer

Sawren Labery

Lauren Labbay Design Engineer 207-772-2515 x240 Ilabbay@gorrillpalmer.com

Enclosure

U:\3831_Helios_Mixed Residential Development - Lincoln & Bradley - Saco\L Environmental\Resource Letters\Maine Department of Inland Fisheries and Wildlife\Perry.doc

STATE OF MAINE DEPARTMENT OF INLAND FISHERIES & WILDLIFE 353 WATER STREET 41 STATE HOUSE STATION AUGUSTA ME 04333-0041

December 7, 2021

Lauren Labbay Gorrill-Palmer 707 Sable Oaks Drive, Suite 30 South Portland, ME 04106

RE: Information Request - 321 Lincoln Street Project, Saco

Dear Lauren:

Per your request received on September 20, 2021, we have reviewed current Maine Department of Inland Fisheries and Wildlife (MDIFW) information for known locations of Endangered, Threatened, and Special Concern species; designated Essential and Significant Wildlife Habitats; and inland fisheries habitat concerns within the vicinity of the *321 Lincoln Street* project in Saco.

Our Department has not mapped any Essential Habitats that would be directly affected by your project.

Endangered, Threatened, and Special Concern Species

<u>Bat Species</u> – Of the eight species of bats that occur in Maine, the three *Myotis* species are protected under Maine's Endangered Species Act (MESA) and are afforded special protection under 12 M.R.S §12801 - §12810. The three *Myotis* species include little brown bat (State Endangered), northern longeared bat (State Endangered), and eastern small-footed bat (State Threatened). The five remaining bat species are listed as Special Concern: big brown bat, red bat, hoary bat, silver-haired bat, and tri-colored bat. While a comprehensive statewide inventory for bats has not been completed, based on historical evidence it is likely that several of these species occur within the project area during migration and/or the breeding season. However, our Agency does not anticipate significant impacts to any of the bat species as a result of this project.

Significant Wildlife Habitat

<u>Significant Vernal Pools</u> - At this time MDIFW Significant Wildlife Habitat (SWH) maps indicate no known presence of SWHs subject to protection under the Natural Resources Protection Act (NRPA) within the project area, which include Waterfowl and Wading Bird Habitats, Seabird Nesting Islands, Shorebird Areas, and Significant Vernal Pools. However, a comprehensive statewide inventory for Significant Vernal Pools has not been completed. Therefore, we recommend that surveys for vernal pools be conducted within the project boundary by qualified wetland scientists prior to final project design to determine whether there are Significant Vernal Pools present in the area. These surveys should extend up to 250 feet beyond the anticipated project footprint because of potential performance standard requirements for off-site Significant Vernal Pools, assuming such pools are located on land owned or controlled by the applicant. Once surveys are completed, survey forms should be submitted to our Agency for review well before the submission of any necessary permits. Our Department will need to review and verify any vernal pool data prior to final determination of significance.

Letter to Lauren Labbay, Gorrill-Palmer Comments RE: 321 Lincoln Street, Saco December 7, 2021

Fisheries Habitat

We recommend that 100-foot undisturbed vegetated buffers be maintained along streams. Buffers should be measured from the edge of stream or associated fringe and floodplain wetlands. Maintaining and enhancing buffers along streams that support coldwater fisheries is critical to the protection of water temperatures, water quality, natural inputs of coarse woody debris, and various forms of aquatic life necessary to support conditions required by many fish species. Stream crossings should be avoided, but if a stream crossing is necessary, or an existing crossing needs to be modified, it should be designed to provide full fish passage. Small streams, including intermittent streams, can provide crucial rearing habitat, cold water for thermal refugia, and abundant food for juvenile salmonids on a seasonal basis and undersized crossings may inhibit these functions. Generally, MDIFW recommends that all new, modified, and replacement stream crossings be sized to span at least 1.2 times the bankfull width of the stream. In addition, we generally recommend that stream crossings be open bottomed (i.e. natural bottom), although embedded structures which are backfilled with representative streambed material have been shown to be effective in not only providing habitat connectivity for fish but also for other aquatic organisms. Construction Best Management Practices should be closely followed to avoid erosion, sedimentation, alteration of stream flow, and other impacts as eroding soils from construction activities can travel significant distances as well as transport other pollutants resulting in direct impacts to fish and fisheries habitat. In addition, we recommend that any necessary instream work occur between July 15 and October 1.

This consultation review has been conducted specifically for known MDIFW jurisdictional features and should not be interpreted as a comprehensive review for the presence of other regulated features that may occur in this area. Prior to the start of any future site disturbance we recommend additional consultation with the municipality, and other state resource agencies including the Maine Natural Areas Program, Maine Department of Marine Resources, and Maine Department of Environmental Protection in order to avoid unintended protected resource disturbance.

Please feel free to contact my office if you have any questions regarding this information, or if I can be of any further assistance.

Best regards,

Becca Settele Wildlife Biologist

STATE OF MAINE DEPARTMENT OF ENVIRONMENTAL PROTECTION

February 2, 2022

GOVERNER

Cole Peters POWER Engineers 303 US Route One Freeport, ME 04032

Re: Vernal Pool Significance Determination, Pool ID #s 4645, 4646–Saco

Dear Cole Peters:

Vernal pools are temporary to semi-permanent wetlands occurring in shallow depressions that typically fill during the spring and dry during the summer or in drought years. They provide important breeding and foraging habitat for a wide variety of specialized wildlife species including several rare, threatened, and endangered species.

Based on your field surveys, it has been determined that the vernal pools identified above on the property of Lucia Kimball Deering Tr. are NOT SIGNIFICANT because either: 1. the features do not meet the definition of a vernal pool under the Significant Wildlife Habitat rules, 06-096 CMR 335(9) or 2. the vernal pools do not meet the biological standards for exceptional wildlife use of the Significant Wildlife Habitat rules, 06-096 CMR 335(9)(B). Therefore, activities within 250 feet of the pools are not regulated under the Natural Resources Protection Act (NRPA) unless there are other protected natural resources nearby such as streams or freshwater wetlands. I have attached a copy of the database printout that verifies the State's findings with respect to your surveys.

I want to also advise you that the pool areas on the property can be considered freshwater wetlands and therefore direct pool alterations may require permitting under the NRPA.

The Department will notify the landowner of the pool status under separate cover. If you have any questions or need further clarification, please contact Mark Stebbins at 207-592-4810 or email at: <u>Mark.N.Stebbins@maine.gov</u>

Sincerely,

Nicholas D. Livesay, Director Bureau of Land Resources

cc. town file

AUGUSTA 17 STATE HOUSE STATION AUGUSTA, MAINE 04333-0017 (207) 287-7688 FAX: (207) 287-7826 BANGOR 106 HOGAN ROAD, SUITE 6 BANGOR, MAINE 04401 207-941-4570 FAX: (207) 941-4584

PORTLAND 312 CANCO ROAD PORTLAND, MAINE 04103 (207) 822-6300 FAX: (207) 822-6303 PRESQUE ISLE 1235 CENTRAL DRIVE, SKYWAY PARK PRESQUE ISLE, MAINE 04769 (207) 764-0477 FAX: (207) 760-3143

ATTACHMENT 6

RESPONSE FROM UNITED STATES DEPARTMENT OF THE INTERIOR FISH AND WILDLIFE SERVICE

United States Department of the Interior

FISH AND WILDLIFE SERVICE Maine Ecological Services Field Office P. O. Box A East Orland, ME 04431 Phone: (207) 469-7300 Fax: (207) 902-1588 http://www.fws.gov/mainefieldoffice/index.html

IPaC Record Locator: 355-105712839

September 16, 2021

Subject: Consistency letter for the 'Mixed Residential Development' project indicating that any take of the northern long-eared bat that may occur as a result of the Action is not prohibited under the ESA Section 4(d) rule adopted for this species at 50 CFR §17.40(o).

Dear Lauren Labbay:

The U.S. Fish and Wildlife Service (Service) received on September 16, 2021 your effects determination for the 'Mixed Residential Development' (the Action) using the northern long-eared bat (*Myotis septentrionalis*) key within the Information for Planning and Consultation (IPaC) system. You indicated that no Federal agencies are involved in funding or authorizing this Action. This IPaC key assists users in determining whether a non-Federal action may cause "take"^[1] of the northern long-eared bat that is prohibited under the Endangered Species Act of 1973 (ESA) (87 Stat.884, as amended; 16 U.S.C. 1531 et seq.).

Based upon your IPaC submission, any take of the northern long-eared bat that may occur as a result of the Action is not prohibited under the ESA Section 4(d) rule adopted for this species at 50 CFR §17.40(o). Unless the Service advises you within 30 days of the date of this letter that your IPaC-assisted determination was incorrect, this letter verifies that the Action is not likely to result in unauthorized take of the northern long-eared bat.

Please report to our office any changes to the information about the Action that you entered into IPaC, the results of any bat surveys conducted in the Action area, and any dead, injured, or sick northern long-eared bats that are found during Action implementation.

If your Action proceeds as described and no additional information about the Action's effects on species protected under the ESA becomes available, no further coordination with the Service is required with respect to the northern long-eared bat.

The IPaC-assisted determination for the northern long-eared bat **does not** apply to the following ESA-protected species that also may occur in your Action area:

• Monarch Butterfly Danaus plexippus Candidate

You may coordinate with our Office to determine whether the Action may cause prohibited take of the animal species listed above.

[1]Take means to harass, harm, pursue, hunt, shoot, wound, kill, trap, capture, or collect, or to attempt to engage in any such conduct [ESA Section 3(19)].

Action Description

You provided to IPaC the following name and description for the subject Action.

1. Name

Mixed Residential Development

2. Description

The following description was provided for the project 'Mixed Residential Development':

Located between Lincoln & Bradley Street in Saco, Maine.

Approximate location of the project can be viewed in Google Maps: <u>https://www.google.com/</u> <u>maps/@43.5056938,-70.46314152686595,14z</u>

Determination Key Result

This non-Federal Action may affect the northern long-eared bat; however, any take of this species that may occur incidental to this Action is not prohibited under the final 4(d) rule at 50 CFR §17.40(o).

Determination Key Description: Northern Long-eared Bat 4(d) Rule

This key was last updated in IPaC on **May 15, 2017**. Keys are subject to periodic revision.

This key is intended for actions that may affect the threatened northern long-eared bat.

The purpose of the key for non-Federal actions is to assist determinations as to whether proposed actions are excepted from take prohibitions under the northern long-eared bat 4(d) rule.

If a non-Federal action may cause prohibited take of northern long-eared bats or other ESA-listed animal species, we recommend that you coordinate with the Service.

4

Determination Key Result

Based upon your IPaC submission, any take of the northern long-eared bat that may occur as a result of the Action is not prohibited under the ESA Section 4(d) rule adopted for this species at 50 CFR §17.40(o).

Qualification Interview

1. Is the action authorized, funded, or being carried out by a Federal agency?

No

2. Will your activity purposefully Take northern long-eared bats?

No

3. [Semantic] Is the project action area located wholly outside the White-nose Syndrome Zone?

Automatically answered No

4. [Semantic] Is the project action area located within 0.25 miles of a known northern longeared bat hibernaculum?

Note: The map queried for this question contains proprietary information and cannot be displayed. If you need additional information, please contact your State wildlife agency

Automatically answered

No

5. [Semantic] Is the project action area located within 150 feet of a known occupied northern long-eared bat maternity roost tree?

Note: The map queried for this question contains proprietary information and cannot be displayed. If you need additional information, please contact your State wildlife agency

Automatically answered

No

Project Questionnaire

If the project includes forest conversion, report the appropriate acreages below. Otherwise, type '0' in questions 1-3.

1. Estimated total acres of forest conversion:

57

2. If known, estimated acres of forest conversion from April 1 to October 31

0

3. If known, estimated acres of forest conversion from June 1 to July 31

57

If the project includes timber harvest, report the appropriate acreages below. Otherwise, type '0' in questions 4-6.

4. Estimated total acres of timber harvest

57

5. If known, estimated acres of timber harvest from April 1 to October 31

0

6. If known, estimated acres of timber harvest from June 1 to July 31

57

If the project includes prescribed fire, report the appropriate acreages below. Otherwise, type '0' in questions 7-9.

7. Estimated total acres of prescribed fire

0

8. If known, estimated acres of prescribed fire from April 1 to October 31

0

9. If known, estimated acres of prescribed fire from June 1 to July 31

0

If the project includes new wind turbines, report the megawatts of wind capacity below. Otherwise, type '0' in question 10.

10. What is the estimated wind capacity (in megawatts) of the new turbine(s)?

0

United States Department of the Interior

FISH AND WILDLIFE SERVICE Maine Ecological Services Field Office P. O. Box A East Orland, ME 04431 Phone: (207) 469-7300 Fax: (207) 902-1588 http://www.fws.gov/mainefieldoffice/index.html

September 16, 2021

In Reply Refer To: Consultation Code: 05E1ME00-2021-SLI-1763 Event Code: 05E1ME00-2021-E-05474 Project Name: Mixed Residential Development

Subject: List of threatened and endangered species that may occur in your proposed project location or may be affected by your proposed project

To Whom It May Concern:

The enclosed species list identifies the threatened, endangered, candidate, and proposed species and designated or proposed critical habitat that may occur within the boundary of your proposed project or may be affected by your proposed project. This species list fulfills the requirements of the U.S. Fish and Wildlife Service (Service) under section 7(c) of the Endangered Species Act (Act) of 1973, as amended (16 U.S.C. 1531 et seq.).

New information based on updated surveys, changes in the abundance and distribution of species, changed habitat conditions, or other factors could change this list. Please feel free to contact us if you need more current information or assistance regarding the potential impacts to federally proposed, listed, and candidate species and federally designated and proposed critical habitat. Please note that under 50 CFR 402.12(e) of the regulations implementing section 7 of the Act, the accuracy of this species list should be verified after 90 days. This verification can be completed formally or informally as desired. The Service recommends that verification be completed by visiting the ECOS-IPaC Web site at regular intervals during project planning and implementation for updates to species lists and information. An updated list may be requested through the ECOS-IPaC system by completing the same process used to receive the enclosed list.

The purpose of the Act is to provide a means whereby threatened and endangered species and the ecosystems upon which they depend may be conserved. Under sections 7(a)(1) and 7(a)(2) of the Act and its implementing regulations (50 CFR 402 et seq.), Federal agencies are required to utilize their authorities to carry out programs for the conservation of threatened and endangered species and to determine whether projects may affect threatened and endangered species and/or designated critical habitat.

A Biological Assessment is required for construction projects (or other undertakings having similar physical impacts) that are major Federal actions significantly affecting the quality of the human environment as defined in the National Environmental Policy Act (42 U.S.C. 4332(2) (c)). For projects other than major construction activities, the Service suggests that a biological evaluation similar to a Biological Assessment be prepared to determine whether the project may affect listed or proposed species and designated or proposed critical habitat. Recommended contents of a Biological Assessment are described at 50 CFR 402.12.

If a Federal agency determines, based on the Biological Assessment or biological evaluation, that listed species or designated critical habitat may be affected by the proposed project, the agency is required to consult with the Service pursuant to 50 CFR 402. In addition, the Service recommends that candidate species, proposed species and proposed critical habitat be addressed within the consultation. More information on the regulations and procedures for section 7 consultation, including the role of permit or license applicants, can be found in the Endangered Species Consultation Handbook at: <u>http://www.fws.gov/endangered/esa-library/pdf/TOC-GLOS.PDF</u>

This species list also identifies candidate species under review for listing and those species that the Service considers species of concern. Candidate species have no protection under the Act but are included for consideration because they could be listed prior to completion of your project. Species of concern are those taxa whose conservation status is of concern to the Service (i.e., species previously known as Category 2 candidates), but for which further information is needed.

If a proposed project may affect only candidate species or species of concern, you are not required to prepare a Biological Assessment or biological evaluation or to consult with the Service. However, the Service recommends minimizing effects to these species to prevent future conflicts. Therefore, if early evaluation indicates that a project will affect a candidate species or species of concern, you may wish to request technical assistance from this office to identify appropriate minimization measures.

Please be aware that bald and golden eagles are not protected under the Endangered Species Act but are protected under the Bald and Golden Eagle Protection Act (16 U.S.C. 668 et seq.). Projects affecting these species may require development of an eagle conservation plan: <u>http://www.fws.gov/windenergy/eagle_guidance.html</u> Information on the location of bald eagle nests in Maine can be found on the Maine Field Office Web site: <u>http://www.fws.gov/mainefieldoffice/Project%20review4.html</u>

Additionally, wind energy projects should follow the wind energy guidelines: <u>http://www.fws.gov/windenergy/</u> for minimizing impacts to migratory birds and bats. Projects may require development of an avian and bat protection plan.

Migratory birds are also a Service trust resource. Under the Migratory Bird Treaty Act, construction activities in grassland, wetland, stream, woodland, and other habitats that would result in the take of migratory birds, eggs, young, or active nests should be avoided. Guidance for minimizing impacts to migratory birds for projects including communications towers (e.g., cellular, digital television, radio, and emergency broadcast) can be found at: http://www.fws.gov/migratorybirds/CurrentBirdIssues/Hazards/towers.htm and at:

<u>http://www.towerkill.com;</u> and at: http://www.fws.gov/migratorybirds/CurrentBirdIssues/Hazards/towers/comtow.html

We appreciate your concern for threatened and endangered species. The Service encourages Federal agencies to include conservation of threatened and endangered species into their project planning to further the purposes of the Act. Please include the Consultation Tracking Number in the header of this letter with any request for consultation or correspondence about your project that you submit to our office.

Attachment(s):

Official Species List

Official Species List

This list is provided pursuant to Section 7 of the Endangered Species Act, and fulfills the requirement for Federal agencies to "request of the Secretary of the Interior information whether any species which is listed or proposed to be listed may be present in the area of a proposed action".

This species list is provided by:

Maine Ecological Services Field Office

P. O. Box A East Orland, ME 04431 (207) 469-7300

Project Summary

Consultation Code:05E1ME00-2021-SLI-1763Event Code:Some(05E1ME00-2021-E-05474)Project Name:Mixed Residential DevelopmentProject Type:DEVELOPMENTProject Description:Located between Lincoln & Bradley Street in Saco, Maine.Project Location:Versite Construction

Approximate location of the project can be viewed in Google Maps: <u>https://www.google.com/maps/@43.5056938,-70.46314152686595,14z</u>

Counties: York County, Maine

Endangered Species Act Species

There is a total of 2 threatened, endangered, or candidate species on this species list.

Species on this list should be considered in an effects analysis for your project and could include species that exist in another geographic area. For example, certain fish may appear on the species list because a project could affect downstream species.

IPaC does not display listed species or critical habitats under the sole jurisdiction of NOAA Fisheries¹, as USFWS does not have the authority to speak on behalf of NOAA and the Department of Commerce.

See the "Critical habitats" section below for those critical habitats that lie wholly or partially within your project area under this office's jurisdiction. Please contact the designated FWS office if you have questions.

1. <u>NOAA Fisheries</u>, also known as the National Marine Fisheries Service (NMFS), is an office of the National Oceanic and Atmospheric Administration within the Department of Commerce.

Mammals

NAME	STATUS
Northern Long-eared Bat <i>Myotis septentrionalis</i> No critical habitat has been designated for this species. Species profile: <u>https://ecos.fws.gov/ecp/species/9045</u>	Threatened
Insects NAME	STATUS
Monarch Butterfly <i>Danaus plexippus</i> No critical habitat has been designated for this species. Species profile: <u>https://ecos.fws.gov/ecp/species/9743</u>	Candidate

Critical habitats

THERE ARE NO CRITICAL HABITATS WITHIN YOUR PROJECT AREA UNDER THIS OFFICE'S JURISDICTION.

IPaC resource list

This report is an automatically generated list of species and other resources such as critical habitat (collectively referred to as *trust resources*) under the U.S. Fish and Wildlife Service's (USFWS) jurisdiction that are known or expected to be on or near the project area referenced below. The list may also include trust resources that occur outside of the project area, but that could potentially be directly or indirectly affected by activities in the project area. However, determining the likelihood and extent of effects a project may have on trust resources typically requires gathering additional site-specific (e.g., vegetation/species surveys) and project-specific (e.g., magnitude and timing of proposed activities) information.

Below is a summary of the project information you provided and contact information for the USFWS office(s) with jurisdiction in the defined project area. Please read the introduction to each section that follows (Endangered Species, Migratory Birds, USFWS Facilities, and NWI Wetlands) for additional information applicable to the trust resources addressed in that section.

SUL

Project information

NAME

Mixed Residential Development

LOCATION

York County, Maine

DESCRIPTION

Some(Located between Lincoln & Bradley Street in Saco, Maine.)

ncoln St

Local office

Maine Ecological Services Field Office

<a>(207) 469-7300
<a>(207) 902-1588

MAILING ADDRESS P. O. Box A East Orland, ME 04431

PHYSICAL ADDRESS 306 Hatchery Road East Orland, ME 04431

http://www.fws.gov/mainefieldoffice/index.html

NOTFORCONSULTATION

Endangered species

This resource list is for informational purposes only and does not constitute an analysis of project level impacts.

The primary information used to generate this list is the known or expected range of each species. Additional areas of influence (AOI) for species are also considered. An AOI includes areas outside of the species range if the species could be indirectly affected by activities in that area (e.g., placing a dam upstream of a fish population even if that fish does not occur at the dam site, may indirectly impact the species by reducing or eliminating water flow downstream). Because species can move, and site conditions can change, the species on this list are not guaranteed to be found on or near the project area. To fully determine any potential effects to species, additional site-specific and project-specific information is often required.

Section 7 of the Endangered Species Act **requires** Federal agencies to "request of the Secretary information whether any species which is listed or proposed to be listed may be present in the area of such proposed action" for any project that is conducted, permitted, funded, or licensed by any Federal agency. A letter from the local office and a species list which fulfills this requirement can **only** be obtained by requesting an official species list from either the Regulatory Review section in IPaC (see directions below) or from the local field office directly.

For project evaluations that require USFWS concurrence/review, please return to the IPaC website and request an official species list by doing the following:

- 1. Log in to IPaC.
- 2. Go to your My Projects list.
- 3. Click PROJECT HOME for this project.
- 4. Click REQUEST SPECIES LIST.

Listed species¹ and their critical habitats are managed by the <u>Ecological Services Program</u> of the U.S. Fish and Wildlife Service (USFWS) and the fisheries division of the National Oceanic and Atmospheric Administration (NOAA Fisheries²).

Species and critical habitats under the sole responsibility of NOAA Fisheries are **not** shown on this list. Please contact <u>NOAA Fisheries</u> for <u>species under their jurisdiction</u>.

- Species listed under the <u>Endangered Species Act</u> are threatened or endangered; IPaC also shows species that are candidates, or proposed, for listing. See the <u>listing status page</u> for more information. IPaC only shows species that are regulated by USFWS (see FAQ).
- 2. <u>NOAA Fisheries</u>, also known as the National Marine Fisheries Service (NMFS), is an office of the National Oceanic and Atmospheric Administration within the Department of Commerce.

The following species are potentially affected by activities in this location:

Mammals

NAME

Northern Long-eared Bat Myotis septentrionalis Wherever found No critical habitat has been designated for this species. <u>http://ecos.fws.gov/ecp/species/9045</u>

Insects

NAME

STATUS

Monarch Butterfly Danaus plexippus Wherever found No critical habitat has been designated for this species. <u>http://ecos.fws.gov/ecp/species/9743</u>

Critical habitats

Potential effects to critical habitat(s) in this location must be analyzed along with the endangered species themselves.

THERE ARE NO CRITICAL HABITATS AT THIS LOCATION.

Migratory birds

Certain birds are protected under the Migratory Bird Treaty Act¹ and the Bald and Golden Eagle Protection Act².

Any person or organization who plans or conducts activities that may result in impacts to migratory birds, eagles, and their habitats should follow appropriate regulations and consider implementing appropriate conservation measures, as described <u>below</u>.

1. The Migratory Birds Treaty Act of 1918.

2. The Bald and Golden Eagle Protection Act of 1940.

Additional information can be found using the following links:

- Birds of Conservation Concern <u>http://www.fws.gov/birds/management/managed-species/</u> <u>birds-of-conservation-concern.php</u>
- Measures for avoiding and minimizing impacts to birds <u>http://www.fws.gov/birds/management/project-assessment-tools-and-guidance/</u> <u>conservation-measures.php</u>
- Nationwide conservation measures for birds <u>http://www.fws.gov/migratorybirds/pdf/management/nationwidestandardconservationmeasures.pdf</u>

The birds listed below are birds of particular concern either because they occur on the <u>USFWS Birds</u> <u>of Conservation Concern</u> (BCC) list or warrant special attention in your project location. To learn more about the levels of concern for birds on your list and how this list is generated, see the FAQ

Candidate

below. This is not a list of every bird you may find in this location, nor a guarantee that every bird on this list will be found in your project area. To see exact locations of where birders and the general public have sighted birds in and around your project area, visit the *E-bird data mapping* tool (Tip: enter your location, desired date range and a species on your list). For projects that occur off the Atlantic Coast, additional maps and models detailing the relative occurrence and abundance of bird species on your list are available. Links to additional information about Atlantic Coast birds, and other important information about your migratory bird list, including how to properly interpret and use your migratory bird report, can be found below.

For guidance on when to schedule activities or implement avoidance and minimization measures to reduce impacts to migratory birds on your list, click on the PROBABILITY OF PRESENCE SUMMARY at the top of your list to see when these birds are most likely to be present and breeding in your project area.

201

NAME

BREEDING SEASON (IF A BREEDING SEASON IS INDICATED FOR A BIRD ON YOUR LIST, THE BIRD MAY BREED IN YOUR PROJECT AREA SOMETIME WITHIN THE TIMEFRAME SPECIFIED, WHICH IS A VERY LIBERAL ESTIMATE OF THE DATES INSIDE WHICH THE BIRD BREEDS ACROSS ITS ENTIRE RANGE. "BREEDS ELSEWHERE" INDICATES THAT THE BIRD DOES NOT LIKELY BREED IN YOUR PROJECT AREA.)

American Oystercatcher Haematopus palliatus This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska. http://ecos.fws.gov/ecp/species/8935

Bald Eagle Haliaeetus leucocephalus	Breeds Oct 15 to Aug 31
	bleeds oct 15 to Adg 51
This is not a Bird of Conservation Concern (BCC) in this area, but	
warrants attention because of the Eagle Act or for potential	
susceptibilities in offshore areas from certain types of development	
or activities.	
http://ecos.fws.gov/ecp/species/1626	

Black Skimmer Rynchops niger This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska. http://ecos.fws.gov/ecp/species/5234

Black-billed Cuckoo Coccyzus erythropthalmus This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska. http://ecos.fws.gov/ecp/species/9399

Breeds Apr 15 to Aug 31

Breeds May 20 to Sep 15

Breeds May 15 to Oct 10

Blue-winged Warbler Vermivora pinus This is a Bird of Conservation Concern (BCC) only in particular Bird Conservation Regions (BCRs) in the continental USA	Breeds May 1 to Jun 30
Bobolink Dolichonyx oryzivorus This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.	Breeds May 20 to Jul 31
Canada Warbler Cardellina canadensis This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.	Breeds May 20 to Aug 10
Eastern Whip-poor-will Antrostomus vociferus This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.	Breeds May 1 to Aug 20
Hudsonian Godwit Limosa haemastica This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.	Breeds elsewhere
Lesser Yellowlegs Tringa flavipes This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska. http://ecos.fws.gov/ecp/species/9679	Breeds elsewhere
Prairie Warbler Dendroica discolor This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.	Breeds May 1 to Jul 31
Purple Sandpiper Calidris maritima This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.	Breeds elsewhere
Ruddy Turnstone Arenaria interpres morinella This is a Bird of Conservation Concern (BCC) only in particular Bird Conservation Regions (BCRs) in the continental USA	Breeds elsewhere
Rusty Blackbird Euphagus carolinus This is a Bird of Conservation Concern (BCC) only in particular Bird Conservation Regions (BCRs) in the continental USA	Breeds elsewhere
Short-billed Dowitcher Limnodromus griseus This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska. <u>http://ecos.fws.gov/ecp/species/9480</u>	Breeds elsewhere

Willet Tringa semipalmata

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

Wood Thrush Hylocichla mustelina

Breeds May 10 to Aug 31

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

Probability of Presence Summary

The graphs below provide our best understanding of when birds of concern are most likely to be present in your project area. This information can be used to tailor and schedule your project activities to avoid or minimize impacts to birds. Please make sure you read and understand the FAQ "Proper Interpretation and Use of Your Migratory Bird Report" before using or attempting to interpret this report.

Probability of Presence (...)

Each green bar represents the bird's relative probability of presence in the 10km grid cell(s) your project overlaps during a particular week of the year. (A year is represented as 12 4-week months.) A taller bar indicates a higher probability of species presence. The survey effort (see below) can be used to establish a level of confidence in the presence score. One can have higher confidence in the presence score if the corresponding survey effort is also high.

How is the probability of presence score calculated? The calculation is done in three steps:

- 1. The probability of presence for each week is calculated as the number of survey events in the week where the species was detected divided by the total number of survey events for that week. For example, if in week 12 there were 20 survey events and the Spotted Towhee was found in 5 of them, the probability of presence of the Spotted Towhee in week 12 is 0.25.
- 2. To properly present the pattern of presence across the year, the relative probability of presence is calculated. This is the probability of presence divided by the maximum probability of presence across all weeks. For example, imagine the probability of presence in week 20 for the Spotted Towhee is 0.05, and that the probability of presence at week 12 (0.25) is the maximum of any week of the year. The relative probability of presence on week 12 is 0.25/0.25 = 1; at week 20 it is 0.05/0.25 = 0.2.
- 3. The relative probability of presence calculated in the previous step undergoes a statistical conversion so that all possible values fall between 0 and 10, inclusive. This is the probability of presence score.

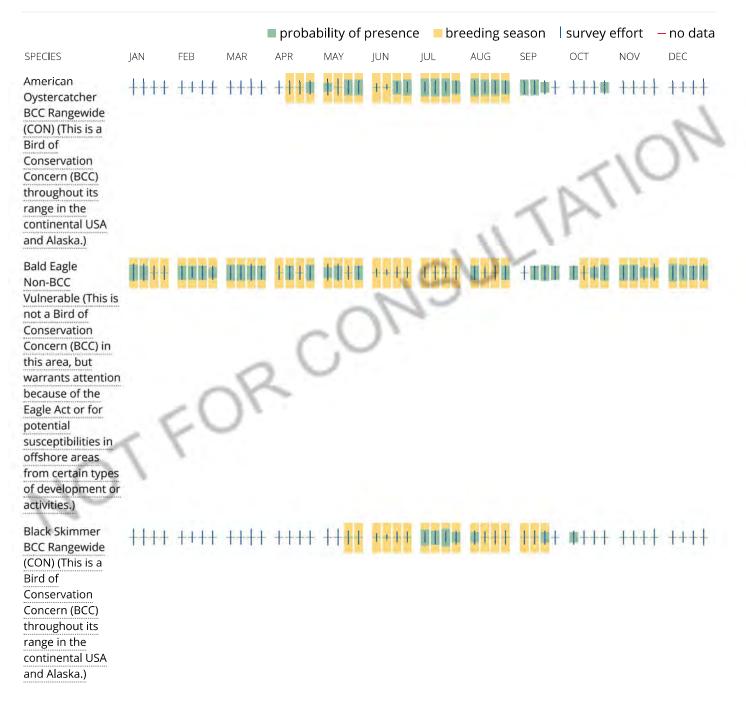
To see a bar's probability of presence score, simply hover your mouse cursor over the bar.

Breeding Season (=)

Yellow bars denote a very liberal estimate of the time-frame inside which the bird breeds across its entire range. If there are no yellow bars shown for a bird, it does not breed in your project area.

Survey Effort (|)

Vertical black lines superimposed on probability of presence bars indicate the number of surveys performed for that species in the 10km grid cell(s) your project area overlaps. The number of surveys is expressed as a range, for example, 33 to 64 surveys.


To see a bar's survey effort range, simply hover your mouse cursor over the bar.

No Data (–)

A week is marked as having no data if there were no survey events for that week.

Survey Timeframe

Surveys from only the last 10 years are used in order to ensure delivery of currently relevant information. The exception to this is areas off the Atlantic coast, where bird returns are based on all years of available data, since data in these areas is currently much more sparse.

Black-billed Cuckoo BCC Rangewide (CON) (This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.)	++++	++++	++++	++++	++++++	1+++	++++	++++	++#+	<mark>++</mark> ++	++++	++++
Blue-winged Warbler BCC - BCR (This is a Bird of Conservation Concern (BCC) only in particular Bird Conservation Regions (BCRs) in the continental USA)	++++	++++	++++	++++	++++	+++1	++++	++++	++++	++++	++++	++++
Bobolink BCC Rangewide (CON) (This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.)	++++	++++	+++++	++++	+•••	5	S	++	++++	++++	++++	++++
Canada Warbler BCC Rangewide (CON) (This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.)	++++	+++(*	H	111 +	+ #1 1	++++	++++	<mark>++</mark> ++	*++*	++++	++++	++++
Eastern Whip- poor-will BCC Rangewide (CON) (This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.)	++++	++++	++++	+++#	1111	++1+	+++	++++	++++	++++	++++	++++

Hudsonian Godwit BCC Rangewide (CON) (This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.)	++++	++++	++++	++++	++++	++++	++111+	++#Ⅲ	#∎∎+	₩‡ + ₩	++++	++++
Lesser Yellowlegs BCC Rangewide (CON) (This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.)	++++	++++	++++	++++	# + #+	++++	****		# ##+		++++	++++
Prairie Warbler BCC Rangewide (CON) (This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.)	++++	++++	++++	++++	-0	1	5	1	++++	++++	++++	++++
Purple Sandpiper BCC Rangewide (CON) (This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.)	****	++++	****	+800	++++	++++	++++	++++	++++	++++	***	₩ ++ ₩
SPECIES Ruddy Turnstone BCC - BCR (This is a Bird of Conservation Concern (BCC) only in particular Bird Conservation Regions (BCRs) in the continental USA)		FEB ++++	MAR ++	APR ■+■■	MAY	јин ¶+++	ju∟ ++ 1	AUG	SEP		NOV	DEC ++++

Rusty Blackbird BCC - BCR (This is a Bird of Conservation Concern (BCC) only in particular Bird Conservation Regions (BCRs) in the continental USA)	++++	++++	+++#	+∎∎+	# +++	++++	++++	++++	++++	₩#++	++++	++++
Short-billed Dowitcher BCC Rangewide (CON) (This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.)	++++	++++	++++	++++	++11	+++	1111			IIIII	++++	H++++
Willet BCC Rangewide (CON) (This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.)	++++	++++	++++	+++	-,C	2	S	1	446(++	1444	++++	++++
Wood Thrush BCC Rangewide (CON) (This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.)	++++	++++	+++++	++++	Ŧ		1111	++++	++++	++++	++++	++++

Tell me more about conservation measures I can implement to avoid or minimize impacts to migratory birds.

<u>Nationwide Conservation Measures</u> describes measures that can help avoid and minimize impacts to all birds at any location year round. Implementation of these measures is particularly important when birds are most likely to occur in the project area. When birds may be breeding in the area, identifying the locations of any active nests and avoiding their destruction is a very helpful impact minimization measure. To see when birds are most likely to occur and be breeding in your project area, view the Probability of Presence Summary. <u>Additional measures</u> or <u>permits</u> may be advisable depending on the type of activity you are conducting and the type of infrastructure or bird species present on your project site.

What does IPaC use to generate the migratory birds potentially occurring in my specified location?

The Migratory Bird Resource List is comprised of USFWS <u>Birds of Conservation Concern (BCC)</u> and other species that may warrant special attention in your project location.

The migratory bird list generated for your project is derived from data provided by the <u>Avian Knowledge Network</u> (<u>AKN</u>). The AKN data is based on a growing collection of <u>survey</u>, <u>banding</u>, <u>and citizen science datasets</u> and is queried and filtered to return a list of those birds reported as occurring in the 10km grid cell(s) which your project intersects, and that have been identified as warranting special attention because they are a BCC species in that area, an eagle (<u>Eagle Act</u> requirements may apply), or a species that has a particular vulnerability to offshore activities or development.

Again, the Migratory Bird Resource list includes only a subset of birds that may occur in your project area. It is not representative of all birds that may occur in your project area. To get a list of all birds potentially present in your project area, please visit the <u>AKN Phenology Tool</u>.

What does IPaC use to generate the probability of presence graphs for the migratory birds potentially occurring in my specified location?

The probability of presence graphs associated with your migratory bird list are based on data provided by the <u>Avian Knowledge Network (AKN)</u>. This data is derived from a growing collection of <u>survey</u>, <u>banding</u>, <u>and citizen</u> <u>science datasets</u>.

Probability of presence data is continuously being updated as new and better information becomes available. To learn more about how the probability of presence graphs are produced and how to interpret them, go the Probability of Presence Summary and then click on the "Tell me about these graphs" link.

How do I know if a bird is breeding, wintering, migrating or present year-round in my project area?

To see what part of a particular bird's range your project area falls within (i.e. breeding, wintering, migrating or year-round), you may refer to the following resources: <u>The Cornell Lab of Ornithology All About Birds Bird Guide</u>, or (if you are unsuccessful in locating the bird of interest there), the <u>Cornell Lab of Ornithology Neotropical Birds</u> <u>guide</u>. If a bird on your migratory bird species list has a breeding season associated with it, if that bird does occur in your project area, there may be nests present at some point within the timeframe specified. If "Breeds elsewhere" is indicated, then the bird likely does not breed in your project area.

What are the levels of concern for migratory birds?

Migratory birds delivered through IPaC fall into the following distinct categories of concern:

- "BCC Rangewide" birds are <u>Birds of Conservation Concern</u> (BCC) that are of concern throughout their range anywhere within the USA (including Hawaii, the Pacific Islands, Puerto Rico, and the Virgin Islands);
- 2. "BCC BCR" birds are BCCs that are of concern only in particular Bird Conservation Regions (BCRs) in the continental USA; and
- 3. "Non-BCC Vulnerable" birds are not BCC species in your project area, but appear on your list either because of the <u>Eagle Act</u> requirements (for eagles) or (for non-eagles) potential susceptibilities in offshore areas from certain types of development or activities (e.g. offshore energy development or longline fishing).

Although it is important to try to avoid and minimize impacts to all birds, efforts should be made, in particular, to avoid and minimize impacts to the birds on this list, especially eagles and BCC species of rangewide concern. For more information on conservation measures you can implement to help avoid and minimize migratory bird impacts and requirements for eagles, please see the FAQs for these topics.

Details about birds that are potentially affected by offshore projects

For additional details about the relative occurrence and abundance of both individual bird species and groups of bird species within your project area off the Atlantic Coast, please visit the <u>Northeast Ocean Data Portal</u>. The Portal also offers data and information about other taxa besides birds that may be helpful to you in your project review. Alternately, you may download the bird model results files underlying the portal maps through the <u>NOAA NCCOS</u> <u>Integrative Statistical Modeling and Predictive Mapping of Marine Bird Distributions and Abundance on the Atlantic Outer Continental Shelf</u> project webpage.

Bird tracking data can also provide additional details about occurrence and habitat use throughout the year, including migration. Models relying on survey data may not include this information. For additional information on marine bird tracking data, see the <u>Diving Bird Study</u> and the <u>nanotag studies</u> or contact <u>Caleb Spiegel</u> or <u>Pam</u> <u>Loring</u>.

What if I have eagles on my list?

If your project has the potential to disturb or kill eagles, you may need to <u>obtain a permit</u> to avoid violating the Eagle Act should such impacts occur.

Proper Interpretation and Use of Your Migratory Bird Report

The migratory bird list generated is not a list of all birds in your project area, only a subset of birds of priority concern. To learn more about how your list is generated, and see options for identifying what other birds may be in your project area, please see the FAQ "What does IPaC use to generate the migratory birds potentially occurring in my specified location". Please be aware this report provides the "probability of presence" of birds within the 10 km grid cell(s) that overlap your project; not your exact project footprint. On the graphs provided, please also look carefully at the survey effort (indicated by the black vertical bar) and for the existence of the "no data" indicator (a red horizontal bar). A high survey effort is the key component. If the survey effort bar or no data bar means a lack of data and, therefore, a lack of certainty about presence of the species. This list is not perfect; it is simply a starting point for identifying what birds of concern have the potential to be in your project area, when they might be there, and if they might be breeding (which means nests might be present). The list helps you know what to look for to confirm presence, and helps guide you in knowing when to implement conservation measures to avoid or minimize potential impacts from your project activities, should presence be confirmed. To learn more about conservation measures, visit the FAQ "Tell me about conservation measures I can implement to avoid or minimize impacts to migratory birds" at the bottom of your migratory bird trust resources page.

Facilities

National Wildlife Refuge lands

Any activity proposed on lands managed by the <u>National Wildlife Refuge</u> system must undergo a 'Compatibility Determination' conducted by the Refuge. Please contact the individual Refuges to discuss any questions or concerns.

THERE ARE NO REFUGE LANDS AT THIS LOCATION.

Fish hatcheries

THERE ARE NO FISH HATCHERIES AT THIS LOCATION.

Wetlands in the National Wetlands Inventory

Impacts to <u>NWI wetlands</u> and other aquatic habitats may be subject to regulation under Section 404 of the Clean Water Act, or other State/Federal statutes.

For more information please contact the Regulatory Program of the local <u>U.S. Army Corps of</u> <u>Engineers District</u>.

Please note that the NWI data being shown may be out of date. We are currently working to update our NWI data set. We recommend you verify these results with a site visit to determine the actual extent of wetlands on site.

This location overlaps the following wetlands:

FRESHWAT	ER EMERGENT WETLAND
PEM1	
FRESHWAT	ER FORESTED/SHRUB WETLAND
PFO10	
PSS1E	

A full description for each wetland code can be found at the National Wetlands Inventory website

Data limitations

The Service's objective of mapping wetlands and deepwater habitats is to produce reconnaissance level information on the location, type and size of these resources. The maps are prepared from the analysis of high altitude imagery. Wetlands are identified based on vegetation, visible hydrology and geography. A margin of error is inherent in the use of imagery; thus, detailed on-the-ground inspection of any particular site may result in revision of the wetland boundaries or classification established through image analysis.

The accuracy of image interpretation depends on the quality of the imagery, the experience of the image analysts, the amount and quality of the collateral data and the amount of ground truth verification work conducted. Metadata should be consulted to determine the date of the source imagery used and any mapping problems.

Wetlands or other mapped features may have changed since the date of the imagery or field work. There may be occasional differences in polygon boundaries or classifications between the information depicted on the map and the actual conditions on site.

Data exclusions

Certain wetland habitats are excluded from the National mapping program because of the limitations of aerial imagery as the primary data source used to detect wetlands. These habitats include seagrasses or submerged aquatic vegetation that are found in the intertidal and subtidal zones of estuaries and nearshore coastal waters. Some deepwater reef communities (coral or tuberficid worm reefs) have also been excluded from the inventory. These habitats, because of their depth, go undetected by aerial imagery.

Data precautions

Federal, state, and local regulatory agencies with jurisdiction over wetlands may define and describe wetlands in a different manner than that used in this inventory. There is no attempt, in either the design or products of this inventory, to define the limits of proprietary jurisdiction of any Federal, state, or local government or to establish the geographical scope of the regulatory programs of government agencies. Persons intending to engage in activities involving modifications within or adjacent to wetland areas should seek the advice of appropriate federal, state, or local agencies concerning specified agency regulatory programs and proprietary jurisdictions that may affect such activities.

UPDATED IPAC CORRESPONDENCE FROM US FISH AND WILDLIFE SERVICE

United States Department of the Interior

FISH AND WILDLIFE SERVICE Maine Ecological Services Field Office P. O. Box A East Orland, ME 04431 Phone: (207) 469-7300 Fax: (207) 902-1588

In Reply Refer To: Project code: 2022-0079665 Project Name: Mixed Residential Development April 03, 2023

Subject: Consistency letter for the 'Mixed Residential Development' project under the amended February 5, 2018, FHWA, FRA, FTA Programmatic Biological Opinion (dated March 23, 2023) for Transportation Projects within the Range of the Indiana Bat and Northern Long-eared Bat (NLEB).

To whom it may concern:

The U.S. Fish and Wildlife Service (Service) has received your request dated April 03, 2023 to verify that the **Mixed Residential Development** (Proposed Action) may rely on the amended February 5, 2018, FHWA, FRA, FTA Programmatic Biological Opinion Opinion (dated March 23, 2023) for Transportation Projects within the Range of the Indiana Bat and Northern Long-eared Bat (PBO) to satisfy requirements under section 7(a)(2) of the Endangered Species Act of 1973 (ESA) (87 Stat.884, as amended; 16 U.S.C. 1531 *et seq.*).

Based on the information you provided (Project Description shown below), you have determined that the Proposed Action will have <u>no effect</u> on the endangered Indiana bat (*Myotis sodalis*) or the endangered northern long-eared bat (*Myotis septentrionalis*). If the Proposed Action is not modified, **no consultation is required for these two species.** If the Proposed Action is modified, or new information reveals that it may affect the Indiana bat and/or northern long-eared bat in a manner or to an extent not considered in the PBO, further review to conclude the requirements of ESA section 7(a)(2) may be required.

For Proposed Actions that include bridge/culvert or structure removal, replacement, and/or maintenance activities: If your initial bridge/culvert or structure assessments failed to detect Indiana bats and/or NLEB use or occupancy, yet later detected prior to, or during construction, please submit the Post Assessment Discovery of Bats at Bridge/Culvert or Structure Form (User Guide Appendix E) to this Service Office within 2 working days of the incident. In these instances, potential incidental take of Indiana bats and/or NLEBs may be exempted provided that the take is reported to the Service.

If the Proposed Action may affect any other federally-listed or proposed species and/or designated critical habitat, additional consultation between the lead Federal action agency and this Service Office is required. If the proposed action has the potential to take bald or golden eagles, additional coordination with the Service under the Bald and Golden Eagle Protection Act may also be required. In either of these circumstances, please advise the lead Federal action agency accordingly.

The following species may occur in your project area and **are not** covered by this determination:

Monarch Butterfly Danaus plexippus Candidate

The following project name and description was collected in IPaC as part of the endangered species review process.

NAME

Mixed Residential Development

DESCRIPTION

Located between Lincoln & Bradley Street in Saco, Maine.

DETERMINATION KEY RESULT

Based on the information you provided, you have determined that the Proposed Action will have no effect on the endangered Indiana bat and/or the endangered northern long-eared bat. Therefore, no consultation with the U.S. Fish and Wildlife Service pursuant to Section 7(a)(2) of the Endangered Species Act of 1973 (ESA) (87 Stat. 884, as amended 16 U.S.C. 1531 *et seq.*) is required for these two species.

QUALIFICATION INTERVIEW

1. Is the project within the range of the Indiana bat^[1]?

[1] See <u>Indiana bat species profile</u> Automatically answered No

2. Is the project within the range of the northern long-eared bat^[1]?

[1] See <u>northern long-eared bat species profile</u> Automatically answered *Yes*

3. [Semantic] Does your proposed action intersect an area where Indiana bats and northern long-eared bats are not likely to occur?

Automatically answered *Yes*

DETERMINATION KEY DESCRIPTION: FHWA, FRA, FTA PROGRAMMATIC CONSULTATION FOR TRANSPORTATION PROJECTS AFFECTING NLEB OR INDIANA BAT

This key was last updated in IPaC on March 30, 2023. Keys are subject to periodic revision.

This decision key is intended for projects/activities funded or authorized by the Federal Highway Administration (FHWA), Federal Railroad Administration (FRA), and/or Federal Transit Administration (FTA), which may require consultation with the U.S. Fish and Wildlife Service (Service) under Section 7 of the Endangered Species Act (ESA) for the endangered **Indiana bat** (*Myotis sodalis*) and the endangered **northern long-eared bat** (NLEB) (*Myotis septentrionalis*).

This decision key should <u>only</u> be used to verify project applicability with the Service's <u>February</u> 5, 2018, FHWA, FRA, FTA Programmatic Biological Opinion for Transportation Projects. The programmatic biological opinion covers limited transportation activities that may affect either bat species, and addresses situations that are both likely and not likely to adversely affect either bat species. This decision key will assist in identifying the effect of a specific project/activity and applicability of the programmatic consultation. The programmatic biological opinion is <u>not</u> intended to cover all types of transportation actions. Activities outside the scope of the programmatic biological opinion, or that may affect ESA-listed species other than the Indiana bat or NLEB, or any designated critical habitat, may require additional ESA Section 7 consultation.

IPAC USER CONTACT INFORMATION

Agency:Gorrill PalmerName:Lauren LabbayAddress:300 Southborough Drive, Suite 200City:South PortlandState:MEZip:04106Emailllabbay@gorrillpalmer.com

Phone: 2077722515

LEAD AGENCY CONTACT INFORMATION

Lead Agency: U.S. Fish and Wildlife Service

United States Department of the Interior

FISH AND WILDLIFE SERVICE Maine Ecological Services Field Office P. O. Box A East Orland, ME 04431 Phone: (207) 469-7300 Fax: (207) 902-1588

In Reply Refer To: Project Code: 2022-0079665 Project Name: Mixed Residential Development April 03, 2023

Subject: List of threatened and endangered species that may occur in your proposed project location or may be affected by your proposed project

To Whom It May Concern:

The enclosed species list identifies threatened, endangered, proposed and candidate species, as well as proposed and final designated critical habitat, that may occur within the boundary of your proposed project and/or may be affected by your proposed project. The species list fulfills the requirements of the U.S. Fish and Wildlife Service (Service) under section 7(c) of the Endangered Species Act (Act) of 1973, as amended (16 U.S.C. 1531 *et seq.*).

New information based on updated surveys, changes in the abundance and distribution of species, changed habitat conditions, or other factors could change this list. Please feel free to contact us if you need more current information or assistance regarding the potential impacts to federally proposed, listed, and candidate species and federally designated and proposed critical habitat. Please note that under 50 CFR 402.12(e) of the regulations implementing section 7 of the Act, the accuracy of this species list should be verified after 90 days. This verification can be completed formally or informally as desired. The Service recommends that verification be completed by visiting the ECOS-IPaC website at regular intervals during project planning and implementation for updates to species lists and information. An updated list may be requested through the ECOS-IPaC system by completing the same process used to receive the enclosed list.

The purpose of the Act is to provide a means whereby threatened and endangered species and the ecosystems upon which they depend may be conserved. Under sections 7(a)(1) and 7(a)(2) of the Act and its implementing regulations (50 CFR 402 *et seq.*), Federal agencies are required to utilize their authorities to carry out programs for the conservation of threatened and endangered species and to determine whether projects may affect threatened and endangered species and/or designated critical habitat.

A Biological Assessment is required for construction projects (or other undertakings having similar physical impacts) that are major Federal actions significantly affecting the quality of the human environment as defined in the National Environmental Policy Act (42 U.S.C. 4332(2) (c)). For projects other than major construction activities, the Service suggests that a biological

evaluation similar to a Biological Assessment be prepared to determine whether the project may affect listed or proposed species and/or designated or proposed critical habitat. Recommended contents of a Biological Assessment are described at 50 CFR 402.12.

If a Federal agency determines, based on the Biological Assessment or biological evaluation, that listed species and/or designated critical habitat may be affected by the proposed project, the agency is required to consult with the Service pursuant to 50 CFR 402. In addition, the Service recommends that candidate species, proposed species and proposed critical habitat be addressed within the consultation. More information on the regulations and procedures for section 7 consultation, including the role of permit or license applicants, can be found in the "Endangered Species Consultation Handbook" at:

http://www.fws.gov/endangered/esa-library/pdf/TOC-GLOS.PDF

Migratory Birds: In addition to responsibilities to protect threatened and endangered species under the Endangered Species Act (ESA), there are additional responsibilities under the Migratory Bird Treaty Act (MBTA) and the Bald and Golden Eagle Protection Act (BGEPA) to protect native birds from project-related impacts. Any activity, intentional or unintentional, resulting in take of migratory birds, including eagles, is prohibited unless otherwise permitted by the U.S. Fish and Wildlife Service (50 C.F.R. Sec. 10.12 and 16 U.S.C. Sec. 668(a)). For more information regarding these Acts see https://www.fws.gov/birds/policies-and-regulations.php.

The MBTA has no provision for allowing take of migratory birds that may be unintentionally killed or injured by otherwise lawful activities. It is the responsibility of the project proponent to comply with these Acts by identifying potential impacts to migratory birds and eagles within applicable NEPA documents (when there is a federal nexus) or a Bird/Eagle Conservation Plan (when there is no federal nexus). Proponents should implement conservation measures to avoid or minimize the production of project-related stressors or minimize the exposure of birds and their resources to the project-related stressors. For more information on avian stressors and recommended conservation measures see https://www.fws.gov/birds/bird-enthusiasts/threats-to-birds.php.

In addition to MBTA and BGEPA, Executive Order 13186: *Responsibilities of Federal Agencies to Protect Migratory Birds*, obligates all Federal agencies that engage in or authorize activities that might affect migratory birds, to minimize those effects and encourage conservation measures that will improve bird populations. Executive Order 13186 provides for the protection of both migratory birds and migratory bird habitat. For information regarding the implementation of Executive Order 13186, please visit https://www.fws.gov/birds/policies-and-regulations/executive-orders/e0-13186.php.

We appreciate your concern for threatened and endangered species. The Service encourages Federal agencies to include conservation of threatened and endangered species into their project planning to further the purposes of the Act. Please include the Consultation Code in the header of this letter with any request for consultation or correspondence about your project that you submit to our office.

Attachment(s):

Official Species List

OFFICIAL SPECIES LIST

This list is provided pursuant to Section 7 of the Endangered Species Act, and fulfills the requirement for Federal agencies to "request of the Secretary of the Interior information whether any species which is listed or proposed to be listed may be present in the area of a proposed action".

This species list is provided by:

Maine Ecological Services Field Office

P. O. Box A East Orland, ME 04431 (207) 469-7300

PROJECT SUMMARY

Project Code:2022-0079665Project Name:Mixed Residential DevelopmentProject Type:Residential ConstructionProject Description:Located between Lincoln & Bradley Street in Saco, Maine.Project Location:Value Construction

The approximate location of the project can be viewed in Google Maps: <u>https://www.google.com/maps/@43.5059624,-70.46287398273907,14z</u>

Counties: York County, Maine

ENDANGERED SPECIES ACT SPECIES

There is a total of 2 threatened, endangered, or candidate species on this species list.

Species on this list should be considered in an effects analysis for your project and could include species that exist in another geographic area. For example, certain fish may appear on the species list because a project could affect downstream species.

IPaC does not display listed species or critical habitats under the sole jurisdiction of NOAA Fisheries¹, as USFWS does not have the authority to speak on behalf of NOAA and the Department of Commerce.

See the "Critical habitats" section below for those critical habitats that lie wholly or partially within your project area under this office's jurisdiction. Please contact the designated FWS office if you have questions.

1. <u>NOAA Fisheries</u>, also known as the National Marine Fisheries Service (NMFS), is an office of the National Oceanic and Atmospheric Administration within the Department of Commerce.

MAMMALS

NAME	STATUS
Northern Long-eared Bat Myotis septentrionalis	Threatened
No critical habitat has been designated for this species.	
Species profile: <u>https://ecos.fws.gov/ecp/species/9045</u>	
INSECTS NAME	STATUS
Monarch Butterfly <i>Danaus plexippus</i>	Candidate
No critical habitat has been designated for this species.	
Species profile: <u>https://ecos.fws.gov/ecp/species/9743</u>	

CRITICAL HABITATS

THERE ARE NO CRITICAL HABITATS WITHIN YOUR PROJECT AREA UNDER THIS OFFICE'S JURISDICTION.

IPAC USER CONTACT INFORMATION

Agency:Gorrill PalmerName:Lauren LabbayAddress:300 Southborough Drive, Suite 200City:South PortlandState:MEZip:04106Emailllabbay@gorrillpalmer.com

Phone: 2077722515

LEAD AGENCY CONTACT INFORMATION

Lead Agency: U.S. Fish and Wildlife Service

ATTACHMENT 6

LETTER TO THE PASSAMAQUODDY TRIBE OF INDIANS AND THEIR RESPONSE

707 Sable Oaks Drive, Suite 30 South Portland, Maine 04106 207.772.2515

September 20, 2021

Mr. Donald Soctomah, THPO Passamaquoddy Tribe of Indians Pleasant Point & Indian Township Reservation PO Box 343 Perry, ME 04667

Subject: Mixed Residential Development 321 Lincoln St. Saco, Maine

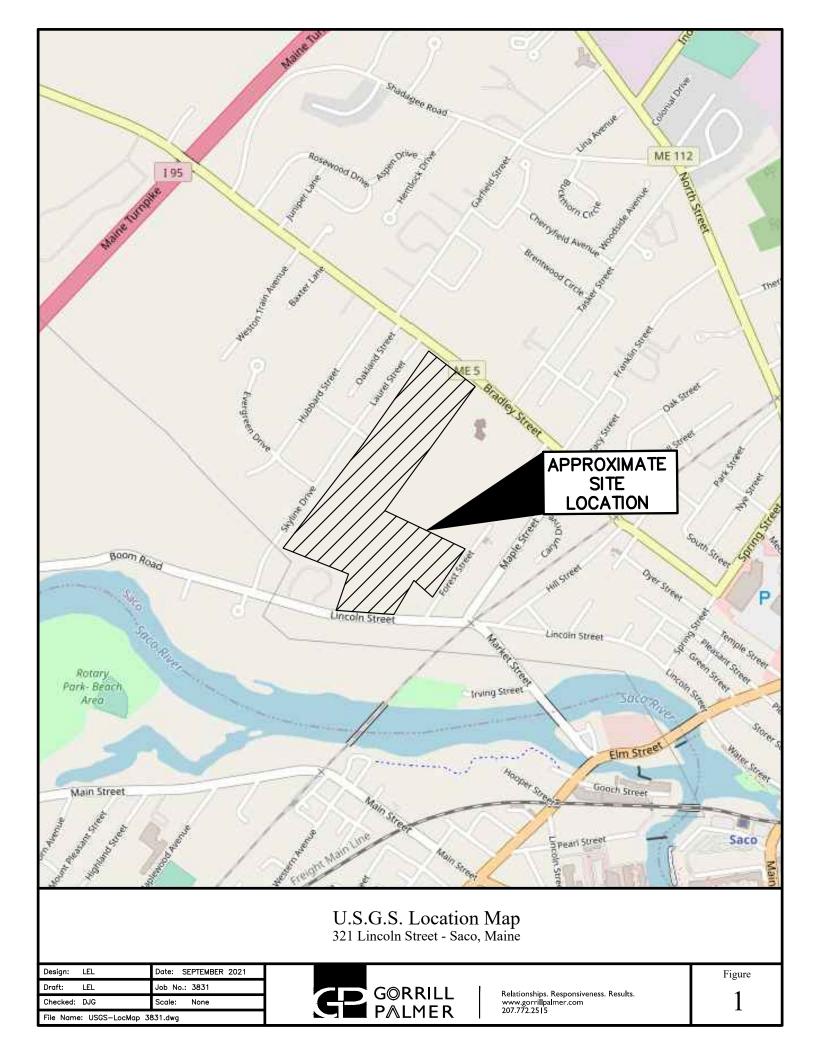
Dear Mr. Soctomah:

Gorrill Palmer has been retained to prepare plans and permit applications for a proposed mixed residential development in Saco, Maine. The project site is shown on the attached Location Map.

To aid in the design, and as part of the permit applications, Gorrill Palmer requests information from the Passamaquoddy Tribe of Indians relative to the presence of any nearby historic, archaeological, or tribal resources.

If you have any questions or require any further additional information, please contact our office.

Sincerely,


Gorrill Palmer

dawren Labery

Lauren Labbay Design Engineer 207-772-2515 x240 Ilabbay@gorrillpalmer.com

Enclosure

u:\3831_helios_mixed residential development - lincoln & bradley - saco\l environmental\resource letters\tribes\ltr_passamaquoddy_09.20.2021.docx

Tribal Historic Preservation Office Passamaquoddy Tribe PO Box 159 Princeton, Me. 04668 207-214-4051

September 20, 2021

Lauren Labbay | Design Engineer Gorrill Palmer 707 Sable Oaks Drive, Suite 30 | South Portland, ME 04106

Re: Saco – 321 Lincoln Street project

Dear Lauren;

The Passamaquoddy THPO has reviewed the following application regarding the historic properties and significant religious and cultural properties in accordance with NHPA, NEPA, AIRFA, NAGPRA, ARPA, Executive Order 13007 Indian Sacred Sites, Executive Order 13175 Consultation and Coordination with Indian Tribal Governments, and Executive Order 12898 Environmental Justice.

The Project listed above will not have any impact on cultural and historical concerns of the Passamaquoddy Tribe. If archeological material is uncovered, please contact this office.

Sincerely;

Donald Soctomah Soctomah@gmail.com THPO Passamaquoddy Tribe

ATTACHMENT 6

LETTER TO THE HOULTON BAND OF MALISEET INDIANS AND THEIR RESPONSE

707 Sable Oaks Drive, Suite 30 South Portland, Maine 04106 207.772.2515

September 20, 2021

Environmental Planner Houlton Band of Maliseet Indians 88 Bell Road Littleton, ME 04730

Subject: Mixed Residential Development 321 Lincoln St. Saco, Maine

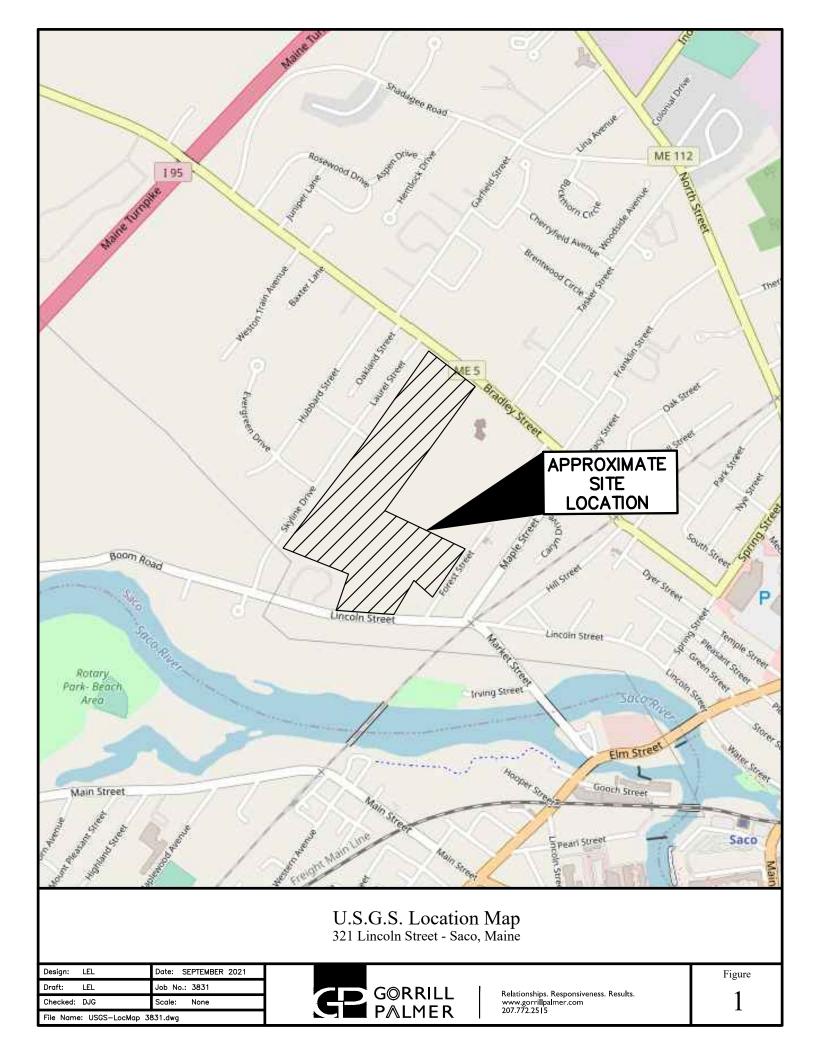
To Environmental Planner:

Gorrill Palmer has been retained to prepare plans and permit applications for a proposed mixed residential development in Saco, Maine. The project site is shown on the attached Location Map.

To aid in the design, and as part of the permit applications, Gorrill Palmer requests information from the Houlton Band of Maliseet Indians relative to the presence of any nearby historic, archaeological, or tribal resources.

If you have any questions or require any further additional information, please contact our office.

Sincerely,


Gorrill Palmer

Sauren Labery

Lauren Labbay Design Engineer 207-772-2515 x240 Ilabbay@gorrillpalmer.com

Enclosure

u:\3831_helios_mixed residential development - lincoln & bradley - saco\I environmental\resource letters\tribes\Itr_maliseet_09.20.2021.docx

From:	Lauren Labbay
To:	Drew Gagnon
Subject:	FW: 321 Lincoln Street, Saco - Mixed Residential Development
Date:	Thursday, October 7, 2021 1:24:00 PM
Attachments:	image002.png image001.png

Response from Houlton Band of Maliseet Indians below

Lauren Labbay | Design Engineer

TOT Sable Oaks Drive, Suite 30 | South Portland, ME 04106 207.772.2515 x240 (office) | (207) 837-1324 (mobile) www.gorrillpalmer.com

From: Isaac St. John <istjohn@maliseets.com>
Sent: Thursday, October 7, 2021 1:09 PM
To: Lauren Labbay <llabbay@gorrillpalmer.com>
Subject: RE: 321 Lincoln Street, Saco - Mixed Residential Development

Good afternoon,

We do not have an immediate concern with your project or project site, and do not currently have the resources to fully investigate same. Should any human remains, archaeological properties or other items of historical importance be unearthed while working on this project, we recommend that you stop your project and report your findings to the appropriate authorities including the Houlton Band of Maliseet Indians.

Thank you,

Isaac St. John Tribal Historic Preservation Officer Houlton Band of Maliseet Indians 88 Bell Road Littleton, ME 04730

From: Lauren Labbay [mailto:llabbay@gorrillpalmer.com]
Sent: Monday, September 20, 2021 9:33 AM
To: Isaac St. John <<u>istjohn@maliseets.com</u>>
Cc: Drew Gagnon <<u>dgagnon@gorrillpalmer.com</u>>
Subject: 321 Lincoln Street, Saco - Mixed Residential Development

Good Morning,

Please see the attached file for our request for review. Our project is at Lincoln Street in Saco, ME.

Feel free to reach out with any questions.

Thank you,

Lauren Labbay | Design Engineer

707 Sable Oaks Drive, Suite 30 | South Portland, ME 04106 207.772.2515 x240 (office) | (207) 837-1324 (mobile) www.gorrillpalmer.com

ATTACHMENT 6

LETTER TO THE PENOBSCOT NATION AND THEIR RESPONSE

707 Sable Oaks Drive, Suite 30 South Portland, Maine 04106 207.772.2515

September 20, 2021

Mr. Christopher Sockalexis, THPO Cultural & Historic Preservation Department Penobscot Nation 12 Wabanaki Way Indian Island, ME 04468

Subject: Mixed Residential Development 321 Lincoln St. Saco, Maine

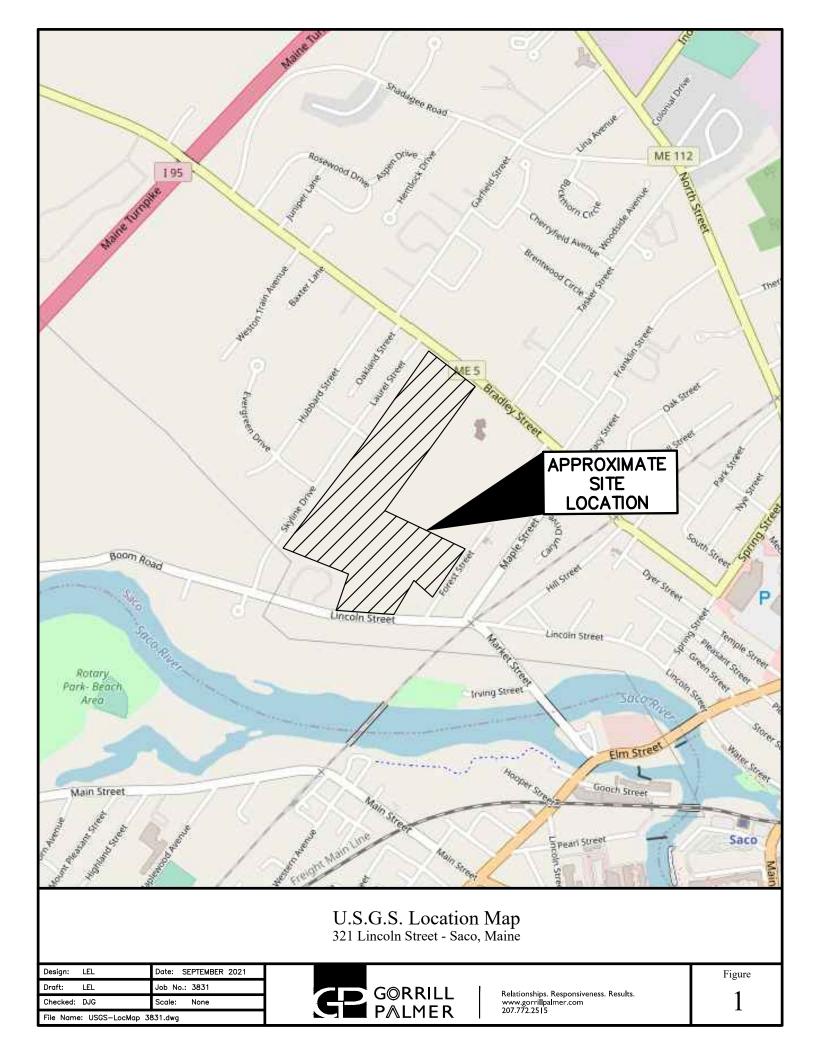
Dear Mr. Sockalexis:

Gorrill Palmer has been retained to prepare plans and permit applications for a proposed mixed residential development in Saco, Maine. The project site is shown on the attached Location Map.

Please confirm by return correspondence that there are no areas of the site with historical or archaeological significance of interest to the tribe as defined by the Natural Preservation Act of 1966.

If you have any questions or require any further additional information, please contact our office.

Sincerely,


Gorrill Palmer

Sauren Labery

Lauren Labbay Design Engineer 207-772-2515 x240 Ilabbay@gorrillpalmer.com

Enclosure

u:\3831_helios_mixed residential development - lincoln & bradley - saco\l environmental\resource letters\tribes\ltr_penobscot_09.20.2021.docx

PENOBSCOT NATION CULTURAL & HISTORIC PRESERVATION 12 WABANAKI WAY, INDIAN ISLAND, ME 04468

CHRIS SOCKALEXIS – TRIBAL HISTORIC PRESERVATION OFFICER E-MAIL: <u>chris.sockalexis@penobscotnation.org</u>

NAME	Lauren Labbay
ADDRESS	Gorrill Palmer 707 Sable Oaks Drive, Suite 30 South Portland, ME 04106
OWNER'S NAME	Land Owner - 321 Lincoln St.
TELEPHONE	(207) 772-2515
EMAIL	llabbay@gorrillpalmer.com
PROJECT NAME	Mixed Residential Development
PROJECT SITE	Saco, ME
DATE OF REQUEST	September 20, 2021
DATE REVIEWED	December 16, 2021

Thank you for the opportunity to comment on the above referenced project. This project appears to have no impact on a structure or site of historic, architectural or archaeological significance to the Penobscot Nation as defined by the National Historic Preservation Act of 1966, as amended.

If there is an inadvertent discovery of Native American cultural materials during the course of the project, please contact my office at (207) 817-7471. Thank you for consulting with the Penobscot Nation Tribal Historic Preservation Office with this project.

Chris Sockalexis, THPO Penobscot Nation

ATTACHMENT 6

LETTER TO THE MI'KMAQ NATION AND THEIR RESPONSE

707 Sable Oaks Drive, Suite 30 South Portland, Maine 04106 207.772.2515

September 28, 2021

Kendyl Reis, THPO Mi'kmaq Nation 7 Northern Road Presque Isle, ME 04769

Subject: Mixed Residential Development 321 Lincoln St. Saco, Maine

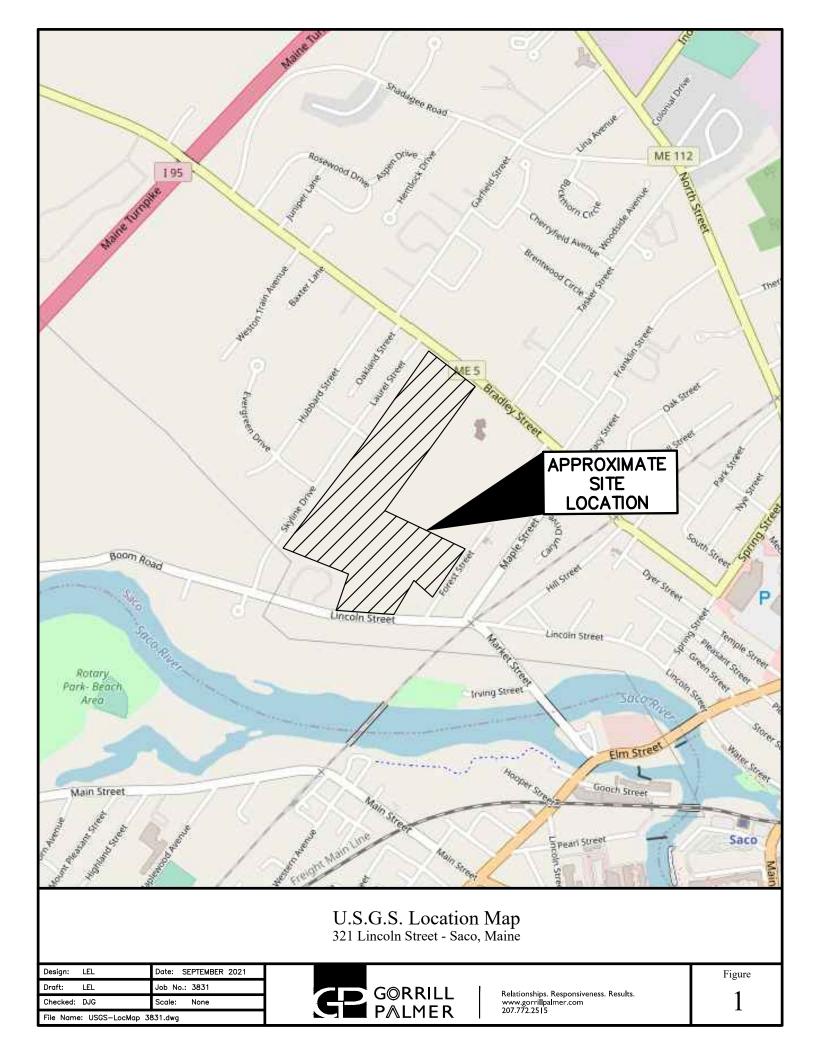
Dear Kendyl:

Gorrill Palmer has been retained to prepare plans and permit applications for a proposed mixed residential development in Saco, Maine. The project site is shown on the attached Location Map.

To aid in the design, and as part of the permit applications, Gorrill Palmer requests information from the Mi'kmaq Nation relative to the presence of any nearby historic, archaeological, or tribal resources.

If you have any questions or require any further additional information, please contact our office.

Sincerely,


Gorrill Palmer

Sauren Labery

Lauren Labbay Design Engineer 207-772-2515 x240 Ilabbay@gorrillpalmer.com

Enclosure

\\gpstorage-srv\job_numbers\3831_helios_mixed residential development - lincoln & bradley - saco\l environmental\resource letters\tribes\mi'kmaq nation\mi'kmaq nation_09.28.2021.docx

Tribal Historic Preservation Office

Mi'kmaq Nation (Formerly known as the Aroostook Band of Micmac) Kendyl Reis Tribal Historic Preservation Officer 7 Northern Road Presque Isle, ME 04769 Phone: (207)764-1972 ext. 161 Fax: (207)764-7667 Email: kreis@micmac-nsn.gov

Mixed Residential Development Project Saco, Maine September 30, 2021

Thank you for the opportunity to review the above-referenced project for compliance with National Environmental Policy Act (NEPA) and National Historic Preservation Act (NHPA) requirements.

Based on the project description, we do not have knowledge of any specific sites or cultural features that exist at the proposed project location. However, this geographic area does constitute traditional areas that were historically utilized by members of the Mi'kmaq Nation and the other Wabanaki Tribes. Therefore, we respectfully request that if during the course of excavation/construction activities, human remains, artifacts, or any other evidence of Native American presence is discovered, that site activities in the vicinity of the discovery immediately cease, pending notification to us.

In addition, if this project results in wetland disturbances requiring mitigation, we are requesting that you utilize the black ash (<u>Fraginus nigra</u>) as the principal wetland species for wetland restoration activities. The black ash tree has special significance in the culture of the northeastern Tribes and is used extensively for weaving baskets and other Native American crafts. The black ash tree also provides valuable food and habitat for migratory waterfowl and other wildlife. Unfortunately, however, this species has been selected against by foresters and landowners who favor other tree species. As a result of this, and other environmental factors, the black ash tree is in serious decline in Maine. The Mi'kmaq Nation has completed several black ash wetland restoration projects and have a dependable source for highly-quality seedlings, and the experience and expertise to assist you with black ash wetland restoration projects.

On the subject of human remains, artifacts, or any other evidence of Native American presence is discovered. The human remains will be reburied with the appropriate respect for the remains that is required at a distinctive and respectable site. The artifacts and other evidence of Native American discovery will be documented with appropriate detail. The items will be analyzed for the precise period of the items' distinctive period and will be documented by the Tribal Historic Preservation Officer for the Mi'kmaq Nation.

If you have any questions or comments, please feel free to contact me.

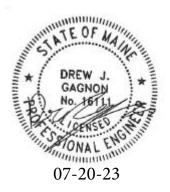
Sincerely,

Kendyl Reis Tribal Historic Preservation Officer

ATTACHMENT 7

STORMWATER MANAGEMENT REPORT

STORMWATER MANAGEMENT REPORT


LINCOLN VILLAGE SACO, MAINE

Prepared for 321 Lincoln Street Development, LLC

Saco, ME 04072

Prepared by

Gorrill Palmer 707 Sable Oaks Drive – Suite 30 South Portland, Maine 04106 207.772.2515

AUGUST 2022 REVISED JULY 2023

STORMWATER MANAGEMENT REPORT

TABLE OF CONTENTS

SECTION	DESCRIPTION	PAGE
12.1	Overview	1
12.2	Development Description	1
12.3	Surface Water	2
12.4	General Topography	2
12.5	Flooding	2
12.6	Natural Drainage Ways	2
12.7	Alterations to Land Cover	2
12.8	Stormwater Management Control	2
12.9	Approach and Analysis for Water Quality	
12.10	Stormwater Quantity	
12.11	Construction BMPs	
12.12	Maintenance of Facilities, Recertification and Housekeeping	
12.13	Conclusion	
12.14	Attachments	

Figure

- 1 USGS Project Location Map
- 2 Soil Maps

Attachments

- A Watershed Maps (Pre, Post, Water Quality)
- B TR-20 Calculations
- C Pipe Capacity Calculations
- D Orifice Calculations
- E FocalPoint Manufacturer Approval Letter
- F Bradley Street Runoff Calculations
- G Sediment Forebay Storage Calculations

MaineDEP SLDA Section 12

STORMWATER MANAGEMENT REPORT LINCOLN VILLAGE

12.1 <u>Overview</u>

Located between Lincoln and Bradley Street in Saco, ME, the proposed development is approximately $56.7 \pm acres$ in size and planned to home a new residential community. This project will include a variety of housing options, recreation-oriented land use, and natural areas. Proposed residential uses include single family homes, duplexes, and condominium/apartment units. Recreation land uses include parks, trails and an outdoor basketball court. Due to the size and scope of the project, it is anticipated that the project will be constructed in multiple phases. Natural resource conservation and environmental protection are primary design elements with a focus on conservation of large, contiguous natural areas, wildlife habitats, riparian corridors, buffers, and natural resource connectivity with the surrounding landscape.

Under the Site Location of Development Law (SLODA) (38 M.R.S.A §481-490) instituted by the Maine Department of Environmental Protection, a project creating more than 3 acres of impervious area or 20 acres of more of developed area, will require a Site Law permit from the Department. The City of Saco has been delegated the authority to review developments needing approval under Title 38 M.R.S.A. §§ 420 and 481 through 500 by the Maine Department of Environmental Protection. The new developed and impervious area proposed in this development will be reviewed by the City to ensure compliance with the requirements established by the statutes. The review would also ensure compliance with stormwater and erosion control management required under the City of Saco's Code of Ordinances.

As the proposed development will disturb greater than one acre of area and will result in more than 3 acres of new non-vegetated surface, the proposed development is required to meet the Basic Standard, General Standard, and Flooding Standard of the Stormwater Rules (Chapter 500). Portions of the site will include linear development and is required to meet with water quality standards set forth in Section 4.C.5(c) of Chapter 500. The remaining development is required to meet the water quality standards set forth in Section 4.C.2(a) of Chapter 500.

12.2 <u>Development Description</u>

Gorrill Palmer has been retained by 321 Lincoln Street Development, LLC to prepare a Stormwater Management Report for a proposed residential community development on a 56.7 \pm acre parcel. The project includes a variety of housing options, recreation-oriented land uses, and natural areas. Areas determined suitable for development have been determined by avoiding large impacts to sensitive natural areas. The proposed development is in Saco, ME with access from the adjacent streets of Lincoln and Bradley (Route 5).

This development will create approximately 16.4 acres of new non-vegetated surface. The overall developed area is approximately 27.8 acres. The development of trails, sidewalks and access roads will provide interconnectivity within community.

The proposed development is located within the Saco River watershed. There are no streams listed on the 2020 Impaired Stream Priority List that encroach the property.

The above practices are described in depth under Section 12.9 Approach and Analysis for Water Quality.

As the proposed development will disturb greater than one acre of area and will result in more than 3 acres of new non-vegetated surface, the proposed development is required to meet the Basic Standard, General Standard, and Flooding Standard of the Stormwater Rules (Chapter 500). Portions of the site include linear development and is required to meet with water quality standards set forth in Section 4.C.5(c) of Chapter 500.

The MaineDEP Basic Standard will be met as presented in the Erosion and Sedimentation Control report for this project.

Under the General Standard, the project is required to meet the BMP standards identified in Chapter 500 and described in Volume III of the Stormwater BMP manual. The design of this development will include the use of two constructed gravel wetlands, nine grassed underdrain soil filters, four focal points with associated subsurface chambers and roof line drip edge systems.

12.3 Surface Water

The surface hydrology for the site is part of the Saco River Watershed. A series of delineated streams and natural swales convey surface flow to the Saco River. Appropriate buffers and setbacks are provided from the natural resource. There are no mapped significant groundwater aquifers present in this planned development.

12.4 General Topography

The topography and terrain for the planned development area varies in elevation from approximately 95 to 115 feet. For drainage purposes, the southern portion of the property drains to a series of streams and swales that drain south near Lincoln Street. The northern portion of the property generally drains to the central/eastern portion of the site to a tributary stream that conveys flow offsite and subsequently the Saco River. Most of the site contains slopes ranging from approximately 0.5% to 5%, and minimal area with steeper 30% slopes associated with the stream banks and existing quarry.

12.5 Flooding

The site is not located within a mapped FEMA 100-year floodplain.

12.6 Natural Drainage Ways

The project as currently proposed does not include alteration of any natural drainage ways.

12.7 Alterations to Land Cover

Changes in land cover will include the conversion of wooded area to new access roads, parking areas, residential buildings, recreational areas, stormwater facilities, and greenspace.

12.8 Stormwater Management Control

Based on the Stormwater Management Rules, Chapter 500, the proposed development is required to meet the Basic Standard, General Standard, and Flooding Standard, as the development results in greater than three acres of non-vegetated area. The project is not required to meet the urban impaired stream standard.

The Basic Standard is presented in the Erosion Control Report in MaineDEP SLDA Section 14 (Attachment 10 in this submission). The General Standard and Flooding Standard are presented as follows.

The development will be required to meet the MDEP's water quality and quantity standards. To meet the water quality standard, the project will utilize two constructed gravel wetlands, nine grassed underdrain soil filters, four focal points with associated chamber systems and roofline drip edge filters. The facilities will be utilized to control the post development runoff for the larger 2, 10, 25-year storm events where applicable. Due to City of Saco standards, the facilities will also be used to control the post development runoff for the 50-year storm event.

The Maine Department of Environmental Protection rules and regulations regarding stormwater concentrate on four stormwater management objectives:

- Effective Pollutant Removal
- Cooling
- Channel Protection
- Flood Control

These objectives may be met either directly by providing BMP's that manage and treat the runoff after it has been created, or indirectly by incorporating low impact development site planning concepts to minimize production and contamination of runoff by maximizing infiltration and evapotranspiration.

12.9 Approach and Analysis for Water Quality

The following narrative discusses the Basic Standard and General Standard of the MaineDEP Stormwater Law. The proposed development will be required to meet the Basic Standard, BMP Standard under the General Standard, and Flooding Standard for a MaineDEP Site Law. Based upon review of the five recommended and approved methods for mitigating the increased frequency and duration of channel erosive flows, as required by the BMP Standards, the applicant is proposing to construct two new gravel wetlands, nine grassed underdrain soil filters, four focal points with associated subsurface chambers and roofline drip edge filters. The applicant is also proposing to use the linear exception for the treatment of proposed access ways.

The proposed main access road through the project site connecting Lincoln and Bradley Street is considered linear development. The proposed treatment will treat no less than 75% of the linear portion's impervious area, and no less than 50% of the linear portion's developed area in accordance with the MaineDEP Chapter 500 Section 4.C.5(c). Water quality calculations for this portion of the site are presented in Section 12.9.1.

For the proposed single-family lots, an anticipated building footprint is shown for impervious and developed area purposes. These lots are located on the north end of the property (Bradley Street side) and portions will be treated by the four focal point systems. Remaining areas of the single-family development windows will be untreated. Table 2 and 3 below provide impervious and developed area calculations The proposed non-linear treatment will treat no less than 95% of the impervious area and no less than 80% of the developed area of these lots in accordance with the MaineDEP Chapter 500 Section 4.C.2(a). Water quality calculations for this portion of the site are presented in Section 12.9.2.

Water Quality assumptions for the non-linear development are presented in Section 12.9.5.

A trail system is proposed throughout the perimeter of the property. Minor tree and shrub clearing is expected to construct the proposed trail system. The trail is assumed at a 4-foot width. It is anticipated to be composed of the existing ground in the trail path. The trail will be maintained in the future, which will include the placement of common borrow material if necessary. For the purpose of stormwater quality, the construction of 4,100 linear feet of trail (16,400 sf) is considered developed area and will be included in the total developable area as untreated.

New Developed Linear Required Treatment

For this project, Linear Area is considered access ways, sidewalks, and on-street parking associated with the main access road connecting Lincoln and Bradley Street. These areas are outlined on the Water Quality Map, WQ, in Attachment A of this report. The Site Law allows linear portions of a project to be treated at a lower threshold than new construction. Table I below presents the required treatment for the linear area.

Table I – Proposed Linear Development Treatment Summary			
TypeTotal Area (sf)TreatmentArea requireTypeTotal Area (sf)Thresholdbe treated (st)			
Impervious	85,548	75%	64,161
Developed	89,114	50%	44,557

12.9.1 New Developed Non-Linear Required Treatment

In respect to the non-linear areas proposed in the project development, there will be no less than 95% of the impervious threshold area and no less than 80% of the developed threshold area treated in accordance with the MDEP Chapter 500 Section 4.C.2(a). Table 2 below outlines the required treatments for this area.

Table 2 – Proposed Non-Linear Development Treatment Summary				
TypeTotal Area (sf)Treatment ThresholdArea require to be treated (sf)				
Impervious	625,485	95%	594,211	
Developed	1,121,945	80%	897,556	

12.9.2 Total Site Required Treatment

Table 3 below summarizes Tables 1-2 and presents the total required treatment for the proposed project site.

Table 3 – Total Required Site Treatment Summary			
LinearNon-LinearTypeDevelopmentDevelopment(sf)(sf)		Total (sf)	
Impervious	64,161	594,211	658,372
Developed	44,557	897,556	942,113

12.9.3 Stormwater Quality Treatment

Attachment A contains the Water Quality maps for this project. Two constructed gravel wetlands, nine grassed underdrain soil filters, four focal points with associated subsurface chambers and roofline drip edge filters are proposed for stormwater quality treatment.

For the 12 single family development areas, each developable window has established impervious and developed area numbers based on anticipated house layouts and programming. Table 4 below shows individual single family developable window treatments and the proposed tributary stormwater facility.

Table 4 – Single Family Developable Area				
Developable Window	Runoff Designation	Developable Area (sf)	Impervious Area (sf)	Pond Assignment
	Treated	1412	1160	Drip Edges
I	Untreated	4473	1464	N/A
2	Treated	1412	1160	Drip Edges
2	Untreated	4800	1478	N/A
3	Treated	1412	1160	Drip Edges
5	Untreated	3769	1178	N/A
4	Treated	1412	1160	Drip Edges
4	Untreated	4362	1452	N/A
5	Treated	1412	1160	Drip Edges
S	Untreated	4866	1454	N/A
6	Treated	1412	1160	Drip Edges
0	Untreated	4702	1452	N/A
7	Treated	1412	1160	Drip Edges
/	Untreated	4053	1354	N/A
0	Treated	1394	1160	Drip Edges
8	Untreated	2757	872	N/A
9	Treated	7640	6308	Focal Point 3
10	Treated	6904	5327	Focal Point 3
	Treated	5478	4383	Focal Point I
12	Treated	5523	4418	Focal Point I
TOTALS	Treated	36,823	29,716	Drip Edge/Focalpoints
	Untreated	33,809	10,704	N/A

Gravel Wetland

Consistent with the Maine Stormwater Best Practices Manual, specifically Volume III, BMP Technical Design Manual Chapter 7.4, Gravel Wetlands, the system has two separate pairs of horizontal flow-through treatment cells and forebays in series. The stormwater runoff passes through a saturated gravel substrate that acts as a natural microbial habitat capable of denitrification. The treatment cells contain 8" of wetland soils, 6" of pea gravels, and 24" of crushed stone. A permanent pool of water is maintained below the wetland soil layer at all times, with saturation being achieved up to 4" below the pond bottom through capillary action.

The channel protection volume will be stored up to 18" above the wetland surface and will be released through a perforated underdrain pipe at the bottom of the crushed stone layer A hole drilled in the cap of the underdrain will regulate the channel protection volume outflow to allow for a 24-48 hour release time. The holes shall be 2.4 inches and 2.2 inches for Gravel Wetland I and 2, respectively. The channel protection volume is based upon 1.0 inch times the subcatchment's impervious area and 0.4 inch times the subcatchment's developed landscaped area. The sediment forebays are sized based on the annual cubic feet of collected sediment which equates to 10 storms per year each depositing 500 lbs/acre-storm over the sanded area of the tributary watershed. The sediment forebays and upstream stormdrain network have the capacity to store 10% of the channel protection volume. An impermeable liner is proposed for Gravel Wetland I only, since the seasonal high groundwater elevation is estimated below the proposed permanent pool elevation. Gravel Wetland 2 is located in HSG D soils with the estimated seasonal high groundwater table above the permanent pool elevation of the facility.

The Water Quality Maps are included in Attachment A. The stage/storage tables for the ponds are included in Attachment B. Calculations for sediment forebay storage can be found in Attachment G. Tables 5 and 6 below present water quality information for Gravel Wetland I and 2, respectively.

Table 5			
Proposed Gravel Wetland I			
	Required	Provided	
Impervious Area			
Linear Development	-	8,670 sf	
Non-Linear Development	-	183,298 sf	
Total	-	191,968 sf	
Landscaped Area (non-impervious)			
Linear Development	-	-	
Non-Linear Development	-	126,102 sf	
Total	-	126,102 sf	
Developed Area			
Linear Development	-	8,670 sf	
Non-Linear Development	-	309,400 sf	
Total	-	318,070 sf	
Channel Protection Volume (cf)	20,201	20,368	
Elevation at Channel Protection Volume (ft)	-	99.41	
Wetland Surface Elevation (ft)	-	97.93	
Wetland Surface Area (5% imp area + 2% landscaped	12,120	12,121	
area) (sf)			
Sediment Forebay Volume (cf)	2,024	2,811	
Pond Outflow (cfs)	-	0.148	
Release Time (Hours)	24-48	38	

Table 6			
Proposed Gravel Wetland 2			
	Required	Provided	
Impervious Area			
Linear Development	-	23,466 sf	
Non-Linear Development	-	83,387 sf	
Total	-	106,853 sf	
Landscaped Area (non-impervious)			
Linear Development	-	0	
Non-Linear Development	-	60,241 sf	
Total	-	60,241 sf	
Developed Area			
Linear Development	-	23,466 sf	
Non-Linear Development	-	143,628 sf	
Total	-	167,094 sf	
Channel Protection Volume (cf)	10,912	10,971	
Elevation at Channel Protection Volume (ft)	-	99.67	
Wetland Surface Elevation (ft)	-	98.31	
Wetland Surface Area (5% imp area + 2% landscaped			
area) (sf)	6,547	6,646	
Sediment Forebay Volume (cf)	1,101	1,561	
Pond Outflow (cfs)	-	0.123	
Release Time (Hours)	24-48	25	

The storage tables and sizing calculations are included in Attachment B.

Grassed Underdrained Soil Filters

Grassed Underdrained Soil Filters are defined in Volume III, Section 7.1 of the Stormwater Best Management Practices Manual published by the Maine Department of Environmental Protection. The development will be required to provide the treatment volume for 1.0 inch times the subcatchment's impervious area plus 0.4 inch times the subcatchment's landscaped developed area. The surface area of the filters is required to be no less than the sum of 5% of the impervious area and 2% of the landscaped area draining to each filter. The filter surface area of proposed GUSF I & 9 are 3,110 and 3,783 square feet respectfully. The pond bottoms are greater than the recommended 3,000 sf limit as specified in Section 7 of the BMP Manual. Gorrill Palmer is of the opinion that constructing an additional pond adjacent to the proposed pond, in order to reduce the pond surface area to 3,000 square feet or less each, would not achieve the goal of reducing the construction complexity, reducing maintenance difficulties or disturb less area adjacent to sensitive environmental areas. The difference in the construction and maintenance effort between a 3,000 square foot pond and a 3,110 or 3,783 square foot pond is negligible. Given the construction techniques of the anticipated contracting companies, building a slightly larger and flat pond bottom is feasible.

The sediment forebay is sized based on the annual cubic feet of collected sediment which equates to 10 storms per year each depositing 500 lbs/acre-storm over the sanded area of the tributary watershed. The channel protection volume can pond up to 18" deep within each soil filter. Runoff from storms producing the water quality volume will be conveyed from the pond through the soil media and underdrain system. A valve will be placed on the soil filter's underdrains to regulate the outflow through the soil media. The valve will be field adjusted to maintain the outflow time between 24 and 48 hours.

Yearly maintenance of the soil filters will include the monitoring the outflow after a rainfall event to ensure the outflow time is within the required parameters. There are two options for the construction of the filter media. The first shall be a soil mixture combing sand, sandy loam, and either fine shredded bark or wood fiber mulch. The resulting mixture should contain 8-12% passing the No. 200 sieve and a clay content of less than 2%. The second option will be a layered system consisting of 12" of loamy coarse sand and 6" of loamy topsoil with a transition layer of 2" of the topsoil rototilled into to the sand layer.

Runoff from larger storms will be conveyed from the filters through an overflow pipe to an orifice with its invert set at the channel protection elevation. Overflow spillways have been designed to independently convey the 100-year storm. See Attachment B.

Tables 7 through 15 below present water quality information for the grassed underdrain soil filters associated with the proposed development.

Table 7			
Proposed Grassed Underdrain Soil Filter I			
	Required	Provided	
Impervious Area	-	-	
Linear Development	-	0	
Non-Linear Development	-	49,677 sf	
Total	-	49,677 sf	
Landscaped Area (non-impervious)	-	-	
Linear Development	-	0	
Non-Linear Development	-	24,256 sf	
Total	-	24,256 sf	
Developed Area	-	-	
Linear Development	-	-	
Non-Linear Development	-	73,933 sf	
Total	-	73,933 sf	
Treatment Volume (cf)	4,948	4,977	
Filter Surface Area 5% Imp. Area + 2% Landscaped Area (sf)	2,969	3,110	
Sediment Forebay Volume (cf)	32	228	
Pond Base Elevation (ft)	-	100.6	
WQV Elevation (ft)	-	101.94	
Pond Outflow (cfs)	-	0.058	
Release Time (Hours)	24-48	24	

Table 8				
Proposed Grassed Underdrain Soil Filter 2				
	Required	Provided		
Impervious Area				
Linear Development	-	0		
Non-Linear Development	-	38,830 sf		
Total	-	38,830 sf		
Landscaped Area (non-impervious)				
Linear Development	-	0		
Non-Linear Development	-	43,715 sf		
Total	-	43,715 sf		
Developed Area				
Linear Development	-	0		
Non-Linear Development	-	82,545 sf		
Total	-	82,545 sf		
Treatment Volume (cf)	4,693	4,696		
Filter Surface Area 5% Imp. Area + 2% Landscaped Area (sf)	2,816	2,848		
Sediment Forebay Volume (cf)	20	262		
Pond Base Elevation (ft)	-	101.50		
WQV Elevation (ft)	-	102.88		
Pond Outflow (cfs)	-	0.054		
Release Time (Hours)	24-48	24		

Table 9 Proposed Grassed Underdrain Soil Filter 3		
Impervious Area		
Linear Development	-	7,984 sf
Non-Linear Development	-	24,260 sf
Total	-	32,243 sf
Landscaped Area (non-impervious)		
Linear Development	-	I,508 sf
Non-Linear Development	-	11,086 sf
Total	-	12,594 sf
Developed Area		
Linear Development	-	9,492 sf
Non-Linear Development	-	35,345 sf
Total	-	44,837 sf
Treatment Volume (cf)	3,107	3,107
Filter Surface Area 5% Imp. Area + 2% Landscaped Area (sf)	I,864	2,466
Sediment Forebay Volume (cf)	24	331
Pond Base Elevation (ft)	-	100.4
WQV Elevation (ft)	-	101.54
Pond Outflow (cfs)	-	0.036
Release Time (Hours)	24-48	24

Table 10		
Proposed Grassed Underdrain Soil Filter 4		
	Required	Provided
Impervious Area		
Linear Development	-	6,609 sf
Non-Linear Development	-	22,910 sf
Total	-	29,518 sf
Landscaped Area (non-impervious)		
Linear Development	-	92 sf
Non-Linear Development	-	14,625 sf
Total	-	14,717 sf
Developed Area		
Linear Development	-	6,700 sf
Non-Linear Development	-	37,535 sf
Total	-	44,235 sf
Treatment Volume (cf)	2,950	2,957
Filter Surface Area 5% Imp. Area + 2% Landscaped Area (sf)	1,770	1,869
Sediment Forebay Volume (cf)	21	240
Pond Base Elevation (ft)	-	99.90
WQV Elevation (ft)	-	101.22
Pond Outflow (cfs)	-	0.034
Release Time (Hours)	24-48	24

Table I I		
Proposed Grassed Underdrain Soil Filter 5		
	Required	Provided
Impervious Area		
Linear Development	-	0
Non-Linear Development	-	26,921 sf
Total	-	26,921 sf
Landscaped Area (non-impervious)		
Linear Development	-	0
Non-Linear Development	-	12,699 sf
Total	-	12,699 sf
Developed Area		
Linear Development	-	-
Non-Linear Development	-	39,620 sf
Total	-	39,620 sf
Treatment Volume (cf)	2,667	2,670
Filter Surface Area 5% Imp. Area + 2% Landscaped Area (sf)	I,600	1,763
Sediment Forebay Volume (cf)	15	246
Pond Base Elevation (ft)	-	101.43
WQV Elevation (ft)	-	102.6
Pond Outflow (cfs)	-	0.031
Release Time (Hours)	24-48	24

Table 12		
Proposed Grassed Underdrain Soil Filter 6		
	Required	Provided
Impervious Area		
Linear Development	-	0
Non-Linear Development	-	18,778 sf
Total	-	18,778 sf
Landscaped Area (non-impervious)		
Linear Development	-	0
Non-Linear Development	-	60,858 sf
Total	-	60,858 sf
Developed Area		
Linear Development	-	0
Non-Linear Development	-	79,636 sf
Total	-	79,636 sf
Treatment Volume (cf)	3,593	3,610
Filter Surface Area 5% Imp. Area + 2% Landscaped Area (sf)	2,156	2,296
Sediment Forebay Volume (cf)	13	258
Pond Base Elevation (ft)	-	99.2
WQV Elevation (ft)	-	100.42
Pond Outflow (cfs)	-	0.042
Release Time (Hours)	24-48	24

Table 13			
Proposed Grassed Underdrain Soil Filter 7			
	Required	Provided	
Impervious Area			
Linear Development	-	0	
Non-Linear Development	-	23,580 sf	
Total	-	23,580 sf	
Landscaped Area (non-impervious)			
Linear Development	-	0	
Non-Linear Development	-	13,385 sf	
Total	-	13,385 sf	
Developed Area			
Linear Development	-	-	
Non-Linear Development	-	36,965 sf	
Total	-	36,965 sf	
Treatment Volume (cf)	2,411	2,436	
Filter Surface Area 5% Imp. Area + 2% Landscaped Area (sf)	I,447	1,728	
Sediment Forebay Volume (cf)	13	339	
Pond Base Elevation (ft)	-	99.2	
WQV Elevation (ft)	-	100.28	
Pond Outflow (cfs)	-	0.028	
Release Time (Hours)	24-48	24	

Table 14		
Proposed Grassed Underdrain Soil Filter 8		
	Required	Provided
Impervious Area	-	-
Linear Development	-	0
Non-Linear Development	-	36,998 sf
Total	-	36,998 sf
Landscaped Area (non-impervious)	-	-
Linear Development	-	0
Non-Linear Development	-	23,889 sf
Total	-	23,889 sf
Developed Area	-	-
Linear Development	-	0
Non-Linear Development	-	60,887 sf
Total	-	60,887 sf
Treatment Volume (cf)	3,879	3,911
Filter Surface Area 5% Imp. Area + 2% Landscaped Area (sf)	2,328	2,918
Sediment Forebay Volume (cf)	24	282
Pond Base Elevation (ft)	-	100.36
WQV Elevation (ft)	-	101.57
Pond Outflow (cfs)	-	0.045
Release Time (Hours)	24-48	24

Table 15		
Proposed Grassed Underdrain Soil Filter 9		
	Required	Provided
Impervious Area	-	-
Linear Development	-	0
Non-Linear Development	-	64,781 sf
Total	-	64,781 sf
Landscaped Area (non-impervious)	-	-
Linear Development	-	0
Non-Linear Development	-	27,034 sf
Total	-	27,034 sf
Developed Area	-	-
Linear Development	-	-
Non-Linear Development	-	91,815 sf
Total	-	91,815 sf
Treatment Volume (cf)	6,300	6,316
Filter Surface Area 5% Imp. Area + 2% Landscaped Area (sf)	3,780	3,783
Sediment Forebay Volume (cf)	41	415
Pond Base Elevation (ft)	-	96.66
WQV Elevation (ft)	-	98.07
Pond Outflow (cfs)	-	0.073
Release Time (Hours)	24-48	24

FocalPoints

FocalPoint's are defined in Volume III Appendix B (Proprietary Systems). Proprietary systems are defined as a system or practice designed for stormwater runoff treatment from a development that has to meet all the stormwater requirements of Maine's Stormwater Law, and the Chapter 500 Stormwater Management Rule to be considered equivalent to any of the suggested structures found in the BMP Manual. A proprietary system must be live-tested for a variety of storm lengths and intensities. The system must remove at least 60% total phosphorus, with at least similar removals metals (zinc and copper), and hydrocarbons; it must provide temperature reduction and channel protection storage detention either independently or in combination with another measure; and it must also be maintainable.

Filtration systems that store and treat a volume of water must be sized to store and treat 1.0 inch of runoff from the contributing impervious area and 0.4 inches of runoff from contributing landscaped areas. If channel protection storage and cooling are required, they must be provided independently, and the stored volume must be released slowly over a 24 to 48-hour period and cooled. Flow-through or hybrid systems that do not store the water quality volume prior to treatment must be sized so that they treat the entire volume of the 0.95-inch Type III 24-hour storm without bypass. Sizing of proposed systems that do not fit these two categories will be determined on a case-by-case basis with the goal of providing treatment for at least 90% of the annual runoff volume.

The FocalPoint system received approval by the MDEP in February 2017. The proposed system was designed in accordance with the MDEP approval letter dated February 2, 2017. The FocalPoint's are designed to treat I inch times the subcatchments impervious area plus 0.4 inch times the subcatchments landscaped area. The elevation of the bypass overflow such that the water quality volume of a 0.95 inch type III 24 hour storm is treated prior to activation was determined using a HydroCAD model. The filter media has an exfiltration rate of 100 inches/hour. The surface media must be 174 sq. ft./acre of impervious plus 174 sq. ft./acre of vegetated area multiplied by 0.4. The filter media depth shall be 1.5 feet. The ratio of the media to the runoff volume stored above it is no less than I to 5. The runoff from the FocalPoint will enter a subsurface chamber storage system.

Runoff will enter the subsurface chamber storage system through an Isolator Row. The Isolator Row is required to convey the peak runoff from the I year type III 24 hour storm, without overflowing, at a rate of 0.227 cfs per chamber. The chamber system will provide storage for the water quality volume and release the flow over a 24-48 hour period. The subsurface chambers will be installed within a stone bed assumed to have 40% porosity. The storage provided by a Cultec Recharger 330XL HD is 11.32 CF/FT per design unit. A 30 mil linear low density polyethylene liner is also to be installed per manufacturers specifications below the system to aid in the prevention of infiltration. The seasonal high groundwater elevation is +/-104.5.

Runoff from storms producing the water quality volume will be conveyed from the subsurface chambers through the underdrain system. A valve will be placed on the underdrain to regulate the outflow through the underdrain. The valve will be field adjusted to maintain the outflow time between 24 and 48 hours. Yearly maintenance of the FocalPoint system will include monitoring the outflow after a rainfall event to ensure the outflow time is within the required parameters and inspecting the system for accumulation of sediment within the Isolator Row. Prior to construction, the applicant will enter into an inspection and maintenance contract that will cover a five-year time period. Larger storms will be conveyed from the subsurface system though an Outlet Control Structure with a weir set at the water quality elevation.

The following tables present information for the FocalPoints in the proposed development.

Table 16			
FocalPoint I			
	REQUIRED	PROVIDED	
Impervious Area (SF)	-	13,730	
Vegetated Developed Area (SF)	-	3,322	
Water Quality Treatment Volume (CF)	1,255	-	
Runoff 0.95 inch Type III Storm (CFS)	0.2	-	
FocalPoint mulch bed elevation (FT)	-	108.2	
Max. stage over filter for 0.95" storm (FT)	-	108.65	
Rim of overflow structure (FT)	-	108.7	
Filter surface area (SF)	60	64	
Temporary Volume stored over filter (0.95"			
storm)	-	47 CF	
Filter media ratio	> I to 5	> I to 5	
I-Year Storm Peak Flow (CFS)	-	0.82	
Cultec Recharger 330XLHD Isolator Row			
Chambers required	4	4	
Cultec Recharger 330XLHD required for			
Water Quality Volume		18	
Total Cultec Recharger 330XLHD Chambers	-	18	
Storage Base Elevation (FT)	-	104.1	
Water Quality Volume Elevation (FT)	-	106.72	

Table 17		
FocalPoint 2		
	REQUIRED	PROVIDED
Impervious Area (SF)	-	5,225
Vegetated Developed Area (SF)	-	257
Water Quality Treatment Volume (CF)	444	-
Runoff 0.95 inch Type III Storm (CFS)	0.09	-
FocalPoint mulch bed elevation (FT)	-	108.2
Max. stage over filter for 0.95" storm (FT)	-	106.01
Rim of overflow structure (FT)	-	108.7
Filter surface area (SF)	21	24
Temporary Volume stored over filter (0.95" storm)	-	0 CF
Filter media ratio	> to 5	> I to 5
I-Year Storm Peak Flow (CFS)	-	0.29
Cultec Recharger 330XLHD Isolator Row Chambers required	2	2
Cultec Recharger 330XLHD required for Water Quality Volume		6
Total Cultec Recharger 330XLHD Chambers	-	6
Storage Base Elevation (FT)	-	104.1
Water Quality Volume Elevation (FT)	-	106.72

Table 18		
FocalPoint 3		
	REQUIRED	PROVIDED
Impervious Area (SF)	-	16,742
Vegetated Developed Area (SF)	-	3,261
Water Quality Treatment Volume (CF)	1,504	-
Runoff 0.95 inch Type III Storm (CFS)	0.26	-
FocalPoint mulch bed elevation (FT)	-	108.2
Max. stage over filter for 0.95" storm (FT)	-	108.51
Rim of overflow structure (FT)	-	108.7
Filter surface area (SF)	72	76
Temporary Volume stored over filter (0.95" storm)	-	32 CF
Filter media ratio	> to 5	> I to 5
I-Year Storm Peak Flow (CFS)	-	0.99
Cultec Recharger 330XLHD Isolator Row Chambers required	5	5
Cultec Recharger 330XLHD required for Water Quality Volume		22
Total Cultec Recharger 330XLHD Chambers	-	22
Storage Base Elevation (FT)	-	104.1
Water Quality Volume Elevation (FT)	-	106.56

Table 19		
FocalPoint 4		
	REQUIRED	PROVIDED
Impervious Area (SF)	-	5,684
Vegetated Developed Area (SF)	-	236
Water Quality Treatment Volume (CF)	482	-
Runoff 0.95 inch Type III Storm (CFS)	0.1	-
FocalPoint mulch bed elevation (FT)	-	108.2
Max. stage over filter for 0.95" storm (FT)	-	108.59
Rim of overflow structure (FT)	-	108.7
Filter surface area (SF)	23	32
Temporary Volume stored over filter (0.95" storm)	-	27 CF
Filter media ratio	> to 5	> I to 5
I-Year Storm Peak Flow (CFS)	-	0.31
Cultec Recharger 330XLHD Isolator Row Chambers required	I	Ι
Cultec Recharger 330XLHD required for Water Quality Volume		8
Total Cultec Recharger 330XLHD Chambers	-	8
Storage Base Elevation (FT)	-	104.1
Water Quality Volume Elevation (FT)	-	106.56

An approval letter for the proposed development from the manufacturer is provided is Attachment E.

Roof Dripline Filters

Roof dripline filtration will be utilized for a portion of the roof area of single-family Lots I-8 and Duplex units I and 2. For the single-family houses, the dimensions for the reservoir layer of the drip edge filter are all 4 feet wide by I foot deep. This provides I.6 cubic feet of treatment per linear foot of roof. For the duplex, the drip edge on the backside of the building is 6 feet wide by I foot deep, providing 2.40 cubic feet of treatment per linear foot of roof. Lastly, the sides and front of the duplex utilize drip edge filters with dimensions of 3 feet wide by I foot deep. This assumes a 40% void ratio in the reservoir area. Table 20 below shows the Drip Edge Filter Calculations (for each home) as described above.

Table 20		
Proposed Roof Drip Edge Filter System – Single Family		
	Required	Provided
Impervious Roof Area		I,160 sq. ft
Landscaped Area (non-impervious)		0 sq. ft
Treatment Volume	97 cu. ft.	106 cu. ft.
Average Roof Width		17.5 ft
Treatment per linear foot of roof edge	1.46 sq. ft	1.6 sq. ft
Reservoir Layer Dimensions		
Depth		l ft
Width		4 ft
Release Time	24-48 Hours	24 Hours
Proposed Roof Drip Edge Filte	r System – Duple	x - Back
	Required	Provided
Impervious Roof Area		I,892 sq. ft
Landscaped Area (non-impervious)		0 sq. ft
Treatment Volume	158 cu. ft.	168 cu. ft.
Average Roof Width		27 ft
Treatment per linear foot of roof edge	2.25 sq. ft	2.4 sq. ft
Reservoir Layer Dimensions		
Depth		l ft
Width		6 ft
Release Time	24-48 Hours	24 Hours
Proposed Roof Drip Edge Filter Sys	tem – Duplex – S	ides & Front
	Required	Provided
Impervious Roof Area		720 sq. ft
Landscaped Area (non-impervious)		0 sq. ft
Treatment Volume	60 cu. ft.	42 cu. ft.
Average Roof Width		12 ft
Treatment per linear foot of roof edge	1.0 sq. ft	1.2 sq. ft
Reservoir Layer Dimensions		
Depth		l ft
Width		3 ft
Release Time	24-48 Hours	24 Hours

12.9.4 Conclusion - Water Quality

Table 21 – Overall Treatment for Linear Development			
		DEVELOPED	
	IMPERVIOUS	(Impervious + Landscaped)	
Gravel Wetland I (sf)	8,670	8,670	
Gravel Wetland 2 (sf)	23,466	23,466	
Grassed Underdrain Soil Filter 3 (sf)	7,984	9,492	
Grassed Underdrain Soil Filter 4 (sf)	6,609	6,700	
Focal Point I (sf)	4,929	6,05 I	
Focal Point 2 (sf)	5,225	5,482	
Focal Point 3 (sf)	5,107	5,459	
Focal Point 4 (sf)	5,684	5,920	
Total Area Treated (sf)	67,673	71,239	
Area Untreated (sf)	17,875	17,875	
Total Area of Project (sf)	85,548	89,114	
Percent Treated	79%	80%	
Percent Required	75%	50%	

Table 21 below summarizes the proposed treatment for the linear portion of the project.

This portion of the project is required to treat 75% of the impervious area and 50% of the developed linear areas. As shown in the above table, the applicant proposes to utilize the proposed; Gravel Wetland I & 2, Grassed Underdrain Soil Filters I & 2, and Focal Points I-4, to exceed the required treatment. Table 22 below summarizes the proposed treatment for the non-linear portion of the project.

Table 22 - Overall Treat	ment for Non-Lin	ear Development
	IMPERVIOUS	DEVELOPED
	IMPERVIOUS	(Impervious + Landscaped)
Gravel Wetland I (sf)	183,298	309,400
Gravel Wetland 2 (sf)	83,387	143,628
Grassed Underdrain Soil Filter I (sf)	49,677	73,933
Grassed Underdrain Soil Filter 2 (sf)	38,830	82,545
Grassed Underdrain Soil Filter 3 (sf)	24,260	35,345
Grassed Underdrain Soil Filter 4 (sf)	22,910	37,535
Grassed Underdrain Soil Filter 5 (sf)	26,921	39,620
Grassed Underdrain Soil Filter 6 (sf)	18,778	79,636
Grassed Underdrain Soil Filter 7 (sf)	23,580	36,965
Grassed Underdrain Soil Filter 8 (sf)	36,998	60,887
Grassed Underdrain Soil Filter 9 (sf)	64,781	91,815
Focal Point I (sf)	8,801	11,001
Focal Point 2 (sf)	0	0
Focal Point 3 (sf)	11,635	14,544
Focal Point 4 (sf)	0	0
Single Family Lot Drip Edge	9,276	11,292
Duplex Drip Edge	2,612	2,612
Total Area Treated (sf)	605,743	1,030,758
Area Untreated (sf)	19,742	91,187
Total Area of Project (sf)	625,485	1,121,945
Percent Treated	96.8%	91.9%
Percent Required	95%	80%

The non-linear, developed areas in the site are required to treat 95% of the impervious area along with 80% of the developed area. As can be seen in Table 22 above, the project meets the required treatment levels.

Table 23 below summarizes the proposed total treatment for the proposed project.

Table 23 – Total New Development Treatment Summary				
	Required	Proposed		
	Treatment (sf)	Treatment (sf)		
Linear Development				
Impervious	64,161	67,673		
Developed	44,557	71,239		
Non-Linear Development				
Impervious	594,211	605,743		
Developed	897,556	1,030,758		
Total				
Impervious	658,372	673,416		
Developed	942,113	1,101,997		

The project provides stormwater quality treatment to meet the General Standards for Chapter 500 and will not cause degradation of the receiving waters due to the stormwater runoff from the site.

12.10 Stormwater Quantity

The stormwater management study provides an analysis of predevelopment and post development stormwater runoff rates.

A Class B High Intensity Soil Survey was conducted by Flycather, LLC and used to identify onsite and offsite soils. A Soil Map and full report can be found in HISS Report section of this application. The proposed developed area is comprised of Hydrologic Soil Type A, B, C and D.

The SCS TR-20 methodology, using the HydroCAD program, was employed by Gorrill Palmer to analyze predevelopment and post-development conditions. A 24-hour, SCS Type III storm distribution for the two, ten, twenty-five, and fifty year storm frequencies was used. The corresponding rainfall amounts for these storms are 3.3", 4.9", 6.2", and 7.3" respectively.

Land use cover, delineations of watershed hydraulic flow paths, and hydrologic soils data were obtained using the following data:

- Prouts Neck 7.5 Minute Quadrangle Maps prepared by the U.S.G.S.
- High Intensity Soil Survey, with I' contour intervals, performed within the property lines by Owen Haskell, Inc.
- Medium Intensity survey with 2' contour intervals from Maine Office of GIS.
- Aerial photography of the project site, obtained from the Maine Office of GIS.
- Field Reconnaissance

12.10.1 Predevelopment Conditions

The drainage study analyzes the watersheds in the predevelopment condition as depicted on the Predevelopment Watershed Map WI.

Subcatchment IS is expected to consist of soil types A, B, C, and D. There are approximately 23.65 acres of woods. To the southwest and outside of the proposed property lines is an existing business which accounts for approximately 0.56 acres of impervious area in the subcatchment due to the pavement and roofing drainage path. In addition to this, there is runoff from approximately 2.27 acres of housing lots bordering the property that is conveyed to POI I. These total to approximately 1.60 acres of impervious and 24.89 acres of pervious area.

Subcatchment 2S is approximately 6.56 acres of mostly woods with existing soil type D. There are also approximately 1.1 acres of 1/4 acre housing lots conveyed to POI 2. These total to approximately 0.42 acres of impervious and 7.24 acres of pervious area.

Subcatchment 3S includes approximately 37.68 acres of wooded property, with existing soil types A and D. Housing lots totaling approximately 20.89 acres of varying sizes are also tributary to POI #3. These total to approximately 5.58 acres of impervious and 52.99 acres of pervious area.

A watershed map for the predevelopment conditions is attached to this section as drawing number WI in Attachment A.

Table 24 – Predevelopment Peak Flow Rates (Type III 24-hr)							
Point of		Peak Flow (CFS)					
Interest	2 Year	2 Year 10 Year 25 Year 50 Year 100 Year					
POI I	10.25	21.81	32.04	40.99	52.59		
POI 2	5.40	10.75	15.35	19.34	24.45		
POI 3	33.44	70.94	104.02	132.89	170.27		

Table 24 presents the peak flow rates at the point of interest in the predevelopment condition.

Copies of the calculations for the predevelopment conditions are included in Attachment B.

12.10.2 Post development Conditions

Analysis for the post development condition consists of determining post development peak flows and limiting the post development flows to predevelopment levels.

The post development condition has been modeled as six subcatchments tributary to POI I, four subcatchments tributary to POI 2, and eight subcatchment tributary to POI 3.

Subcatchment IS consists of approximately 1.14 acres of impervious and 0.56 acres of pervious. Runoff from these areas are treated by Grassed Underdrain Soil Filter 1 and is tributary to POI 1.

Subcatchment 2S consists of approximately 0.89 acres of impervious and approximately 1 acre of pervious areas. Runoff from these areas are treated by Grassed Underdrain Soil Filter 2 and is tributary to POI 1.

Subcatchment 3S consists of approximately 0.74 acres of impervious and approximately 0.29 pervious acres. Runoff from these areas are treated by Grassed Underdrain Soil Filter 3 and is tributary to POI I.

Subcatchment 4S consists of approximately 0.62 acres of impervious area and 0.29 acres of pervious. Runoff from these areas are treated by Grassed Underdrain Soil Filter 5 and is tributary to POI 1.

Subcatchment 5S consists of approximately 2.45 acres of impervious area and 1.38 acres of pervious. Runoff from these areas are treated by Gravel Wetland 2 and is tributary to POI 1.

Subcatchment 6S consists of approximately 0.68 acres of impervious area and 0.34 acres of pervious area. Runoff from these areas are treated by Grassed Underdrain Soil Filter 4 and is tributary to POI 2.

Subcatchment 7S is approximately 4.41 acres of impervious area and 2.89 acres of pervious. The runoff from this area is treated by Gravel Wetland I and istributary to POI 2.

Subcatchment 8S is approximately .43 acres of impervious area and 1.40 acres of pervious. The runoff from this area is treated by Grassed Underdrain Soil Filter 6 and is tributary to POI 3.

Subcatchment 9S is approximately 0.54 acres of impervious area and 0.31 acres of pervious. The runoff from this area is treated by Grassed Underdrain Soil Filter 7and is tributary to POI 3.

Subcatchment 10S consists of approximately 0.85 acre of impervious area and 0.55 acres of pervious land. This subcatchment is treated by Grassed Underdrain Soil Filter 8 and is tributary to POI 3.

Subcatchment IIS consists of approximately 1.49 acres of impervious area and 0.62 acres of pervious. This subcatchment is treated by Grassed Underdrain Soil Filter 9 and is tributary to POI 3.

Subcatchment 12S consists of approximately 13.16 acres of pervious area, 1.83acres of impervious from a local business and different sized house lots.

Subcatchment 13S consists of approximately 3.52 acres of pervious from wooded, grassed, and 1/4 acre housing lots. There is approximately 0.43 acres of impervious from surrounding areas as well. This area is tributary to POI 2 at the southern end of the property.

Subcatchment 14S consists of approximately 42.27 acres of pervious area and 6.29 acres of impervious.

Subcatchment 15S consists of approximately 0.44 acres of impervious area and 0.08 acres of pervious. . The runoff from these areas is treated by the chambers from Focal Points 1 & 2 and is tributary to POI 3

Subcatchment 16S consists of approximately 0.51 acres of impervious area and 0.08 acres of pervious. The runoff from these areas are treated by the chambers from Focal Points 3 & 4.

Subcatchment 17S consists of the drip edge system in the single family lots development area, treating approximately 0.21 acres of impervious and 0.05 acres of pervious area. The runoff is subsequently conveyed to POI 3.

Subcatchment 18S consists of approximately 0.2 acres of impervious area and 0.12 acres of pervious area tributary to Bradley Street drainage infrastructure.

Subcatchment 19S consists of the drip edge system associated with Duplex Units 1 and 2. Approximately 0.06 acres of impervious area are treated by the drip edges. The runoff is tributary to POI 2.

Table 25 – Peak Flow Comparison without detention				
Point of Interest		Peak Flo	ow (CFS)	
Point of interest	2 Year	10 Year	25 Year	50 Year
POI I				
Pre	10.25	21.81	32.04	40.99
Post	24.35	39.94	52.76	63.64
POI 2				
Pre	5.40	10.75	15.35	19.34
Post	21.92	36.22	47.85	57.66
POI 3				
Pre	33.44	70.94	104.02	132.89
Post	30.93	63.60	92.26	117.22

A comparison of pre and post development flow without detention is presented in the following table.

As can be seen from Table 25, detention is required to reduce the peak flows at POI 1, POI 2, and POI 3 to be at or below predevelopment levels.

Pond IP – Grassed Underdrain Soil Filter I

Pond IP is a grassed underdrain soil filter located on the southwestern portion of the project site. The stormwater runoff from Subcatchment IS will enter the grassed underdrain soil filter's sediment forebay through the storm drain system. The underdrain outflow has been modeled with a constant exfiltration of 0.06 CFS, which provides a 24-48 hour release time. The outflow from larger storms is controlled by an orifice and weir within the outlet control structure, the pond outflow is tributary to POI I.

The soil filter has been analyzed to determine its performance for the 2-, 10-, 25-, and 50-year storms. Storms smaller than a two-year event will generate a runoff volume equal to or less than the channel protection volume, 4,806 CF, and will be conveyed through the soil filter and underdrain system. Larger storms will be conveyed through the soil filter underdrain and through the outlet control structure and emergency spillway. The emergency spillway has been designed to contain the 100-year storm without overtopping the berm. A spillway analysis is included in Attachment B. Table 26 below presents the pond performance.

Table 26 – Grassed Underdrain Soil Filter I						
		Storm Event				
	2-Year	2-Year 10-Year 25-Year 50-Year				
Peak Inflow (CFS)	4.44	7.04	9.13	10.89		
Peak Outflow (CFS)	0.87	2.26	2.94	3.36		
Stage (Max. Elevation)	102.44	103.06	103.56	103.93		
Detention Storage (cf)	7,256	10,577	13,556	15,981		
Depth above base (ft)	1.84	2.46	2.96	3.33		

Pond 2P – Grassed Underdrain Soil Filter 2

Pond 2P is a grassed underdrain soil filter located in the southwestern portion of the project site. When looking at the Post Watershed Map in Attachment A, it can be found slightly below and to the right of IP. The outflow is tributary to Reach 2 and POI I. The stormwater runoff from Subcatchment 2S will enter the grassed underdrain soil filter's sediment forebay through the storm drain system. The underdrain outflow has been modeled with a constant exfiltration of 0.05 CFS, which provides a 24-48 hour release time. Larger storms will be controlled by an orifice within the outlet control structure.

Larger storms will be conveyed through the soil filter underdrain and through the outlet control structure and emergency spillway. The emergency spillway has been designed to contain the 100-year storm without overtopping the berm. A spillway analysis is included in Attachment B. Table 27 presents the pond performance.

Table 27 – Grassed Underdrain Soil Filter 2					
		Storm Event			
	2-Year 10-Year 25-Year 50-Year				
Peak Inflow (CFS)	4.34	7.26	9.64	11.63	
Peak Outflow (CFS)	0.88	2.91	3.97	4.61	
Stage (Max. Elevation)	103.34	103.95	104.45	104.84	
Detention Storage (cf)	6,731	9,679	12,345	14,545	
Depth above base (ft)	1.84	2.45	2.95	3.34	

Pond 3P – Grassed Underdrain Soil Filter 3

Pond 3P is a grassed underdrain soil filter located in the southwestern part of the property. When examining Attachment A – Post Watershed Map, the pond will be found to the right of 2P. Runoff from subcatchment 3S is collected here and is tributary to reach 2 and POI I. The underdrain outflow has been modeled at a constant exfiltration rate of 0.04 CFS, which provides a 24-48 hour release time. Larger storms will be controlled by an orifice within the outlet control structure.

Larger storms will be conveyed through the soil filter underdrain and through the outlet control structure and emergency spillway. The emergency spillway has been designed to contain the 100-year storm without overtopping the berm. A spillway analysis is included in Attachment B. Table 28 presents the pond performance.

Table 28 – Grassed Underdrain Soil Filter 3						
		Storm Event				
	2-Year	2-Year 10-Year 25-Year 50-Year				
Peak Inflow (CFS)	2.77	4.34	5.6	6.66		
Peak Outflow (CFS)	0.61	1.77	2.36	2.73		
Stage (Max. Elevation)	101.94	102.39	102.74	103		
Detention Storage (cf)	4,496	6,212	7,664	8,824		
Depth above base (ft)	1.54	1.99	2.34	2.6		

Pond 4P – Grassed Underdrain Soil Filter 5

Pond 4P is a grassed underdrain soil filter located in the southeast section of the land. The runoff from subcatchment 4S is tributary to pond4P. The underdrain outflow has been modeled at a constant exfiltration rate of 0.04 CFS, which provides a 24-48 hour release time. Larger storms will be controlled by an orifice within the outlet control structure.

Larger storms will be conveyed through the soil filter underdrain and through the outlet control structure and emergency spillway. The emergency spillway has been designed to contain the 100-year storm without overtopping the berm. A spillway analysis is included in Attachment B. Table 29 presents the pond performance.

Table 29 – Grassed Underdrain Soil Filter 5					
		Storm Event			
	2-Year	2-Year 10-Year 25-Year 50-Year			
Peak Inflow (CFS)	2.38	3.77	4.89	5.84	
Peak Outflow (CFS)	0.5	1.71	2.62	3.08	
Stage (Max. Elevation)	102.94	103.3	103.56	103.74	
Detention Storage (cf)	3,764	5,111	6,153	6,955	
Depth above base (ft)	1.51	1.87	2.13	2.31	

Pond 5P – Gravel Wetland 2

Pond 5P is the gravel wetland on the west side of the property, near the duplex style development. The pond has been analyzed to determine its performance for the 2-, 10-, 25-, and 50-year storms. The stormwater runoff from Subcatchment 5S, will enter the wetland sediment forebay through a stormdrain inlet pipe connected to the catch basins located in the drive areas. The channel protection volume will be conveyed through the gravel underdrain system to an outlet control structure and subsequently conveyed to Reach 2and POI 1.

The outflow from larger storms will be controlled by an orifice within an outlet control structures. Two outlet control structures are used to provide adequate drainage through orifices and weirs. A hole drilled in the cap of the underdrain will regulate the channel protection volume outflow to allow for a 24-48 hour release time. The holes shall be 2.2 inches for Gravel Wetland 2. The following table presents the wetland performance.

Calculations are provided in Attachment B showing the spillway conveying a 100-year storm with 1 ft of freeboard. Due to the large watershed tributary to Gravel Wetland 2, ponding above 3 ft from the pond surface is anticipated for the 25-, and 50-year storms. MDEP recommends a maximum ponding depth of 3 feet for storms up to the 25-year storm. The maximum depth of ponding for this pond at the 25-year storm is approximately ³/₄ inch greater than 3 feet. Given the minimal additional ponding depth, Gorrill Palmer believes this is insignificant to the health of the pond or plantings.

Table 30 – Gravel Wetland 2						
		Storm Event				
	2-Year	2-Year 10-Year 25-Year 50-Year				
Peak Inflow (CFS)	10.02	15.91	20.64	24.62		
Peak Outflow (CFS)	1.49	4.93	7.33	8.73		
Stage (Max. Elevation)	100.27	100.91	101.38	101.74		
Detention Storage (cf)	17,579	25,398	31,438	36,517		
Depth above base (ft)	1.96	2.6	3.07	3.43		

Pond 6P – Grassed Underdrain Soil Filter 4

Pond 6P is a grassed underdrain soil filter located in the south portion of the site. Runoff from subcatchment 6S is directed to Pond 6P which is tributary to POI 2. This pond has been modeled with a constant exfiltration of 0.04 CFS, which provides a 24–48-hour release time. Larger storms will be controlled by an orifice within the outlet control structure

Storms smaller than a two-year event will generate a runoff volume equal to or less than the channel protection volume, 3,099 CF, and will be conveyed through the soil filter and underdrain system. Larger storms will be conveyed through the soil filter underdrain and through the outlet control structure and emergency spillway. The emergency spillway has been designed to contain the 100-year storm without overtopping the berm. A spillway analysis is included in Attachment B. Table 28 presents the pond performance.

Table 31 – Grassed Underdrain Soil Filter 4						
		Storm	Event			
	2-Year	2-Year 10-Year 25-Year 50-Year				
Peak Inflow (CFS)	2.65	4.21	5.46	6.52		
Peak Outflow (CFS)	0.42	0.79	0.97	1.09		
Stage (Max. Elevation)	101.7	102.46	103.04	103.48		
Detention Storage (cf)	4,378	7,074	9,428	11,374		
Depth above base (ft)	1.8	2.56	3.14	3.58		

Pond 7P – Gravel Wetland I

Pond 7P is Gravel Wetland I, proposed in the south side of the property. The pond has been analyzed to determine its performance for the 2-, 10-, 25-, and 50-year storms. The stormwater runoff from Subcatchment 7S will enter the wetland sediment forebay through a stormdrain inlet pipe. The channel protection volume, 20,234 CF, will be conveyed through the gravel underdrain system to an outlet control structure and subsequently to POI 2. The outflow from larger storms will be controlled by an orifice within an outlet control structure. Two outlet control structures are used to provide adequate drainage through orifices and weirs. A hole drilled in the cap of the underdrain will regulate the channel protection volume outflow to allow for a 24-48 hour release time. The holes shall be 2.4 inches for Gravel Wetland I. The following table presents the wetland performance.

A spillway analysis is presented in Attachment B showing the spillway conveying a 100-year storm with I ft of freeboard. Due to the large watershed tributary to Gravel Wetland I, ponding above 3 ft from the pond surface is proposed for the 25 and 50 year storms. Additionally, a 10-year storm is also very close to a 3 ft ponding elevation. Given the minimal additional ponding depth, Gorrill Palmer believes this is insignificant to the health of the pond or plantings. Table 32 below presents the wetland performance.

Table 32 – Gravel Wetland I					
	Storm Event				
	2-Year	2-Year 10-Year 25-Year 50-Year			
Peak Inflow (CFS)	17.92	29.19	38.28	45.91	
Peak Outflow (CFS)	1.02	1.76	2.16	2.44	
Stage (Max. Elevation)	100.29	101.50	102.48	103.26	
Detention Storage (cf)	36,350	61,368	83,823	103,357	
Depth above base (ft)	2.36	3.57	4.55	5.33	

Pond 8P & 9P – Grassed Underdrain Soil Filter 6 & 7

Pond 8P and 9P are the grassed underdrain soil filters located on the east portion of the project. The ponds have been modeled together because they are directly adjacent to each other and share an outflow pipe. Runoff from subcatchment 8S is directed to Pond 8P while runoff from subcatchment 9S is directed to Pond 9P, both of which are tributary to POI 3. The ponds have been modeled with a constant exfiltration of 0.14 CFS, which provides a 24-48 hour release time. Larger storms will be controlled by an orifice within the outlet control structure

Larger storms will be conveyed through the soil filter underdrain and through the outlet control structure and emergency spillway. The emergency spillway has been designed to contain the 100-year storm without overtopping the berm. A spillway analysis is included in Attachment B. Table 33 presents the pond performance.

Table 33 – Grassed Underdrain Soil Filter 6 & 7						
		Storm	Event			
	2-Year	2-Year 10-Year 25-Year 50-Year				
Peak Inflow (CFS)	1.22	3.62	6.07	8.34		
Peak Outflow (CFS)	0.14	0.21	0.6	0.9		
Stage (Max. Elevation)	99.61	100.58	100.91	101.32		
Detention Storage (cf)	١,793	6,943	9,195	12,312		
Depth above base (ft)	0.41	1.38	1.71	2.12		

Pond 10P – Grassed Underdrain Soil Filter 8

Pond 10P is the grassed underdrain soil filter also located near the east side of the site. The runoff from subcatchment 10S is directed to grassed underdrain soil filter 8 which is tributary to POI 3. The pond was modeled with a constant exfiltration of 0.05 CFS, which provides a 24-48 hour release time. Larger storms will be controlled by an orifice within the outlet control structure

Larger storms will be conveyed through the soil filter underdrain and through the outlet control structure and emergency spillway. The emergency spillway has been designed to contain the 100-year storm without overtopping the berm. A spillway analysis is included in Attachment B. Table 34 presents the pond performance.

Table 34 – Grassed Underdrain Soil Filter 8						
		Storm Event				
	2-Year	10-Year	25-Year	50-Year		
Peak Inflow (CFS)	2.17	4.2	5.92	7.4		
Peak Outflow (CFS)	0.11	0.94	1.91	2.51		
Stage (Max. Elevation)	101.69	102.09	102.49	102.87		
Detention Storage (cf)	4,357	6,024	7,792	9,579		
Depth above base (ft)	1.33	1.73	2.13	2.51		

Pond IIP - Grassed Underdrain Soil Filter 9

Pond IIP is the grassed underdrain soil filter located the furthest to the east on site. Runoff from subcatchment IIS is directed to grassed underdrain soil filter 9 which is also tributary to POI 3. This pond was modeled with a constant exfiltration of 0.07 CFS, which provides a 24-48 hour release time. Larger storms will be controlled by an orifice within the outlet control structure

Larger storms will be conveyed through the soil filter underdrain and through the outlet control structure and emergency spillway. The emergency spillway has been designed to contain the 100-year storm without overtopping the berm. A spillway analysis is included in Attachment B. Table 35 presents the pond performance.

Table 35 – Grassed Underdrain Soil Filter 9							
		Storm Event					
	2-Year	10-Year	25-Year	50-Year			
Peak Inflow (CFS)	4.82	8.08	10.72	12.94			
Peak Outflow (CFS)	0.5	2.06	2.86	3.36			
Stage (Max. Elevation)	98.42	99.06	99.62	100.06			
Detention Storage (cf)	8,218	12,318	16,342	19,825			
Depth above base (ft)	1.76	2.4	2.96	3.4			

Pond 12P – Chamber I

Pond 12P is the subsurface storage system for Focal Points I and 2 on the main access road. The subsurface storage chamber has been analyzed to determine its performance for the 2-, 10-,25- and 50-year storms. The stormwater runoff from subcatchment 15S will enter the subsurface storage chamber isolator row through a stormdrain outlet pipe from Focal Points I and 2. The smaller storms which generate runoff volume equal to or less than the channel protection volume will be conveyed through the crushed stone pad and underdrain system. Larger storms will be conveyed to the outlet control

Table 36 – Chamber System I						
		Storm	Event			
	2-Year	10-Year	25-Year	50-Year		
Peak Inflow (CFS)	I.46	2.24	2.87	3.4		
Peak Outflow (CFS)	0.73	2.2	2.81	3.33		
Stage (Max. Elevation)	107.07	107.21	107.25	107.29		
Detention Storage (cf)	1,830	1,917	1,917	1,917		
Depth above base (ft)	2.97	3.11	3.15	3.19		

structure and through the overflow weir. The weir has been modeled as a broad crested weir. The following table presents the pond performance.

Pond I3P – Chamber 2

Pond 13P is the subsurface storage system for Focal Points 3 and 4 on the main access road. The subsurface storage chamber has been analyzed to determine its performance for the 2-, 10-,25- and 50-year storms. The stormwater runoff from subcatchment 16S will enter the subsurface storage chamber isolator row through a stormdrain outlet pipe from Focal Points 3 and 4. The smaller storms which generate runoff volume equal to or less than the channel protection volume will be conveyed through the crushed stone pad and underdrain system. Larger storms will be conveyed to the outlet control structure and through the overflow weir. The weir has been modeled as a broad crested weir. The following table presents the pond performance.

Table 37 – Chamber System 2						
	Storm Event					
	2-Year	10-Year	25-Year	50-Year		
Peak Inflow (CFS)	1.72	2.61	3.33	3.93		
Peak Outflow (CFS)	1.28	2.53	3.24	3.83		
Stage (Max. Elevation)	106.87	106.98	107.03	107.07		
Detention Storage (cf)	2,178	2,265	2,309	2,309		
Depth above base (ft)	2.77	2.88	2.93	2.97		

A watershed map for the post development conditions is attached to this section as drawing number W2 in Attachment A. Attachment B includes the TR-20 pond calculations.

As presented in Table 25 previously, detention of tributary runoff to POI's 1, 2 and 3 are required. The following table presents a comparison of peak flow with detention.

Table 38 – Peak Flow Comparison with detention							
Point of Interest	Peak Flow (CFS)						
Four of interest	2 Year	10 Year	25 Year	50 Year	100 Year		
POI I							
Pre	10.25	21.81	32.04	40.99	52.59		
Post	8.89	20.13	30.13	38.50	46.29		
POI 2							
Pre	5.40	10.75	15.35	19.34	24.45		
Post	4.88	9.34	12.74	15.53	20.01		
POI 3							
Pre	33.44	70.94	104.02	132.89	170.27		
Post	31.08	64.68	93.55	118.50	150.25		

As can be seen from Table 38 above, the peak post development flow is at or below predevelopment levels.

12.10.3 Conclusion - Water Quantity

The peak flow at the Point of Interest have been reduced to be at or below predevelopment peak levels. The project is not likely to have an adverse impact on abutting or downstream properties due to stormwater runoff.

12.11 Construction BMPs

Additional water quality treatment will be provided during construction by best management practices (BMP). Standard BMPs to be employed include siltation fencing around the downslope construction perimeter, siltation fence around the constructed wetland and level lip spreader, sedimentation basins, rip rap, pipe stabilized construction entrances and erosion control fabrics applied to slopes prior to revegetation.

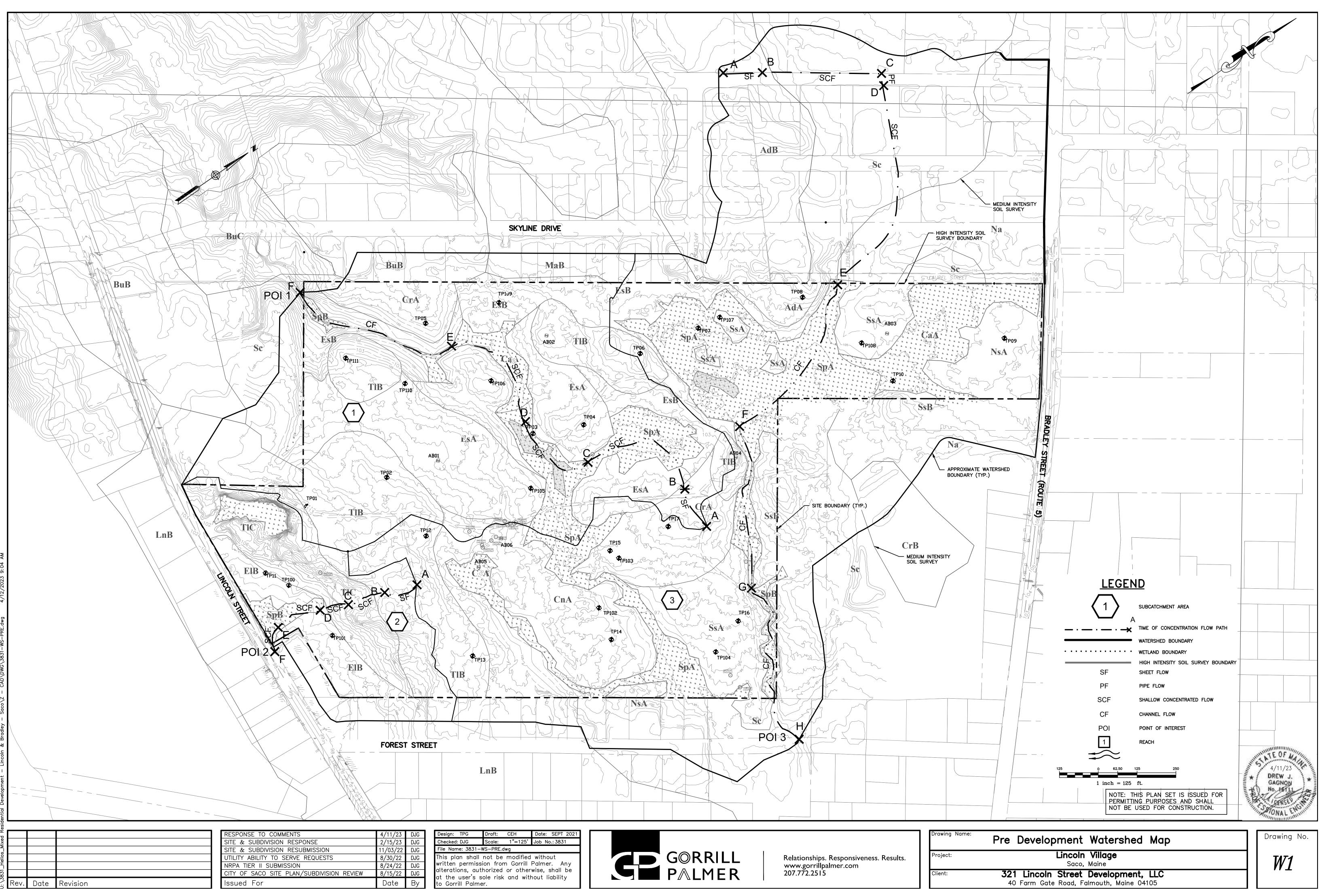
12.12 Maintenance of Facilities, Recertification and Housekeeping

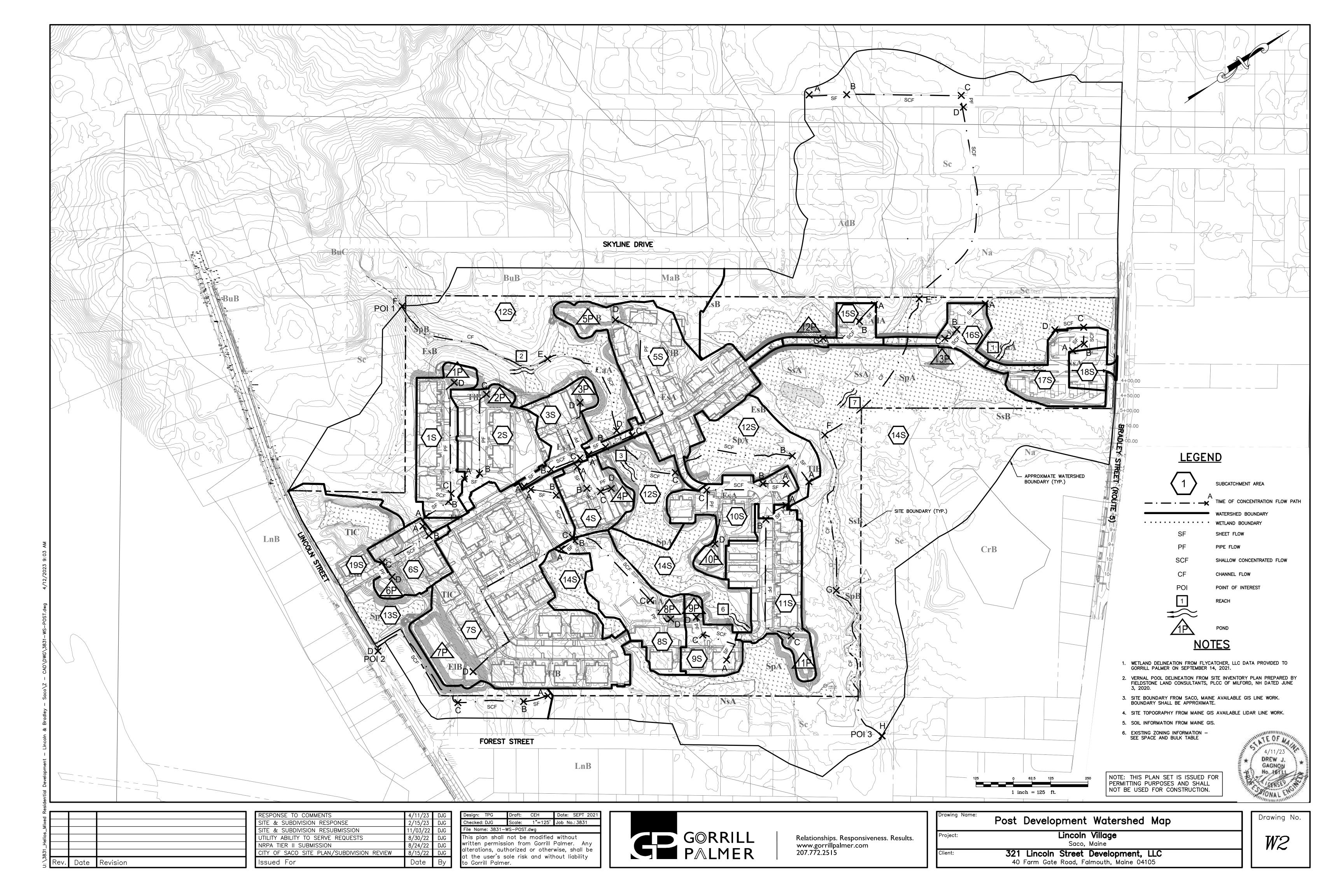
See Maintenance of Facilities, Recertification and Housekeeping sections of the Erosion and Sedimentation Control Report, which can be found in Section 14 of the Site Location of Development application for this project.

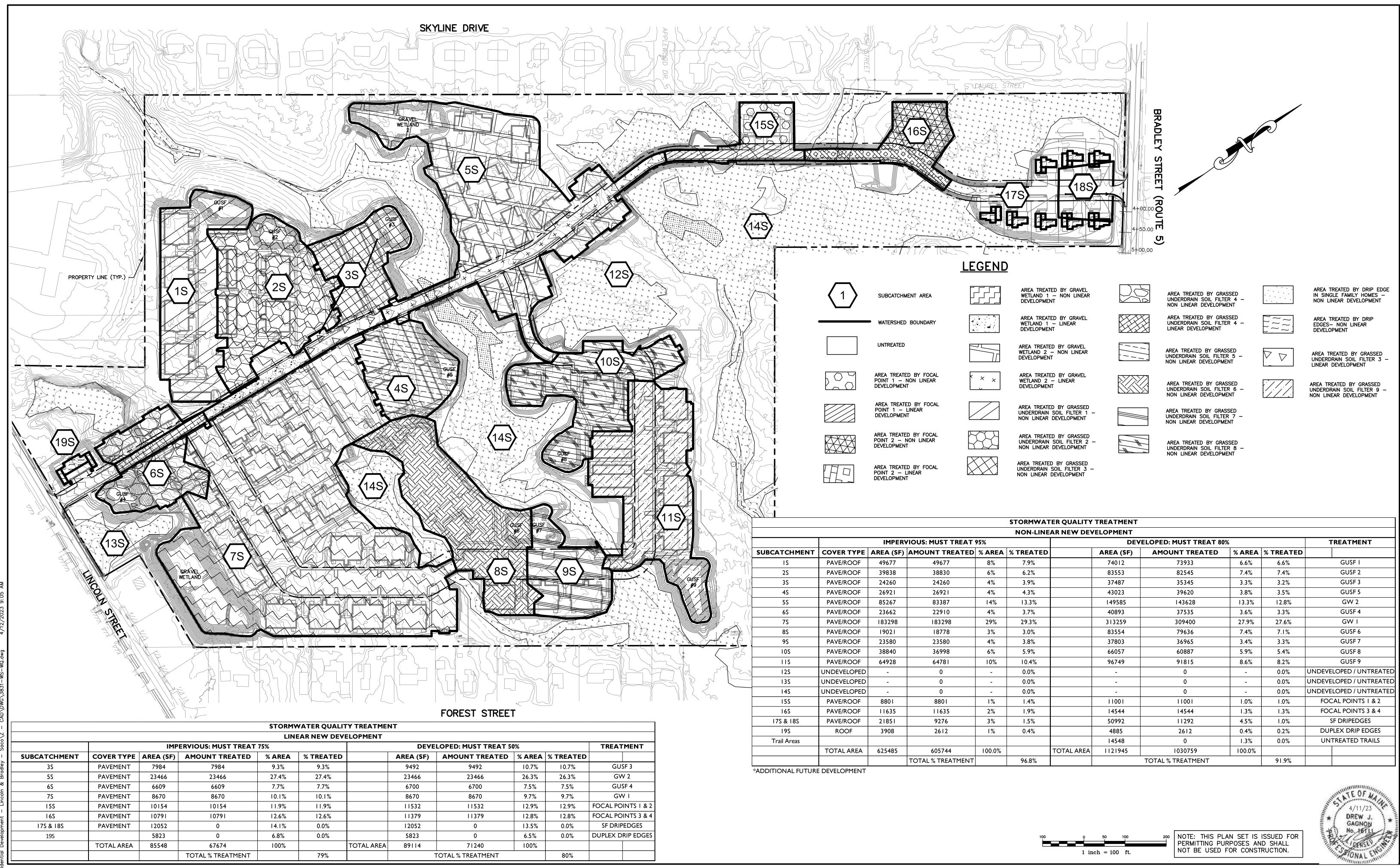
12.13 Conclusion

Gorrill Palmer has been retained by 321 Lincoln Street Development, LLC to prepare plans and permit applications for the development of Lincoln Village on the proposed parcel in Saco, Maine. Based upon the attached calculations, the proposed project meets or exceeds the water quality and water quantity regulations of the City of Saco and Chapter 500 of the MDEP and will not cause degradation of the receiving waters from the site or likely have an adverse impact on abutting or downstream properties due to the stormwater runoff.

Therefore, the proposed development meets the Site Law Application requirements under the MDEP.


12.14 Attachments


Attached to this section are the following items:


- Attachment A Watershed Maps (Pre, Post, Water Quality)
- Attachment B TR-20 Calculations
- Attachment C Pipe Capacity Calculations
- Attachment D Orifice Sizing Calculations
- Attachment E FocalPoint Manufacturer Approval Letter
- Attachment F Bradley Street Runoff Calculations
- Attachment G Sediment Forebay Storage Calculation

ATTACHMENT A

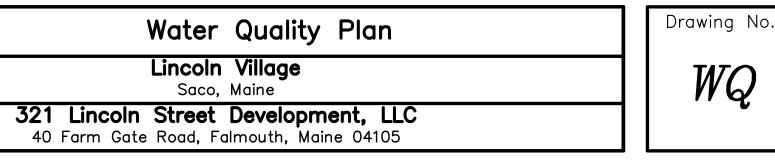
WATERSHED MAPS (PRE, POST, WATER QUALITY)

Rev.	Date	Revision

RESPONSE TO COMMENTS	4/11/23	DJG
SITE & SUBDIVISION RESPONSE	2/15/23	DJG
SITE & SUBDIVISION RESUBMISSION	11/03/22	DJG
UTILITY ABILITY TO SERVE REQUESTS	8/30/22	DJG
NRPA TIER II SUBMISSION	8/24/22	DJG
CITY OF SACO SITE PLAN/SUBDIVISION REVIEW	8/15/22	DJG
Issued For	Date	By

D: MUST TREAT 50	TREAT	MENT				
OUNT TREATED	% AREA	% TREATED				
9492	10.7%	10.7%	GU	SF 3		
23466	26.3%	26.3%	GW 2			
6700	7.5%	7.5%	GUSF 4			
8670	9.7%	9.7%	GW I			
11532	12.9%	12.9%	FOCAL POINTS 1 & 2			
11379	12.8%	12.8%	FOCAL PC	91NTS 3 & 4		
0	13.5%	0.0%	SF DRIPEDGES			
0	6.5%	0.0%	DUPLEX DRIP EDGES			
71240	100%					
% TREATMENT		80%				

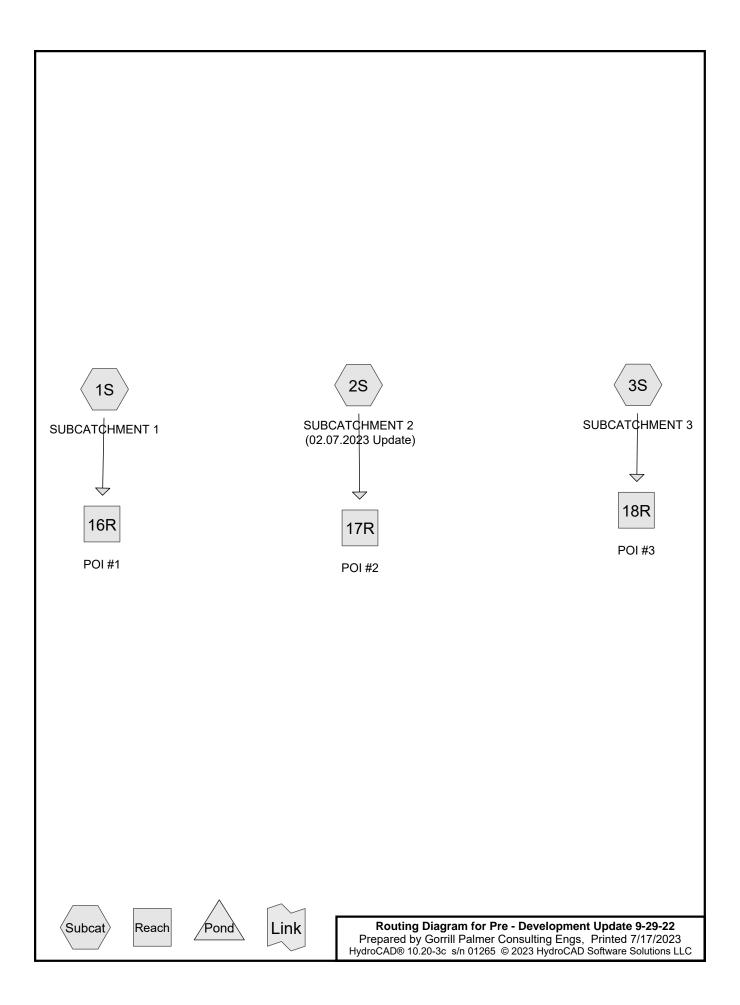
Draft: CEH Date: SEPT 2021)esign: TPG Scale: 1"=100' Job No.: 3831 hecked: DJG File Name: 3831-WS-WQ.dwg his plan shall not be modified without written permission from Gorrill Palmer. Any alterations, authorized or otherwise, shall be at the user's sole risk and without liability to Gorrill Palmer.


Relationships. Responsiveness. Results. www.gorrillpalmer.com 207.772.2515

rawing Name:

Project:

Client


		NON-LINE	AR NEW DEV	ELOPMENT					
AT 95%				DEV	ELOPED: MUST TREAT 80	TREATMENT			
ED	% AREA	% TREATED		AREA (SF)	AMOUNT TREATED	% AREA	% TREATED		
	8%	7.9%		74012	73933	6.6%	6.6%	GUSF I	
	6%	6.2%		83553	82545	7.4%	7.4%	GUSF 2	
	4%	3.9%		37487	35345	3.3%	3.2%	GUSF 3	
	4%	4.3%		43023	39620	3.8%	3.5%	GUSF 5	
	14%	13.3%		149585	143628	13.3%	12.8%	GW 2	
	4%	3.7%		40893	37535	3.6%	3.3%	GUSF 4	
	29%	29.3%		313259	309400	27.9%	27.6%	GW I	
	3%	3.0%		83554	79636	7.4%	7.1%	GUSF 6	
	4%	3.8%		37803	36965	3.4%	3.3%	GUSF 7	
	6%	5.9%		66057	60887	5.9%	5.4%	GUSF 8	
	10%	10.4%		96749	91815	8.6%	8.2%	GUSF 9	
	-	0.0%		-	0	-	0.0%	UNDEVELOPED / UNTREAT	
	-	0.0%		-	0	-	0.0%	UNDEVELOPED / UNTREAT	
	-	0.0%		-	0	-	0.0%	UNDEVELOPED / UNTREAT	
	١%	1.4%		11001	11001	1.0%	1.0%	FOCAL POINTS 1 & 2	
	2%	1.9%		14544	14544	1.3%	1.3%	FOCAL POINTS 3 & 4	
	3%	l.5%		50992	11292	4.5%	1.0%	SF DRIPEDGES	
	١%	0.4%		4885	2612	0.4%	0.2%	DUPLEX DRIP EDGES	
				14548	0	1.3%	0.0%	UNTREATED TRAILS	
	100.0%		TOTAL AREA	1121945	1030759	100.0%			
ЛТ		96.8%			TOTAL % TREATMENT	I	919%		

ATTACHMENT B

TR-20 CALCULATIONS

PRE DEVELOPMENT

Pre - Development Update 9-29-22 Prepared by Gorrill Palmer Consulting Engs HydroCAD® 10.20-3c s/n 01265 © 2023 HydroCAD Software S	Type III 24-hr 2 Year Saco Rainfall=3.30" Printed 7/17/2023
Hydrocade 10.20-30 Sill 01203 @ 2023 Hydrocad Soliware 3	olutions LLC Page 2
Time span=0.00-100.00 hrs, dt=0 Runoff by SCS TR-20 method, UF Reach routing by Stor-Ind+Trans method - F	I=SCS, Weighted-CN
	26.484 ac 6.04% Impervious Runoff Depth=1.16" Tc=92.7 min CN=75 Runoff=10.25 cfs 2.565 af
	=7.661 ac 5.45% Impervious Runoff Depth=1.35" ' Tc=46.5 min CN=78 Runoff=5.40 cfs 0.860 af
	58.564 ac 9.52% Impervious Runoff Depth=1.16" Tc=49.9 min CN=75 Runoff=33.44 cfs 5.672 af
Reach 16R: POI #1	Inflow=10.25 cfs 2.565 af
	Outflow=10.25 cfs 2.565 af
Reach 17R: POI #2	Inflow=5.40 cfs 0.860 af
	Outflow=5.40 cfs 0.860 af
Reach 18R: POI #3	Inflow=33.44 cfs 5.672 af
	Outflow=33.44 cfs 5.672 af
	ume = 9.097 af Average Runoff Depth = 1.18

2" 91.81% Pervious = 85.115 ac 8.19% Impervious = 7.594 ac

Pre - Development Update 9-29-22Type III 24-hr10 Year Saco Rainfall=4.90"Prepared by Gorrill Palmer Consulting EngsPrinted 7/17/2023HydroCAD® 10.20-3c s/n 01265 © 2023 HydroCAD Software Solutions LLCPage 3
Time span=0.00-100.00 hrs, dt=0.01 hrs, 10001 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method
Subcatchment 1S: SUBCATCHMENT1 Runoff Area=26.484 ac 6.04% Impervious Runoff Depth=2.37" Flow Length=1,826' Tc=92.7 min CN=75 Runoff=21.81 cfs 5.227 af
Subcatchment 2S: SUBCATCHMENT2Runoff Area=7.661 ac5.45% ImperviousRunoff Depth=2.63"Flow Length=583'Tc=46.5 minCN=78Runoff=10.75 cfs1.677 af
Subcatchment 3S: SUBCATCHMENT3 Runoff Area=58.564 ac 9.52% Impervious Runoff Depth=2.37" Flow Length=2,998' Tc=49.9 min CN=75 Runoff=70.94 cfs 11.559 af
Reach 16R: POI #1 Inflow=21.81 cfs 5.227 af Outflow=21.81 cfs 5.227 af
Reach 17R: POI #2 Inflow=10.75 cfs 1.677 af Outflow=10.75 cfs 1.677 af
Reach 18R: POI #3 Inflow=70.94 cfs 11.559 af Outflow=70.94 cfs 11.559 af
Total Runoff Area = 92.709 ac Runoff Volume = 18.463 af Average Runoff Depth = 2.39

9" 91.81% Pervious = 85.115 ac 8.19% Impervious = 7.594 ac

Pre - Development Update 9-29-22Type III 24-hr 25Prepared by Gorrill Palmer Consulting EngsHydroCAD® 10.20-3c s/n 01265 © 2023 HydroCAD Software Solutions LLC	Year Saco Rainfall=6.20" Printed 7/17/2023 Page 4
Time span=0.00-100.00 hrs, dt=0.01 hrs, 10001 point Runoff by SCS TR-20 method, UH=SCS, Weighted-C Reach routing by Stor-Ind+Trans method - Pond routing by Stor	s N
Subcatchment1S: SUBCATCHMENT1 Runoff Area=26.484 ac 6.04% Imp Flow Length=1,826' Tc=92.7 min CN=75	•
Subcatchment 2S: SUBCATCHMENT2Runoff Area=7.661 ac5.45% ImpFlow Length=583'Tc=46.5 minCN=78	•
Subcatchment 3S: SUBCATCHMENT3 Runoff Area=58.564 ac 9.52% Imp Flow Length=2,998' Tc=49.9 min CN=75	•
Reach 16R: POI #1	Inflow=32.04 cfs 7.621 af Outflow=32.04 cfs 7.621 af
Reach 17R: POI #2	Inflow=15.35 cfs 2.398 af Outflow=15.35 cfs 2.398 af
Reach 18R: POI #3	Inflow=104.02 cfs 16.852 af Dutflow=104.02 cfs 16.852 af
Total Runoff Area = 92.709 ac Runoff Volume = 26.871 af Av	

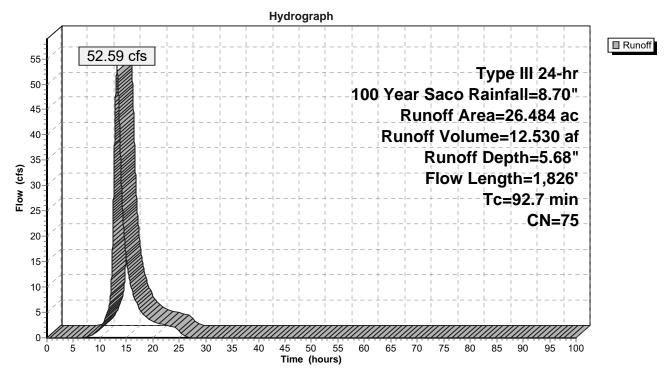
8" 91.81% Pervious = 85.115 ac 8.19% Impervious = 7.594 ac

Pre - Development Update 9-29-22Type III 24-hr 50 Year Saco RainsPrepared by Gorrill Palmer Consulting EngsPrintedHydroCAD® 10.20-3c s/n 01265 © 2023 HydroCAD Software Solutions LLCPrinted	fall=7.30" 7/17/2023 Page <u>5</u>			
Time span=0.00-100.00 hrs, dt=0.01 hrs, 10001 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method				
Subcatchment1S: SUBCATCHMENT1 Runoff Area=26.484 ac 6.04% Impervious Runoff De Flow Length=1,826' Tc=92.7 min CN=75 Runoff=40.99 cf	•			
Subcatchment 2S: SUBCATCHMENT2Runoff Area=7.661 ac 5.45% ImperviousRunoff DeFlow Length=583'Tc=46.5 minCN=78Runoff=19.34 cf				
Subcatchment3S: SUBCATCHMENT3 Runoff Area=58.564 ac 9.52% Impervious Runoff De Flow Length=2,998' Tc=49.9 min CN=75 Runoff=132.89 cfs				
Reach 16R: POI #1 Inflow=40.99 cf Outflow=40.99 cf Outflow=40.99 cf				
Reach 17R: POI #2 Inflow=19.34 cf Outflow=19.34 cf Outflow=19.34 cf				
Reach 18R: POI #3 Inflow=132.89 cfs Outflow=132.89 cfs Outflow=132.89 cfs				
Total Runoff Area = 92.709 ac Runoff Volume = 34.320 af Average Runoff De 91.81% Pervious = 85.115 ac 8.19% Impervious	•			

Pre - Development Update 9-29-22 Prepared by Gorrill Palmer Consulting Engs HydroCAD® 10.20-3c s/n 01265 © 2023 HydroCAD Softwar	Type III 24-hr 100 Year Saco Rainfall=8.70" Printed 7/17/2023 e Solutions LLC Page 1			
Time span=0.00-100.00 hrs, dt=0.01 hrs, 10001 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method				
	a=26.484 ac 6.04% Impervious Runoff Depth=5.68" 6' Tc=92.7 min CN=75 Runoff=52.59 cfs 12.530 af			
	ea=7.661 ac 5.45% Impervious Runoff Depth=6.04" 33' Tc=46.5 min CN=78 Runoff=24.45 cfs 3.857 af			
	a=58.564 ac 9.52% Impervious Runoff Depth=5.68" Tc=49.9 min CN=75 Runoff=170.27 cfs 27.708 af			
Reach 16R: POI #1	Inflow=52.59 cfs 12.530 af Outflow=52.59 cfs 12.530 af			
Reach 17R: POI #2	Inflow=24.45 cfs 3.857 af Outflow=24.45 cfs 3.857 af			
Reach 18R: POI #3	Inflow=170.27 cfs 27.708 af Outflow=170.27 cfs 27.708 af			
Total Runoff Area = 92.709 ac Runoff Vo 91.81% Perv	olume = 44.095 af Average Runoff Depth = 5.71" /ious = 85.115 ac 8.19% Impervious = 7.594 ac			

Pre - Development Update 9-29-22

Prepared by Gorrill Palmer Consulting Engs HydroCAD® 10.20-3c s/n 01265 © 2023 HydroCAD Software Solutions LLC


Type III 24-hr 100 Year Saco Rainfall=8.70" Printed 7/17/2023 Solutions LLC Page 2

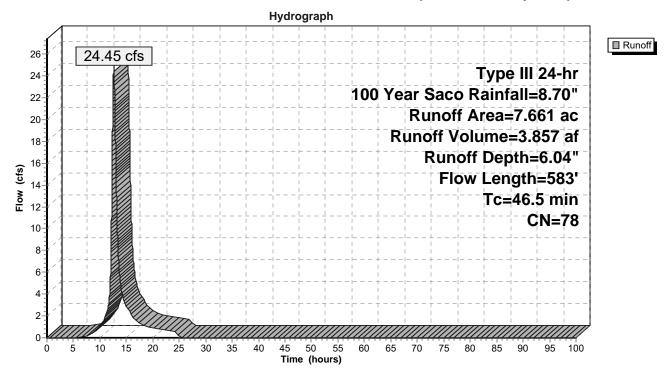
Summary for Subcatchment 1S: SUBCATCHMENT 1

Runoff = 52.59 cfs @ 13.28 hrs, Volume= Routed to Reach 16R : POI #1 12.530 af, Depth= 5.68"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-100.00 hrs, dt= 0.01 hrs Type III 24-hr 100 Year Saco Rainfall=8.70"

Area	(ac) C	N Desc	cription					
		30 Woods, Good, HSG A						
21.	887 7		Woods, Good, HSG D					
0.	113 9	8 Roof	Roofs, HSG D					
0.	446 9	8 Pave	Paved parking, HSG D					
0.841 85 1/8 acre lots, 65% imp, HSG B								
0.129 81 1/3 acre lots, 30% imp, HSG C								
1.	120 8	86 1/3 a	acre lots, 3	0% imp, H	SG D			
0.	183 9)2 1/8 a	acre lots, 6	<u>5% imp, H</u>	SG D			
26.	484 7	'5 Weig	ghted Aver	age				
24.	885	93.9	, 6% Pervio	us Area				
1.	599	6.04	% Impervi	ous Area				
			-					
Тс	Length	Slope	Velocity	Capacity	Description			
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	·			
30.2	145	0.0173	0.08		Sheet Flow, A - B			
					Woods: Light underbrush n= 0.400 P2= 3.30"			
20.6	424	0.0047	0.34		Shallow Concentrated Flow, B - C			
					Woodland Kv= 5.0 fps			
11.6	292	0.0070	0.42		Shallow Concentrated Flow, C - D			
					Woodland Kv= 5.0 fps			
28.4	408	0.0023	0.24		Shallow Concentrated Flow, D - E			
					Woodland Kv= 5.0 fps			
1.9	557	0.0083	4.89	29.32	Channel Flow, E - F			
					Area= 6.0 sf Perim= 7.0' r= 0.86'			
					n= 0.025 Earth, clean & winding			
92.7	1,826	Total						

Subcatchment 1S: SUBCATCHMENT 1

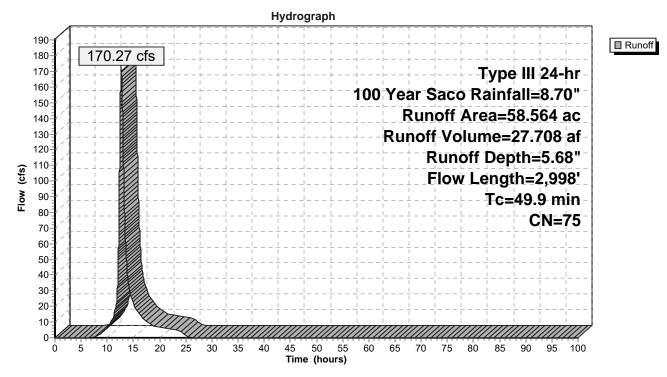

Summary for Subcatchment 2S: SUBCATCHMENT 2 (02.07.2023 Update)

Runoff = 24.45 cfs @ 12.65 hrs, Volume= Routed to Reach 17R : POI #2 3.857 af, Depth= 6.04"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-100.00 hrs, dt= 0.01 hrs Type III 24-hr 100 Year Saco Rainfall=8.70"

Area	(ac) C	N Desc	cription					
6.562 77 Woods, Good, HSG D								
1.	1.099 87 1/4 acre lots, 38% imp, HSG D							
7.	7.661 78 Weighted Average							
7.243 94.55% Pervious Area								
0.	418	5.45	% Impervi	ous Area				
Тс	Length	Slope	Velocity	Capacity	Description			
<u>(min)</u>	(feet)	(ft/ft)	(ft/sec)	(cfs)				
38.5	125	0.0280	0.05		Sheet Flow, A - B			
					Woods: Dense underbrush n= 0.800 P2= 3.30"			
1.8	126	0.0556	1.18		Shallow Concentrated Flow, B - C			
					Woodland Kv= 5.0 fps			
1.2	93	0.0645	1.27		Shallow Concentrated Flow, C - D			
					Woodland Kv= 5.0 fps			
3.3	157	0.0255	0.80		Shallow Concentrated Flow, D-E			
					Woodland Kv= 5.0 fps			
1.7	82	0.0244	0.78		Shallow Concentrated Flow, E-F			
					Woodland Kv= 5.0 fps			
46.5	583	Total						

Subcatchment 2S: SUBCATCHMENT 2 (02.07.2023 Update)

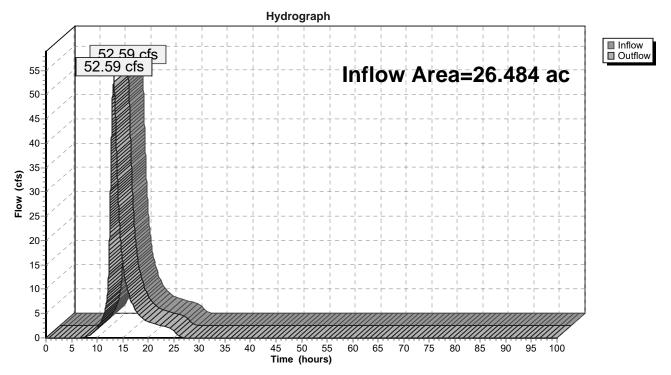

Type III 24-hr 100 Year Saco Rainfall=8.70" Printed 7/17/2023 HydroCAD® 10.20-3c s/n 01265 © 2023 HydroCAD Software Solutions LLC Page 6

Summary for Subcatchment 3S: SUBCATCHMENT 3

170.27 cfs @ 12.69 hrs, Volume= 27.708 af, Depth= 5.68" Runoff = Routed to Reach 18R : POI #3

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-100.00 hrs, dt= 0.01 hrs Type III 24-hr 100 Year Saco Rainfall=8.70"

Area	(ac) C	N Dese	cription		
3.	238 3	30 Woo	ds, Good,	HSG A	
34.	441 7	7 Woo	ds, Good,	HSG D	
2.	735 8	87 1/4 a	acre lots, 3	8% imp, H	SG D
4.	813 5			25% imp, H	
13.	337 8	35 1/2 a	acre lots, 2	25% imp, H	SG D
58.	564 7	75 Weig	ghted Aver	age	
52.	987	90.4	8% Pervio	us Area	
5.	577	9.52	% Impervi	ous Area	
Тс	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
12.6	125	0.0161	0.17		Sheet Flow, A - B
					Grass: Short n= 0.150 P2= 3.30"
3.2	380	0.0172	1.97		Shallow Concentrated Flow, B - C
					Grassed Waterway Kv= 15.0 fps
0.1	40	0.0373	11.48	20.29	
					18.0" Round Area= 1.8 sf Perim= 4.7' r= 0.38'
					n= 0.013 Corrugated PE, smooth interior
24.8	721	0.0094	0.48		Shallow Concentrated Flow, D - E
				~ ~ ~ ~	Woodland Kv= 5.0 fps
3.3	584	0.0062	2.93	23.40	,
					Area= 8.0 sf Perim= 8.0' r= 1.00'
0.5	F 40	0 0005	0.00	00.07	n= 0.040 Winding stream, pools & shoals
2.5	540	0.0095	3.62	28.97	Channel Flow, F - G
					Area= 8.0 sf Perim= 8.0' r= 1.00'
2.4	600	0.0066	2.00	04.44	n= 0.040 Winding stream, pools & shoals
3.4	608	0.0066	3.02	24.14	Channel Flow, G - H Area= 8.0 sf Perim= 8.0' r= 1.00'
40.0	0.000	Tatal			n= 0.040 Winding stream, pools & shoals
49.9	2,998	Total			

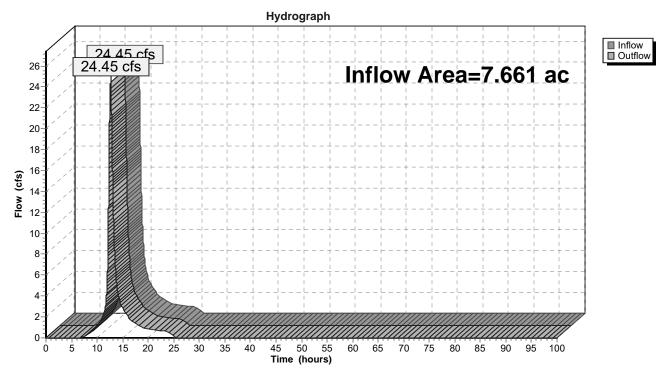


Subcatchment 3S: SUBCATCHMENT 3

Summary for Reach 16R: POI #1

Inflow Area	a =	26.484 ac,	6.04% Impervious, Inflow Depth	= 5.68"	for 100 Year Saco event
Inflow	=	52.59 cfs @	13.28 hrs, Volume= 12.5	30 af	
Outflow	=	52.59 cfs @	13.28 hrs, Volume= 12.5	30 af, Atte	n= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-100.00 hrs, dt= 0.01 hrs

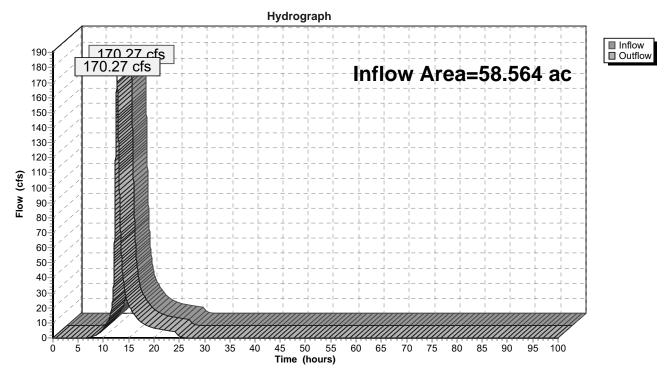


Reach 16R: POI #1

Summary for Reach 17R: POI #2

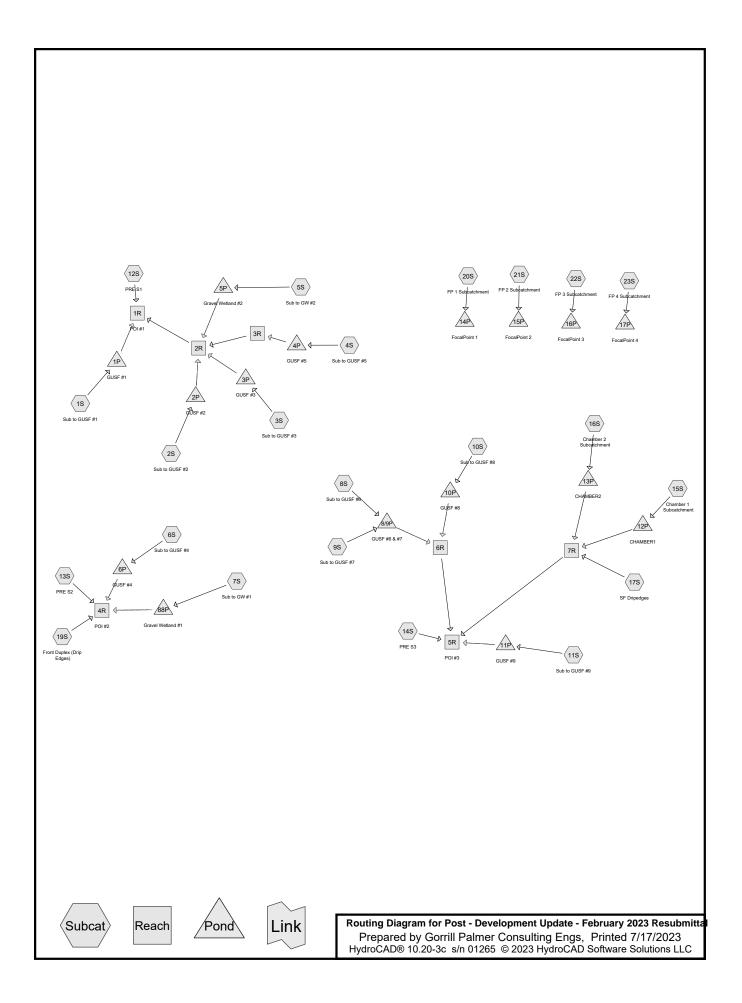
Inflow Area	a =	7.661 ac,	5.45% Impervious, Inflow D	epth = 6.04" fo	r 100 Year Saco event
Inflow	=	24.45 cfs @	12.65 hrs, Volume=	3.857 af	
Outflow	=	24.45 cfs @	12.65 hrs, Volume=	3.857 af, Atten=	0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-100.00 hrs, dt= 0.01 hrs


Reach 17R: POI #2

Pre - Development Update 9-29-22Type III 24-hr100 Year Saco Rainfall=8.70"Prepared by Gorrill Palmer Consulting EngsPrinted 7/17/2023HydroCAD® 10.20-3cs/n 01265 © 2023 HydroCAD Software Solutions LLCPage 10

Summary for Reach 18R: POI #3


Inflow Area	a =	58.564 ac,	9.52% Impervious, Inflow	Depth = 5.68"	for 100 Year Saco event
Inflow	=	170.27 cfs @	12.69 hrs, Volume=	27.708 af	
Outflow	=	170.27 cfs @	12.69 hrs, Volume=	27.708 af, At	ten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-100.00 hrs, dt= 0.01 hrs

Reach 18R: POI #3

POST DEVELOPMENT

Post - Development Update - February 2023 Res Type III 24-hr 2 Year Saco Rainfall=3.30"Prepared by Gorrill Palmer Consulting EngsPrinted 7/17/2023HydroCAD® 10.20-3c s/n 01265 © 2023 HydroCAD Software Solutions LLCPage 2

Time span=0.00-200.00 hrs, dt=0.10 hrs, 2001 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment1S: Sub to GUSF #1	Runoff Area=73,933 sf 67.19% Impervious Runoff Depth=2.45" Tc=5.0 min CN=92 Runoff=4.44 cfs 0.346 af
Subcatchment 2S: Sub to GUSF #2	Runoff Area=82,545 sf 47.04% Impervious Runoff Depth=2.09" Tc=5.0 min CN=88 Runoff=4.34 cfs 0.330 af
Subcatchment 3S: Sub to GUSF #3	Runoff Area=44,837 sf 71.91% Impervious Runoff Depth=2.54" Tc=5.0 min CN=93 Runoff=2.77 cfs 0.218 af
Subcatchment 4S: Sub to GUSF #5	Runoff Area=39,620 sf 67.95% Impervious Runoff Depth=2.45" Tc=5.0 min CN=92 Runoff=2.38 cfs 0.185 af
Subcatchment 5S: Sub to GW #2	Runoff Area=167,094 sf 63.95% Impervious Runoff Depth=2.45" Tc=5.0 min CN=92 Runoff=10.02 cfs 0.782 af
Subcatchment 6S: Sub to GUSF #4	Runoff Area=44,235 sf 66.73% Impervious Runoff Depth=2.45" Tc=5.0 min CN=92 Runoff=2.65 cfs 0.207 af
Subcatchment 7S: Sub to GW #1	Runoff Area=318,070 sf 60.35% Impervious Runoff Depth=2.26" Tc=5.0 min CN=90 Runoff=17.92 cfs 1.376 af
Subcatchment 8S: Sub to GUSF #6	Runoff Area=79,636 sf 23.58% Impervious Runoff Depth=0.22" Tc=5.0 min CN=53 Runoff=0.15 cfs 0.034 af
Subcatchment9S: Sub to GUSF #7	Runoff Area=36,965 sf 63.79% Impervious Runoff Depth=1.28" Tc=5.0 min CN=77 Runoff=1.19 cfs 0.091 af
Subcatchment 10S: Sub to GUSF #8	Runoff Area=60,887 sf 60.77% Impervious Runoff Depth=1.41" Tc=5.0 min CN=79 Runoff=2.17 cfs 0.165 af
Subcatchment 11S: Sub to GUSF #9	Runoff Area=91,815 sf 70.56% Impervious Runoff Depth=2.09" Tc=5.0 min CN=88 Runoff=4.82 cfs 0.367 af
Subcatchment 12S: PRE S1	Runoff Area=653,124 sf 12.20% Impervious Runoff Depth=1.16" Flow Length=2,066' Tc=91.1 min CN=75 Runoff=5.85 cfs 1.452 af
Subcatchment 13S: PRE S2	Runoff Area=172,161 sf 11.00% Impervious Runoff Depth=1.48" Flow Length=740' Tc=34.4 min CN=80 Runoff=3.58 cfs 0.487 af
Subcatchment 14S: PRE S3	Runoff Area=2,111,132 sf 12.78% Impervious Runoff Depth=1.22" Flow Length=2,998' Tc=49.9 min CN=76 Runoff=29.25 cfs 4.936 af
Subcatchment 15S: Chamber 1	Runoff Area=22,534 sf 84.12% Impervious Runoff Depth=2.74" Tc=5.0 min CN=95 Runoff=1.46 cfs 0.118 af
Subcatchment16S: Chamber 2	Runoff Area=25,923 sf 86.51% Impervious Runoff Depth=2.85" Tc=5.0 min CN=96 Runoff=1.72 cfs 0.141 af

Post - Development Update - February 2023 Res Type III 24-hr 2 Year Saco Rainfall=3.30"Prepared by Gorrill Palmer Consulting EngsPrinted 7/17/2023HydroCAD® 10.20-3c s/n 01265 © 2023 HydroCAD Software Solutions LLCPage 3

Subcatchment17S: SF Dripedges	Runoff Area=11,292 sf 82.15% Impervious Runoff Depth=2.74" Tc=5.0 min CN=95 Runoff=0.73 cfs 0.059 af
Subcatchment19S: Front Duplex (Drip	Runoff Area=2,612 sf 100.00% Impervious Runoff Depth=3.07" Tc=5.0 min CN=98 Runoff=0.18 cfs 0.015 af
Subcatchment 20S: FP 1 Subcatchment	Runoff Area=17,052 sf 80.52% Impervious Runoff Depth=2.64" Tc=5.0 min CN=94 Runoff=1.08 cfs 0.086 af
Subcatchment 21S: FP 2 Subcatchment	Runoff Area=5,482 sf 95.31% Impervious Runoff Depth=2.96" Tc=5.0 min CN=97 Runoff=0.37 cfs 0.031 af
Subcatchment 22S: FP 3 Subcatchment	Runoff Area=20,003 sf 83.70% Impervious Runoff Depth=2.74" Tc=5.0 min CN=95 Runoff=1.30 cfs 0.105 af
Subcatchment 23S: FP 4 Subcatchment	Runoff Area=5,920 sf 96.01% Impervious Runoff Depth=2.96" Tc=5.0 min CN=97 Runoff=0.40 cfs 0.033 af
Reach 1R: POI #1	Inflow=8.89 cfs 3.313 af Outflow=8.89 cfs 3.313 af
	Avg. Flow Depth=0.39' Max Vel=2.11 fps Inflow=2.98 cfs 1.515 af 7.6' S=0.0077 '/' Capacity=232.90 cfs Outflow=2.95 cfs 1.515 af
	Avg. Flow Depth=0.02' Max Vel=0.29 fps Inflow=0.50 cfs 0.185 af 5.9' S=0.0046 '/' Capacity=997.94 cfs Outflow=0.33 cfs 0.185 af
Reach 4R: POI #2	Inflow=4.88 cfs 2.086 af Outflow=4.88 cfs 2.086 af
Reach 5R: POI #3	Inflow=31.08 cfs 5.900 af Outflow=31.08 cfs 5.900 af
	Avg. Flow Depth=0.23' Max Vel=0.05 fps Inflow=0.25 cfs 0.284 af 10.0' S=0.0066 '/' Capacity=13.21 cfs Outflow=0.21 cfs 0.284 af
	Avg. Flow Depth=0.23' Max Vel=1.76 fps Inflow=2.20 cfs 0.314 af 0.0' S=0.0083 '/' Capacity=129.49 cfs Outflow=1.55 cfs 0.314 af
Pond 1P: GUSF #1 Primary=0.06 cfs 0.202 af Secondary=0.81 c	Peak Elev=102.44' Storage=7,256 cf Inflow=4.44 cfs 0.346 af fs 0.144 af Tertiary=0.00 cfs 0.000 af Outflow=0.87 cfs 0.346 af
Pond 2P: GUSF #2 Primary=0.05 cfs 0.178 af Secondary=0.83 c	Peak Elev=103.34' Storage=6,731 cf Inflow=4.34 cfs 0.330 af fs 0.151 af Tertiary=0.00 cfs 0.000 af Outflow=0.88 cfs 0.330 af
Pond 3P: GUSF #3 Primary=0.04 cfs 0.129 af Secondary=0.57 c	Peak Elev=101.94' Storage=4,496 cf Inflow=2.77 cfs 0.218 af fs 0.089 af Tertiary=0.00 cfs 0.000 af Outflow=0.61 cfs 0.218 af
Pond 4P: GUSF #5 Primary=0.04 cfs 0.116 af Secondary=0.46 c	Peak Elev=102.94' Storage=3,764 cf Inflow=2.38 cfs 0.185 af fs 0.070 af Tertiary=0.00 cfs 0.000 af Outflow=0.50 cfs 0.185 af
Pond 5P: Gravel Wetland #2	Peak Elev=100.27' Storage=17,579 cf Inflow=10.02 cfs 0.782 af

Pond 5P: Gravel Wetland #2 Peak Elev=100.27' Storage=17,579 cf Inflow=10.02 cfs 0.782 af Primary=0.19 cfs 0.476 af Secondary=1.29 cfs 0.306 af Tertiary=0.00 cfs 0.000 af Outflow=1.49 cfs 0.782 af

Post - Development Update - February 2023 Res Type III 24-hr 2	? Year Saco Rainfall=3.30"
Prepared by Gorrill Palmer Consulting Engs	Printed 7/17/2023
HydroCAD® 10.20-3c s/n 01265 © 2023 HydroCAD Software Solutions LLC	Page 4

Pond 6P: GUSF #4 Primary=0.04 cfs 0.124 af	Peak Elev=101.70' Storage=4,378 cf Inflow=2.65 cfs 0.207 af Secondary=0.38 cfs 0.083 af Tertiary=0.00 cfs 0.000 af Outflow=0.42 cfs 0.207 af
Pond 8/9P: GUSF #6 & #7 Primary=0.14 cfs 0.119 af	Peak Elev=99.61' Storage=1,793 cf Inflow=1.22 cfs 0.125 af Secondary=0.00 cfs 0.000 af Tertiary=0.00 cfs 0.000 af Outflow=0.14 cfs 0.119 af
Pond 10P: GUSF #8 Primary=0.05 cfs 0.145 af	Peak Elev=101.69' Storage=4,357 cf Inflow=2.17 cfs 0.165 af Secondary=0.06 cfs 0.019 af Tertiary=0.00 cfs 0.000 af Outflow=0.11 cfs 0.165 af
Pond 11P: GUSF #9 Primary=0.07 cfs 0.241 af	Peak Elev=98.42' Storage=8,218 cf Inflow=4.82 cfs 0.367 af Secondary=0.43 cfs 0.126 af Tertiary=0.00 cfs 0.000 af Outflow=0.50 cfs 0.367 af
Pond 12P: CHAMBER1	Peak Elev=107.07' Storage=0.042 af Inflow=1.46 cfs 0.118 af Primary=0.02 cfs 0.071 af Secondary=0.71 cfs 0.042 af Outflow=0.73 cfs 0.113 af
Pond 13P: CHAMBER2	Peak Elev=106.87' Storage=0.050 af Inflow=1.72 cfs 0.141 af Primary=0.02 cfs 0.079 af Secondary=1.26 cfs 0.063 af Outflow=1.28 cfs 0.142 af
Pond 14P: FocalPoint 1	Peak Elev=108.83' Storage=74 cf Inflow=1.08 cfs 0.086 af Primary=0.15 cfs 0.061 af Secondary=0.99 cfs 0.026 af Outflow=1.13 cfs 0.086 af
Pond 15P: FocalPoint 2	Peak Elev=108.75' Storage=31 cf Inflow=0.37 cfs 0.031 af Primary=0.15 cfs 0.039 af Secondary=0.16 cfs 0.002 af Outflow=0.31 cfs 0.040 af
Pond 16P: FocalPoint 3	Peak Elev=108.84' Storage=80 cf Inflow=1.30 cfs 0.105 af Primary=0.18 cfs 0.066 af Secondary=1.12 cfs 0.033 af Outflow=1.30 cfs 0.098 af
Pond 17P: FocalPoint 4	Peak Elev=108.76' Storage=44 cf Inflow=0.40 cfs 0.033 af Primary=0.07 cfs 0.016 af Secondary=0.32 cfs 0.008 af Outflow=0.39 cfs 0.024 af
Pond 88P: Gravel Wetlan Primary=1.00 cfs 1.372 af	d #1 Peak Elev=100.29' Storage=36,350 cf Inflow=17.92 cfs 1.376 af Secondary=0.02 cfs 0.004 af Tertiary=0.00 cfs 0.000 af Outflow=1.02 cfs 1.376 af
Total Runoff	Area = 93.822 ac Runoff Volume = 11.565 af Average Runoff Depth = 1.48

Total Runoff Area = 93.822 ac Runoff Volume = 11.565 af Average Runoff Depth = 1.48" 73.50% Pervious = 68.955 ac 26.50% Impervious = 24.867 ac Post - Development Update - February 2023 ResType III 24-hr10 Year Saco Rainfall=4.90"Prepared by Gorrill Palmer Consulting EngsPrinted 7/17/2023HydroCAD® 10.20-3cs/n 01265 © 2023 HydroCAD Software Solutions LLCPage 5

Time span=0.00-200.00 hrs, dt=0.10 hrs, 2001 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment 1S: Sub to GUSF #1	Runoff Area=73,933 sf 67.19% Impervious Runoff Depth=3.99" Tc=5.0 min CN=92 Runoff=7.04 cfs 0.565 af
Subcatchment 2S: Sub to GUSF #2	Runoff Area=82,545 sf 47.04% Impervious Runoff Depth=3.57" Tc=5.0 min CN=88 Runoff=7.26 cfs 0.564 af
Subcatchment 3S: Sub to GUSF #3	Runoff Area=44,837 sf 71.91% Impervious Runoff Depth=4.10" Tc=5.0 min CN=93 Runoff=4.34 cfs 0.352 af
Subcatchment 4S: Sub to GUSF #5	Runoff Area=39,620 sf 67.95% Impervious Runoff Depth=3.99" Tc=5.0 min CN=92 Runoff=3.77 cfs 0.303 af
Subcatchment 5S: Sub to GW #2	Runoff Area=167,094 sf 63.95% Impervious Runoff Depth=3.99" Tc=5.0 min CN=92 Runoff=15.91 cfs 1.276 af
Subcatchment 6S: Sub to GUSF #4	Runoff Area=44,235 sf 66.73% Impervious Runoff Depth=3.99" Tc=5.0 min CN=92 Runoff=4.21 cfs 0.338 af
Subcatchment 7S: Sub to GW #1	Runoff Area=318,070 sf 60.35% Impervious Runoff Depth=3.78" Tc=5.0 min CN=90 Runoff=29.19 cfs 2.300 af
Subcatchment 8S: Sub to GUSF #6	Runoff Area=79,636 sf 23.58% Impervious Runoff Depth=0.81" Tc=5.0 min CN=53 Runoff=1.25 cfs 0.124 af
Subcatchment9S: Sub to GUSF #7	Runoff Area=36,965 sf 63.79% Impervious Runoff Depth=2.54" Tc=5.0 min CN=77 Runoff=2.39 cfs 0.180 af
Subcatchment 10S: Sub to GUSF #8	Runoff Area=60,887 sf 60.77% Impervious Runoff Depth=2.72" Tc=5.0 min CN=79 Runoff=4.20 cfs 0.316 af
Subcatchment11S: Sub to GUSF #9	Runoff Area=91,815 sf 70.56% Impervious Runoff Depth=3.57" Tc=5.0 min CN=88 Runoff=8.08 cfs 0.628 af
Subcatchment 12S: PRE S1	Runoff Area=653,124 sf 12.20% Impervious Runoff Depth=2.37" Flow Length=2,066' Tc=91.1 min CN=75 Runoff=12.44 cfs 2.959 af
Subcatchment 13S: PRE S2	Runoff Area=172,161 sf 11.00% Impervious Runoff Depth=2.81" Flow Length=740' Tc=34.4 min CN=80 Runoff=6.86 cfs 0.924 af
Subcatchment 14S: PRE S3	Runoff Area=2,111,132 sf 12.78% Impervious Runoff Depth=2.45" Flow Length=2,998' Tc=49.9 min CN=76 Runoff=60.61 cfs 9.908 af
Subcatchment 15S: Chamber 1	Runoff Area=22,534 sf 84.12% Impervious Runoff Depth=4.32" Tc=5.0 min CN=95 Runoff=2.24 cfs 0.186 af
Subcatchment 16S: Chamber 2	Runoff Area=25,923 sf 86.51% Impervious Runoff Depth=4.43" Tc=5.0 min CN=96 Runoff=2.61 cfs 0.220 af

Post - Development Update - February 2023 ResType III 24-hr10 Year Saco Rainfall=4.90"Prepared by Gorrill Palmer Consulting EngsPrinted 7/17/2023HydroCAD® 10.20-3cs/n 01265 © 2023 HydroCAD Software Solutions LLCPage 6

Subcatchment 17S: SF Dripedges	Runoff Area=11,292 sf 82.15% Impervious Runoff Depth=4.32" Tc=5.0 min CN=95 Runoff=1.12 cfs 0.093 af
Subcatchment 19S: Front Duplex (Drip	Runoff Area=2,612 sf 100.00% Impervious Runoff Depth=4.66" Tc=5.0 min CN=98 Runoff=0.27 cfs 0.023 af
Subcatchment 20S: FP 1 Subcatchment	Runoff Area=17,052 sf 80.52% Impervious Runoff Depth=4.21" Tc=5.0 min CN=94 Runoff=1.68 cfs 0.137 af
Subcatchment 21S: FP 2 Subcatchment	Runoff Area=5,482 sf 95.31% Impervious Runoff Depth=4.55" Tc=5.0 min CN=97 Runoff=0.56 cfs 0.048 af
Subcatchment 22S: FP 3 Subcatchment	Runoff Area=20,003 sf 83.70% Impervious Runoff Depth=4.32" Tc=5.0 min CN=95 Runoff=1.99 cfs 0.165 af
Subcatchment 23S: FP 4 Subcatchment	Runoff Area=5,920 sf 96.01% Impervious Runoff Depth=4.55" Tc=5.0 min CN=97 Runoff=0.60 cfs 0.052 af
Reach 1R: POI #1	Inflow=20.13 cfs 6.019 af Outflow=20.13 cfs 6.019 af
	Avg. Flow Depth=0.68' Max Vel=3.01 fps Inflow=9.67 cfs 2.495 af 7.6' S=0.0077 '/' Capacity=232.90 cfs Outflow=9.60 cfs 2.495 af
	Avg. Flow Depth=0.05' Max Vel=0.46 fps Inflow=1.71 cfs 0.303 af 5.9' S=0.0046 '/' Capacity=997.94 cfs Outflow=1.25 cfs 0.303 af
Reach 4R: POI #2	Inflow=9.34 cfs 3.586 af Outflow=9.34 cfs 3.586 af
Reach 5R: POI #3	Inflow=64.68 cfs 11.657 af Outflow=64.68 cfs 11.657 af
	Avg. Flow Depth=0.37' Max Vel=0.07 fps Inflow=1.08 cfs 0.620 af 10.0' S=0.0066 '/' Capacity=13.21 cfs Outflow=0.48 cfs 0.620 af
	Avg. Flow Depth=0.39' Max Vel=2.37 fps Inflow=5.85 cfs 0.501 af 0.0' S=0.0083 '/' Capacity=129.49 cfs Outflow=4.13 cfs 0.501 af
Pond 1P: GUSF #1 Primary=0.06 cfs 0.214 af Secondary=2.20 c	Peak Elev=103.06' Storage=10,577 cf Inflow=7.04 cfs 0.565 af fs 0.350 af Tertiary=0.00 cfs 0.000 af Outflow=2.26 cfs 0.565 af
Pond 2P: GUSF #2 Primary=0.05 cfs 0.188 af Secondary=2.86 c	Peak Elev=103.95' Storage=9,679 cf Inflow=7.26 cfs 0.564 af fs 0.376 af Tertiary=0.00 cfs 0.000 af Outflow=2.91 cfs 0.565 af
Pond 3P: GUSF #3 Primary=0.04 cfs 0.138 af Secondary=1.73 c	Peak Elev=102.39' Storage=6,212 cf Inflow=4.34 cfs 0.352 af fs 0.214 af Tertiary=0.00 cfs 0.000 af Outflow=1.77 cfs 0.352 af
Pond 4P: GUSF #5 Primary=0.04 cfs 0.125 af Secondary=1.67 c	Peak Elev=103.30' Storage=5,111 cf Inflow=3.77 cfs 0.303 af fs 0.178 af Tertiary=0.00 cfs 0.000 af Outflow=1.71 cfs 0.303 af
Pond 5P: Gravel Wetland #2	Peak Elev=100.91' Storage=25,398 cf Inflow=15.91 cfs 1.276 af

 Pond 5P: Gravel Wetland #2
 Peak Elev=100.91' Storage=25,398 ct
 Inflow=15.91 cfs
 1.276 at

 Primary=0.22 cfs
 0.515 af
 Secondary=4.71 cfs
 0.761 af
 Tertiary=0.00 cfs
 0.000 af
 Outflow=4.93 cfs
 1.276 af

Post - Development Update - February 2023 ResType III 24-hr	10 Year Saco Rainfall=4.90"
Prepared by Gorrill Palmer Consulting Engs	Printed 7/17/2023
HydroCAD® 10.20-3c s/n 01265 © 2023 HydroCAD Software Solutions LLC	Page 7

Pond 6P: GUSF #4	Peak Elev=102.46' Storage=7,074 cf Inflow=4.21 cfs 0.338 af
Primary=0.04 cts 0.133 at	Secondary=0.75 cfs 0.205 af Tertiary=0.00 cfs 0.000 af Outflow=0.79 cfs 0.338 af
Pond 8/9P: GUSF #6 & #7	Peak Elev=100.58' Storage=6,943 cf Inflow=3.62 cfs 0.304 af
Primary=0.14 cfs 0.280 af	Secondary=0.07 cfs 0.023 af Tertiary=0.00 cfs 0.000 af Outflow=0.21 cfs 0.303 af
Pond 10P: GUSF #8	Peak Elev=102.09' Storage=6,024 cf Inflow=4.20 cfs 0.316 af
	Secondary=0.89 cfs 0.160 af Tertiary=0.00 cfs 0.000 af Outflow=0.94 cfs 0.316 af
•	
Pond 11P: GUSF #9	Peak Elev=99.06' Storage=12,318 cf Inflow=8.08 cfs 0.628 af Secondary=1.99 cfs 0.373 af Tertiary=0.00 cfs 0.000 af Outflow=2.06 cfs 0.628 af
Phinary=0.07 cis 0.255 ai	Secondary-1.99 cis 0.373 al Ternary-0.00 cis 0.000 al Outilow-2.06 cis 0.626 al
Pond 12P: CHAMBER1	Peak Elev=107.21' Storage=0.044 af Inflow=2.24 cfs 0.186 af
	Primary=0.02 cfs 0.074 af Secondary=2.18 cfs 0.114 af Outflow=2.20 cfs 0.188 af
Pond 13P: CHAMBER2	Peak Elev=106.98' Storage=0.052 af Inflow=2.61 cfs 0.220 af
	Primary=0.02 cfs 0.082 af Secondary=2.51 cfs 0.138 af Outflow=2.53 cfs 0.220 af
Pond 14P: FocalPoint 1	Peak Elev=108.88' Storage=81 cf Inflow=1.68 cfs 0.137 af Primary=0.15 cfs 0.088 af Secondary=1.54 cfs 0.050 af Outflow=1.69 cfs 0.137 af
Pond 15P: FocalPoint 2	Peak Elev=108.79' Storage=34 cf Inflow=0.56 cfs 0.048 af
	Primary=0.15 cfs 0.050 af Secondary=0.39 cfs 0.008 af Outflow=0.54 cfs 0.057 af
Pond 16P: FocalPoint 3	Peak Elev=108.90' Storage=88 cf Inflow=1.99 cfs 0.165 af
	Primary=0.18 cfs 0.080 af Secondary=1.80 cfs 0.059 af Outflow=1.97 cfs 0.139 af
Pond 17P: FocalPoint 4	Peak Elev=108.79' Storage=47 cf Inflow=0.60 cfs 0.052 af Primary=0.07 cfs 0.034 af Secondary=0.53 cfs 0.016 af Outflow=0.60 cfs 0.050 af
Pond 88P: Gravel Wetlan	
Primary=1.58 cfs 2.178 af	Secondary=0.18 cfs 0.122 af Tertiary=0.00 cfs 0.000 af Outflow=1.76 cfs 2.300 af
Total Runoff	Area = 93.822 ac Runoff Volume = 21.661 af Average Runoff Depth = 2.77

Total Runoff Area = 93.822 acRunoff Volume = 21.661 afAverage Runoff Depth = 2.77"73.50% Pervious = 68.955 ac26.50% Impervious = 24.867 ac

Post - Development Update - February 2023 ResType III 24-hr 25 Year Saco Rainfall=6.20"Prepared by Gorrill Palmer Consulting EngsPrinted 7/17/2023HydroCAD® 10.20-3c s/n 01265 © 2023 HydroCAD Software Solutions LLCPage 8

Time span=0.00-200.00 hrs, dt=0.10 hrs, 2001 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment 1S: Sub to GUSF #1	Runoff Area=73,933 sf 67.19% Impervious Runoff Depth=5.27" Tc=5.0 min CN=92 Runoff=9.13 cfs 0.745 af
Subcatchment 2S: Sub to GUSF #2	Runoff Area=82,545 sf 47.04% Impervious Runoff Depth=4.82" Tc=5.0 min CN=88 Runoff=9.64 cfs 0.761 af
Subcatchment 3S: Sub to GUSF #3	Runoff Area=44,837 sf 71.91% Impervious Runoff Depth=5.38" Tc=5.0 min CN=93 Runoff=5.60 cfs 0.461 af
Subcatchment 4S: Sub to GUSF #5	Runoff Area=39,620 sf 67.95% Impervious Runoff Depth=5.27" Tc=5.0 min CN=92 Runoff=4.89 cfs 0.399 af
Subcatchment 5S: Sub to GW #2	Runoff Area=167,094 sf 63.95% Impervious Runoff Depth=5.27" Tc=5.0 min CN=92 Runoff=20.64 cfs 1.683 af
Subcatchment 6S: Sub to GUSF #4	Runoff Area=44,235 sf 66.73% Impervious Runoff Depth=5.27" Tc=5.0 min CN=92 Runoff=5.46 cfs 0.446 af
Subcatchment7S: Sub to GW #1	Runoff Area=318,070 sf 60.35% Impervious Runoff Depth=5.04" Tc=5.0 min CN=90 Runoff=38.28 cfs 3.067 af
Subcatchment8S: Sub to GUSF #6	Runoff Area=79,636 sf 23.58% Impervious Runoff Depth=1.47" Tc=5.0 min CN=53 Runoff=2.67 cfs 0.225 af
Subcatchment9S: Sub to GUSF #7	Runoff Area=36,965 sf 63.79% Impervious Runoff Depth=3.65" Tc=5.0 min CN=77 Runoff=3.42 cfs 0.258 af
Subcatchment 10S: Sub to GUSF #8	Runoff Area=60,887 sf 60.77% Impervious Runoff Depth=3.86" Tc=5.0 min CN=79 Runoff=5.92 cfs 0.449 af
Subcatchment11S: Sub to GUSF #9	Runoff Area=91,815 sf 70.56% Impervious Runoff Depth=4.82" Tc=5.0 min CN=88 Runoff=10.72 cfs 0.846 af
Subcatchment 12S: PRE S1	Runoff Area=653,124 sf 12.20% Impervious Runoff Depth=3.45" Flow Length=2,066' Tc=91.1 min CN=75 Runoff=18.30 cfs 4.315 af
Subcatchment 13S: PRE S2	Runoff Area=172,161 sf 11.00% Impervious Runoff Depth=3.96" Flow Length=740' Tc=34.4 min CN=80 Runoff=9.65 cfs 1.305 af
Subcatchment 14S: PRE S3	Runoff Area=2,111,132 sf 12.78% Impervious Runoff Depth=3.55" Flow Length=2,998' Tc=49.9 min CN=76 Runoff=88.15 cfs 14.351 af
Subcatchment 15S: Chamber 1	Runoff Area=22,534 sf 84.12% Impervious Runoff Depth=5.61" Tc=5.0 min CN=95 Runoff=2.87 cfs 0.242 af
Subcatchment 16S: Chamber 2	Runoff Area=25,923 sf 86.51% Impervious Runoff Depth=5.73" Tc=5.0 min CN=96 Runoff=3.33 cfs 0.284 af

Post - Development Update - February 2023 ResType III 24-hr 25 Year Saco Rainfall=6.20"Prepared by Gorrill Palmer Consulting EngsPrinted 7/17/2023HydroCAD® 10.20-3c s/n 01265 © 2023 HydroCAD Software Solutions LLCPage 9

Subcatchment17S: SF Dripedges	Runoff Area=11,292 sf 82.15% Impervious Runoff Depth=5.61" Tc=5.0 min CN=95 Runoff=1.44 cfs 0.121 af
Subcatchment19S: Front Duplex (Drip	Runoff Area=2,612 sf 100.00% Impervious Runoff Depth=5.96" Tc=5.0 min CN=98 Runoff=0.34 cfs 0.030 af
Subcatchment 20S: FP 1 Subcatchment	Runoff Area=17,052 sf 80.52% Impervious Runoff Depth=5.49" Tc=5.0 min CN=94 Runoff=2.15 cfs 0.179 af
Subcatchment 21S: FP 2 Subcatchment	Runoff Area=5,482 sf 95.31% Impervious Runoff Depth=5.84" Tc=5.0 min CN=97 Runoff=0.71 cfs 0.061 af
Subcatchment 22S: FP 3 Subcatchment	Runoff Area=20,003 sf 83.70% Impervious Runoff Depth=5.61" Tc=5.0 min CN=95 Runoff=2.55 cfs 0.215 af
Subcatchment 23S: FP 4 Subcatchment	Runoff Area=5,920 sf 96.01% Impervious Runoff Depth=5.84" Tc=5.0 min CN=97 Runoff=0.76 cfs 0.066 af
Reach 1R: POI #1	Inflow=30.13 cfs 8.365 af Outflow=30.13 cfs 8.365 af
	vg. Flow Depth=0.81' Max Vel=3.40 fps Inflow=14.42 cfs 3.305 af 7.6' S=0.0077 '/' Capacity=232.90 cfs Outflow=14.35 cfs 3.305 af
	Avg. Flow Depth=0.07' Max Vel=0.57 fps Inflow=2.62 cfs 0.399 af 5.9' S=0.0046 '/' Capacity=997.94 cfs Outflow=2.11 cfs 0.399 af
Reach 4R: POI #2	Inflow=12.74 cfs 4.848 af Outflow=12.74 cfs 4.848 af
Reach 4R: POI #2 Reach 5R: POI #3	
Reach 5R: POI #3 Reach 6R:	Outflow=12.74 cfs 4.848 af Inflow=93.55 cfs 16.777 af
Reach 5R: POI #3 Reach 6R: n=0.800 L=6 Reach 7R:	Outflow=12.74 cfs 4.848 af Inflow=93.55 cfs 16.777 af Outflow=93.55 cfs 16.777 af Avg. Flow Depth=0.58' Max Vel=0.09 fps Inflow=2.33 cfs 0.933 af
Reach 5R: POI #3 Reach 6R: n=0.800 L=6 Reach 7R: n=0.025 L=1,48 Pond 1P: GUSF #1	Outflow=12.74 cfs 4.848 af Inflow=93.55 cfs 16.777 af Outflow=93.55 cfs 16.777 af Avg. Flow Depth=0.58' Max Vel=0.09 fps Inflow=2.33 cfs 0.933 af 10.0' S=0.0066 '/' Capacity=13.21 cfs Outflow=1.11 cfs 0.933 af Avg. Flow Depth=0.46' Max Vel=2.57 fps Inflow=7.49 cfs 0.647 af
Reach 5R: POI #3 Reach 6R: n=0.800 L=6 Reach 7R: n=0.025 L=1,48 Pond 1P: GUSF #1 Primary=0.06 cfs 0.221 af Secondary=2.88 of Pond 2P: GUSF #2	Outflow=12.74 cfs 4.848 af Inflow=93.55 cfs 16.777 af Outflow=93.55 cfs 16.777 af Avg. Flow Depth=0.58' Max Vel=0.09 fps Inflow=2.33 cfs 0.933 af 10.0' S=0.0066 '/' Capacity=13.21 cfs Outflow=1.11 cfs 0.933 af Avg. Flow Depth=0.46' Max Vel=2.57 fps Inflow=7.49 cfs 0.647 af 00.0' S=0.0083 '/' Capacity=129.49 cfs Outflow=5.51 cfs 0.647 af Peak Elev=103.56' Storage=13,556 cf Inflow=9.13 cfs 0.745 af
Reach 5R: POI #3 Reach 6R: n=0.800 L=6 Reach 7R: n=0.025 L=1,48 Pond 1P: GUSF #1 Primary=0.06 cfs 0.221 af Secondary=2.88 of Pond 2P: GUSF #2 Primary=0.05 cfs 0.194 af Secondary=3.92 of Pond 3P: GUSF #3	Outflow=12.74 cfs 4.848 af Inflow=93.55 cfs 16.777 af Outflow=93.55 cfs 16.777 af Avg. Flow Depth=0.58' Max Vel=0.09 fps Inflow=2.33 cfs 0.933 af i10.0' S=0.0066 '/' Capacity=13.21 cfs Outflow=1.11 cfs 0.933 af Avg. Flow Depth=0.46' Max Vel=2.57 fps Inflow=7.49 cfs 0.647 af 0.0' S=0.0083 '/' Capacity=129.49 cfs Outflow=5.51 cfs 0.647 af Peak Elev=103.56' Storage=13,556 cf Inflow=9.13 cfs 0.745 af cfs 0.524 af Tertiary=0.00 cfs 0.000 af Outflow=2.94 cfs 0.745 af Peak Elev=104.45' Storage=12,345 cf Inflow=9.64 cfs 0.761 af
Reach 5R: POI #3 Reach 6R: n=0.800 L=6 Reach 7R: n=0.025 L=1,48 Pond 1P: GUSF #1 Primary=0.06 cfs 0.221 af Secondary=2.88 d Pond 2P: GUSF #2 Primary=0.05 cfs 0.194 af Secondary=3.92 d Pond 3P: GUSF #3 Primary=0.04 cfs 0.142 af Secondary=2.32 d Pond 4P: GUSF #5	Outflow=12.74 cfs 4.848 af Inflow=93.55 cfs 16.777 af Outflow=93.55 cfs 16.777 af Avg. Flow Depth=0.58' Max Vel=0.09 fps Inflow=2.33 cfs 0.933 af 510.0' S=0.0066 '/' Capacity=13.21 cfs Outflow=1.11 cfs 0.933 af Avg. Flow Depth=0.46' Max Vel=2.57 fps Inflow=7.49 cfs 0.647 af 60.0' S=0.0083 '/' Capacity=129.49 cfs Outflow=5.51 cfs 0.647 af Peak Elev=103.56' Storage=13,556 cf Inflow=9.13 cfs 0.745 af cfs 0.524 af Tertiary=0.00 cfs 0.000 af Outflow=2.94 cfs 0.745 af Peak Elev=104.45' Storage=12,345 cf Inflow=9.64 cfs 0.761 af Peak Elev=102.74' Storage=7,664 cf Inflow=5.60 cfs 0.461 af

Post - Development Update - February 2023 ResType III 24-hr 25 Year Saco Rainfall=6.20"			
Prepared by Gorrill Palmer Consulting Engs	Printed 7/17/2023		
HydroCAD® 10.20-3c s/n 01265 © 2023 HydroCAD Software Solutions LLC	Page 10		

Pond 6P: GUSF #4 Primary=0.04 cfs 0.138 af	Peak Elev=103.04' Storage=9,428 cf Inflow=5.46 cfs 0.446 af Secondary=0.93 cfs 0.308 af Tertiary=0.00 cfs 0.000 af Outflow=0.97 cfs 0.446 af
Pond 8/9P: GUSF #6 & #7 Primary=0.14 cfs 0.307 af	Peak Elev=100.91' Storage=9,195 cf Inflow=6.07 cfs 0.483 af Secondary=0.46 cfs 0.176 af Tertiary=0.00 cfs 0.000 af Outflow=0.60 cfs 0.483 af
Pond 10P: GUSF #8 Primary=0.05 cfs 0.163 af	Peak Elev=102.49' Storage=7,792 cf Inflow=5.92 cfs 0.449 af Secondary=1.86 cfs 0.287 af Tertiary=0.00 cfs 0.000 af Outflow=1.91 cfs 0.450 af
Pond 11P: GUSF #9 Primary=0.07 cfs 0.264 af	Peak Elev=99.62' Storage=16,342 cf Inflow=10.72 cfs 0.846 af Secondary=2.79 cfs 0.583 af Tertiary=0.00 cfs 0.000 af Outflow=2.86 cfs 0.846 af
Pond 12P: CHAMBER1	Peak Elev=107.25' Storage=0.044 af Inflow=2.87 cfs 0.242 af Primary=0.02 cfs 0.076 af Secondary=2.79 cfs 0.166 af Outflow=2.81 cfs 0.242 af
Pond 13P: CHAMBER2	Peak Elev=107.03' Storage=0.053 af Inflow=3.33 cfs 0.284 af Primary=0.02 cfs 0.083 af Secondary=3.22 cfs 0.200 af Outflow=3.24 cfs 0.284 af
Pond 14P: FocalPoint 1	Peak Elev=108.91' Storage=86 cf Inflow=2.15 cfs 0.179 af Primary=0.15 cfs 0.107 af Secondary=2.01 cfs 0.072 af Outflow=2.16 cfs 0.179 af
Pond 15P: FocalPoint 2	Peak Elev=108.81' Storage=36 cf Inflow=0.71 cfs 0.061 af Primary=0.15 cfs 0.063 af Secondary=0.55 cfs 0.013 af Outflow=0.70 cfs 0.076 af
Pond 16P: FocalPoint 3	Peak Elev=108.94' Storage=95 cf Inflow=2.55 cfs 0.215 af Primary=0.18 cfs 0.109 af Secondary=2.36 cfs 0.086 af Outflow=2.53 cfs 0.196 af
Pond 17P: FocalPoint 4	Peak Elev=108.80' Storage=49 cf Inflow=0.76 cfs 0.066 af Primary=0.07 cfs 0.053 af Secondary=0.69 cfs 0.022 af Outflow=0.76 cfs 0.075 af
Pond 88P: Gravel Wetlan Primary=1.92 cfs 2.850 af	d #1 Peak Elev=102.48' Storage=83,823 cf Inflow=38.28 cfs 3.067 af Secondary=0.24 cfs 0.217 af Tertiary=0.00 cfs 0.000 af Outflow=2.16 cfs 3.067 af
Total Runoff	Area = 93.822 ac Runoff Volume = 30.510 af Average Runoff Depth = 3.90" 73.50% Pervious = 68.955 ac 26.50% Impervious = 24.867 ac

Post - Development Update - February 2023 ResType III 24-hr 50 Year Saco Rainfall=7.30"Prepared by Gorrill Palmer Consulting EngsPrinted 7/17/2023HydroCAD® 10.20-3c s/n 01265 © 2023 HydroCAD Software Solutions LLCPage 11

Time span=0.00-200.00 hrs, dt=0.10 hrs, 2001 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment 1S: Sub to GUSF #1	Runoff Area=73,933 sf 67.19% Impervious Runoff Depth=6.35" Tc=5.0 min CN=92 Runoff=10.89 cfs 0.898 af
Subcatchment 2S: Sub to GUSF #2	Runoff Area=82,545 sf 47.04% Impervious Runoff Depth=5.89" Tc=5.0 min CN=88 Runoff=11.63 cfs 0.929 af
Subcatchment 3S: Sub to GUSF #3	Runoff Area=44,837 sf 71.91% Impervious Runoff Depth=6.47" Tc=5.0 min CN=93 Runoff=6.66 cfs 0.555 af
Subcatchment 4S: Sub to GUSF #5	Runoff Area=39,620 sf 67.95% Impervious Runoff Depth=6.35" Tc=5.0 min CN=92 Runoff=5.84 cfs 0.481 af
Subcatchment 5S: Sub to GW #2	Runoff Area=167,094 sf 63.95% Impervious Runoff Depth=6.35" Tc=5.0 min CN=92 Runoff=24.62 cfs 2.030 af
Subcatchment 6S: Sub to GUSF #4	Runoff Area=44,235 sf 66.73% Impervious Runoff Depth=6.35" Tc=5.0 min CN=92 Runoff=6.52 cfs 0.537 af
Subcatchment7S: Sub to GW #1	Runoff Area=318,070 sf 60.35% Impervious Runoff Depth=6.12" Tc=5.0 min CN=90 Runoff=45.91 cfs 3.722 af
Subcatchment 8S: Sub to GUSF #6	Runoff Area=79,636 sf 23.58% Impervious Runoff Depth=2.12" Tc=5.0 min CN=53 Runoff=4.05 cfs 0.323 af
Subcatchment9S: Sub to GUSF #7	Runoff Area=36,965 sf 63.79% Impervious Runoff Depth=4.64" Tc=5.0 min CN=77 Runoff=4.31 cfs 0.328 af
Subcatchment 10S: Sub to GUSF #8	Runoff Area=60,887 sf 60.77% Impervious Runoff Depth=4.86" Tc=5.0 min CN=79 Runoff=7.40 cfs 0.566 af
Subcatchment11S: Sub to GUSF #9	Runoff Area=91,815 sf 70.56% Impervious Runoff Depth=5.89" Tc=5.0 min CN=88 Runoff=12.94 cfs 1.034 af
Subcatchment 12S: PRE S1	Runoff Area=653,124 sf 12.20% Impervious Runoff Depth=4.41" Flow Length=2,066' Tc=91.1 min CN=75 Runoff=23.43 cfs 5.516 af
Subcatchment13S: PRE S2	Runoff Area=172,161 sf 11.00% Impervious Runoff Depth=4.97" Flow Length=740' Tc=34.4 min CN=80 Runoff=12.05 cfs 1.638 af
Subcatchment14S: PRE S3	Runoff Area=2,111,132 sf 12.78% Impervious Runoff Depth=4.53" Flow Length=2,998' Tc=49.9 min CN=76 Runoff=112.15 cfs 18.277 af
Subcatchment 15S: Chamber 1	Runoff Area=22,534 sf 84.12% Impervious Runoff Depth=6.70" Tc=5.0 min CN=95 Runoff=3.40 cfs 0.289 af
Subcatchment 16S: Chamber 2	Runoff Area=25,923 sf 86.51% Impervious Runoff Depth=6.82" Tc=5.0 min CN=96 Runoff=3.93 cfs 0.338 af

Post - Development Update - February 2023 ResType III 24-hr 50 Year Saco Rainfall=7.30" Printed 7/17/2023 Prepared by Gorrill Palmer Consulting Engs HydroCAD® 10.20-3c s/n 01265 © 2023 HydroCAD Software Solutions LLC Page 12 Runoff Area=11,292 sf 82.15% Impervious Runoff Depth=6.70" Subcatchment 17S: SF Dripedges Tc=5.0 min CN=95 Runoff=1.70 cfs 0.145 af Subcatchment 19S: Front Duplex (Drip Runoff Area=2,612 sf 100.00% Impervious Runoff Depth=7.06" Tc=5.0 min CN=98 Runoff=0.40 cfs 0.035 af Runoff Area=17,052 sf 80.52% Impervious Runoff Depth=6.59" Subcatchment 20S: FP 1 Subcatchment Tc=5.0 min CN=94 Runoff=2.55 cfs 0.215 af Subcatchment 21S: FP 2 Subcatchment Runoff Area=5,482 sf 95.31% Impervious Runoff Depth=6.94" Tc=5.0 min CN=97 Runoff=0.84 cfs 0.073 af Runoff Area=20,003 sf 83.70% Impervious Runoff Depth=6.70" Subcatchment 22S: FP 3 Subcatchment Tc=5.0 min CN=95 Runoff=3.02 cfs 0.257 af Subcatchment 23S: FP 4 Subcatchment Runoff Area=5,920 sf 96.01% Impervious Runoff Depth=6.94" Tc=5.0 min CN=97 Runoff=0.90 cfs 0.079 af Reach 1R: POI #1 Inflow=38.50 cfs 10.411 af Outflow=38.50 cfs 10.411 af Reach 2R: Avg. Flow Depth=0.89' Max Vel=3.62 fps Inflow=17.69 cfs 3.996 af n=0.025 L=457.6' S=0.0077 '/' Capacity=232.90 cfs Outflow=17.60 cfs 3.996 af Avg. Flow Depth=0.08' Max Vel=0.62 fps Inflow=3.08 cfs 0.482 af Reach 3R: n=0.030 L=565.9' S=0.0046 '/' Capacity=997.94 cfs Outflow=2.68 cfs 0.482 af Reach 4R: POI #2 Inflow=15.53 cfs 5.933 af Outflow=15.53 cfs 5.933 af Reach 5R: POI #3 Inflow=118.50 cfs 21.300 af Outflow=118.50 cfs 21.300 af Avg. Flow Depth=0.73' Max Vel=0.10 fps Inflow=3.31 cfs 1.217 af Reach 6R: n=0.800 L=610.0' S=0.0066 '/' Capacity=13.21 cfs Outflow=1.71 cfs 1.217 af Avg. Flow Depth=0.50' Max Vel=2.71 fps Inflow=8.87 cfs 0.772 af Reach 7R: n=0.025 L=1,480.0' S=0.0083 '/' Capacity=129.49 cfs Outflow=6.61 cfs 0.772 af Peak Elev=103.93' Storage=15,980 cf Inflow=10.89 cfs 0.898 af Pond 1P: GUSF #1 Primary=0.06 cfs 0.225 af Secondary=3.30 cfs 0.673 af Tertiary=0.01 cfs 0.000 af Outflow=3.36 cfs 0.898 af Peak Elev=104.84' Storage=14,545 cf Inflow=11.63 cfs 0.929 af Pond 2P: GUSF #2 Primary=0.05 cfs 0.197 af Secondary=4.56 cfs 0.732 af Tertiary=0.00 cfs 0.000 af Outflow=4.61 cfs 0.929 af Pond 3P: GUSF #3 Peak Elev=103.00' Storage=8.821 cf Inflow=6.66 cfs 0.555 af Primary=0.04 cfs 0.145 af Secondary=2.69 cfs 0.410 af Tertiary=0.02 cfs 0.000 af Outflow=2.74 cfs 0.555 af

 Pond 4P: GUSF #5
 Peak Elev=103.74' Storage=6,955 cf
 Inflow=5.84 cfs
 0.481 af

 Primary=0.04 cfs
 0.132 af
 Secondary=3.04 cfs
 0.349 af
 Tertiary=0.00 cfs
 0.000 af
 Outflow=3.08 cfs
 0.482 af

Pond 5P: Gravel Wetland #2 Peak Elev=101.74' Storage=36,517 cf Inflow=24.62 cfs 2.030 af Primary=0.25 cfs 0.555 af Secondary=8.48 cfs 1.475 af Tertiary=0.00 cfs 0.000 af Outflow=8.73 cfs 2.030 af

Post - Development Update - February 2023 ResType III 24-hr 50 Year Saco Rainfall=7.30"			
Prepared by Gorrill Palmer Consulting Engs	Printed 7/17/2023		
HydroCAD® 10.20-3c s/n 01265 © 2023 HydroCAD Software Solutions LLC	Page 13		

Pond 6P: GUSF #4 Primary=0.04 cfs 0.141 af	Peak Elev=103.48' Storage=11,374 cf Inflow=6.52 cfs 0.537 a Secondary=1.05 cfs 0.397 af Tertiary=0.00 cfs 0.000 af Outflow=1.09 cfs 0.538 at	
Pond 8/9P: GUSF #6 & #7 Primary=0.14 cfs 0.321 af	Peak Elev=101.32' Storage=12,310 cf Inflow=8.34 cfs 0.651 a Secondary=0.76 cfs 0.330 af Tertiary=0.01 cfs 0.000 af Outflow=0.91 cfs 0.651 at	
Pond 10P: GUSF #8 Primary=0.05 cfs 0.166 af	Peak Elev=102.87' Storage=9,579 cf Inflow=7.40 cfs 0.566 a Secondary=2.46 cfs 0.400 af Tertiary=0.00 cfs 0.000 af Outflow=2.51 cfs 0.566 at	
Pond 11P: GUSF #9 Primary=0.07 cfs 0.269 af	Peak Elev=100.06' Storage=19,825 cf Inflow=12.94 cfs 1.034 a Secondary=3.29 cfs 0.765 af Tertiary=0.00 cfs 0.000 af Outflow=3.36 cfs 1.034 at	
Pond 12P: CHAMBER1	Peak Elev=107.29' Storage=0.044 af Inflow=3.40 cfs 0.289 a Primary=0.02 cfs 0.077 af Secondary=3.31 cfs 0.212 af Outflow=3.33 cfs 0.289 a	
Pond 13P: CHAMBER2	Peak Elev=107.07' Storage=0.053 af Inflow=3.93 cfs 0.338 a Primary=0.02 cfs 0.084 af Secondary=3.81 cfs 0.255 af Outflow=3.83 cfs 0.339 a	
Pond 14P: FocalPoint 1	Peak Elev=108.94' Storage=90 cf Inflow=2.55 cfs 0.215 a Primary=0.15 cfs 0.122 af Secondary=2.40 cfs 0.093 af Outflow=2.55 cfs 0.215 a	
Pond 15P: FocalPoint 2	Peak Elev=108.83' Storage=37 cf Inflow=0.84 cfs 0.073 a Primary=0.15 cfs 0.035 af Secondary=0.69 cfs 0.018 af Outflow=0.83 cfs 0.053 a	
Pond 16P: FocalPoint 3	Peak Elev=108.97' Storage=97 cf Inflow=3.02 cfs 0.257 a Primary=0.18 cfs 0.149 af Secondary=2.85 cfs 0.111 af Outflow=3.02 cfs 0.261 a	
Pond 17P: FocalPoint 4	Peak Elev=108.82' Storage=50 cf Inflow=0.90 cfs 0.079 a Primary=0.07 cfs 0.041 af Secondary=0.82 cfs 0.028 af Outflow=0.90 cfs 0.069 a	
Pond 88P: Gravel Wetlan Primary=2.15 cfs 3.428 af	d #1 Peak Elev=103.26' Storage=103,357 cf Inflow=45.91 cfs 3.722 a Secondary=0.28 cfs 0.295 af Tertiary=0.00 cfs 0.000 af Outflow=2.44 cfs 3.723 at	
Total Runoff	Area = 93.822 ac Runoff Volume = 38.266 af Average Runoff Depth = 4.8	39'

Total Runoff Area = 93.822 acRunoff Volume = 38.266 afAverage Runoff Depth = 4.89"73.50% Pervious = 68.955 ac26.50% Impervious = 24.867 ac

Post - Development Update - February 2023 ReType III 24-hr 100 Year Saco Rainfall=8.70"Prepared by Gorrill Palmer Consulting EngsPrinted 7/17/2023HydroCAD® 10.20-3c s/n 01265 © 2023 HydroCAD Software Solutions LLCPage 1

Time span=0.00-200.00 hrs, dt=0.10 hrs, 2001 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment 1S: Sub to GUSF #1	Runoff Area=73,933 sf 67.19% Impervious Runoff Depth=7.74" Tc=5.0 min CN=92 Runoff=13.12 cfs 1.094 af
Subcatchment 2S: Sub to GUSF #2	Runoff Area=82,545 sf 47.04% Impervious Runoff Depth=7.25" Tc=5.0 min CN=88 Runoff=14.16 cfs 1.145 af
Subcatchment 3S: Sub to GUSF #3	Runoff Area=44,837 sf 71.91% Impervious Runoff Depth=7.86" Tc=5.0 min CN=93 Runoff=8.01 cfs 0.674 af
Subcatchment 4S: Sub to GUSF #5	Runoff Area=39,620 sf 67.95% Impervious Runoff Depth=7.74" Tc=5.0 min CN=92 Runoff=7.03 cfs 0.586 af
Subcatchment 5S: Sub to GW #2	Runoff Area=167,094 sf 63.95% Impervious Runoff Depth=7.74" Tc=5.0 min CN=92 Runoff=29.65 cfs 2.473 af
Subcatchment 6S: Sub to GUSF #4	Runoff Area=44,235 sf 66.73% Impervious Runoff Depth=7.74" Tc=5.0 min CN=92 Runoff=7.85 cfs 0.655 af
Subcatchment7S: Sub to GW #1	Runoff Area=318,070 sf 60.35% Impervious Runoff Depth=7.50" Tc=5.0 min CN=90 Runoff=55.56 cfs 4.561 af
Subcatchment 8S: Sub to GUSF #6	Runoff Area=79,636 sf 23.58% Impervious Runoff Depth=3.04" Tc=5.0 min CN=53 Runoff=5.98 cfs 0.463 af
Subcatchment9S: Sub to GUSF #7	Runoff Area=36,965 sf 63.79% Impervious Runoff Depth=5.92" Tc=5.0 min CN=77 Runoff=5.46 cfs 0.419 af
Subcatchment 10S: Sub to GUSF #8	Runoff Area=60,887 sf 60.77% Impervious Runoff Depth=6.16" Tc=5.0 min CN=79 Runoff=9.29 cfs 0.718 af
Subcatchment 11S: Sub to GUSF #9	Runoff Area=91,815 sf 70.56% Impervious Runoff Depth=7.25" Tc=5.0 min CN=88 Runoff=15.75 cfs 1.274 af
Subcatchment 12S: PRE S1	Runoff Area=653,124 sf 12.20% Impervious Runoff Depth=5.68" Flow Length=2,066' Tc=91.1 min CN=75 Runoff=30.09 cfs 7.094 af
Subcatchment 13S: PRE S2	Runoff Area=172,161 sf 11.00% Impervious Runoff Depth=6.28" Flow Length=740' Tc=34.4 min CN=80 Runoff=15.12 cfs 2.070 af
Subcatchment14S: PRE S3	Runoff Area=2,111,132 sf 12.78% Impervious Runoff Depth=5.80" Flow Length=2,998' Tc=49.9 min CN=76 Runoff=143.14 cfs 23.420 af
Subcatchment 15S: Chamber 1	Runoff Area=22,534 sf 84.12% Impervious Runoff Depth=8.10" Tc=5.0 min CN=95 Runoff=4.07 cfs 0.349 af
Subcatchment 16S: Chamber 2	Runoff Area=25,923 sf 86.51% Impervious Runoff Depth=8.22" Tc=5.0 min CN=96 Runoff=4.70 cfs 0.408 af

Post - Development Update - February 2023 ReType III 24-hr 100 Year Saco Rainfall=8.70"Prepared by Gorrill Palmer Consulting EngsPrinted 7/17/2023HydroCAD® 10.20-3c s/n 01265 © 2023 HydroCAD Software Solutions LLCPage 2

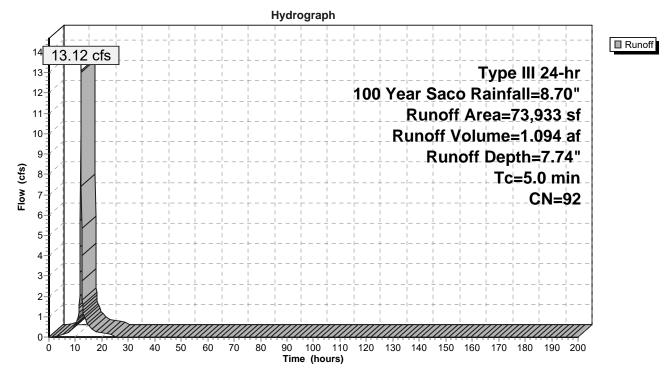
Subcatchment17S: SF Dripedges	Runoff Area=11,292 sf 82.15% Impervious Runoff Depth=8.10" Tc=5.0 min CN=95 Runoff=2.04 cfs 0.175 af
Subcatchment 19S: Front Duplex (Drip	Runoff Area=2,612 sf 100.00% Impervious Runoff Depth=8.46" Tc=5.0 min CN=98 Runoff=0.48 cfs 0.042 af
Subcatchment 20S: FP 1 Subcatchment	Runoff Area=17,052 sf 80.52% Impervious Runoff Depth=7.98" Tc=5.0 min CN=94 Runoff=3.06 cfs 0.260 af
Subcatchment 21S: FP 2 Subcatchment	Runoff Area=5,482 sf 95.31% Impervious Runoff Depth=8.34" Tc=5.0 min CN=97 Runoff=1.00 cfs 0.087 af
Subcatchment 22S: FP 3 Subcatchment	Runoff Area=20,003 sf 83.70% Impervious Runoff Depth=8.10" Tc=5.0 min CN=95 Runoff=3.61 cfs 0.310 af
Subcatchment 23S: FP 4 Subcatchment	Runoff Area=5,920 sf 96.01% Impervious Runoff Depth=8.34" Tc=5.0 min CN=97 Runoff=1.08 cfs 0.094 af
Reach 1R: POI #1	Inflow=46.29 cfs 13.068 af Outflow=46.29 cfs 13.068 af
	vg. Flow Depth=1.17' Max Vel=4.28 fps Inflow=32.82 cfs 4.880 af .6' S=0.0077 '/' Capacity=232.90 cfs Outflow=29.95 cfs 4.880 af
	Avg. Flow Depth=0.10' Max Vel=0.70 fps Inflow=5.02 cfs 0.587 af 5.9' S=0.0046 '/' Capacity=997.94 cfs Outflow=3.56 cfs 0.587 af
Reach 4R: POI #2	Inflow=20.01 cfs 7.328 af Outflow=20.01 cfs 7.328 af
Reach 5R: POI #3	Inflow=150.25 cfs 27.224 af Outflow=150.25 cfs 27.224 af
	Avg. Flow Depth=0.98' Max Vel=0.12 fps Inflow=9.04 cfs 1.598 af 10.0' S=0.0066 '/' Capacity=13.21 cfs Outflow=2.98 cfs 1.598 af
	vg. Flow Depth=0.56' Max Vel=2.85 fps Inflow=10.64 cfs 0.932 af 0.0' S=0.0083 '/' Capacity=129.49 cfs Outflow=8.01 cfs 0.932 af
Pond 1P: GUSF #1 Primary=0.06 cfs 0.229 af Secondary=3.48 c	Peak Elev=104.12' Storage=17,224 cf Inflow=13.12 cfs 1.094 af fs 0.802 af Tertiary=2.89 cfs 0.063 af Outflow=6.43 cfs 1.094 af
Pond 2P: GUSF #2 Primary=0.05 cfs 0.201 af Secondary=4.93 c	Peak Elev=105.08' Storage=15,994 cf Inflow=14.16 cfs 1.145 af fs 0.886 af Tertiary=3.98 cfs 0.058 af Outflow=8.96 cfs 1.146 af
Pond 3P: GUSF #3 Primary=0.04 cfs 0.148 af Secondary=2.89 c	Peak Elev=103.17' Storage=9,563 cf Inflow=8.01 cfs 0.674 af fs 0.495 af Tertiary=2.34 cfs 0.032 af Outflow=5.27 cfs 0.674 af
Pond 4P: GUSF #5 Primary=0.04 cfs 0.135 af Secondary=3.32 c	Peak Elev=103.87' Storage=7,514 cf Inflow=7.03 cfs 0.586 af fs 0.432 af Tertiary=1.66 cfs 0.019 af Outflow=5.02 cfs 0.587 af
Pond 5P: Gravel Wetland #2	Peak Elev=101.98' Storage=39,896 cf Inflow=29.65 cfs 2.473 af

Primary=0.25 cfs 0.572 af Secondary=9.26 cfs 1.767 af Tertiary=7.83 cfs 0.134 af Outflow=17.34 cfs 2.473 af

Post - Development Update - February 2023 ReType III 24-hr 100 Year Saco Rainfall=8.70"Prepared by Gorrill Palmer Consulting EngsPrinted 7/17/2023HydroCAD® 10.20-3c s/n 01265 © 2023 HydroCAD Software Solutions LLCPage 3

Pond 6P: GUSF #4 Primary=0.04 cfs 0.143 af	Peak Elev=103.85' Storage=13,153 cf Inflow=7.85 cfs 0.655 af Secondary=1.15 cfs 0.488 af Tertiary=1.17 cfs 0.024 af Outflow=2.35 cfs 0.655 af
Pond 8/9P: GUSF #6 & #7 Primary=0.14 cfs 0.334 af	Peak Elev=101.49' Storage=13,680 cf Inflow=11.43 cfs 0.881 af Secondary=0.86 cfs 0.411 af Tertiary=3.53 cfs 0.134 af Outflow=4.52 cfs 0.880 af
Pond 10P: GUSF #8 Primary=0.05 cfs 0.171 af	Peak Elev=103.09' Storage=10,711 cf Inflow=9.29 cfs 0.718 af Secondary=2.76 cfs 0.490 af Tertiary=3.58 cfs 0.057 af Outflow=6.39 cfs 0.718 af
Pond 11P: GUSF #9 Primary=0.07 cfs 0.275 af	Peak Elev=100.28' Storage=21,683 cf Inflow=15.75 cfs 1.274 af Secondary=3.52 cfs 0.907 af Tertiary=3.77 cfs 0.092 af Outflow=7.36 cfs 1.274 af
Pond 12P: CHAMBER1	Peak Elev=107.33' Storage=0.045 af Inflow=4.07 cfs 0.349 af Primary=0.02 cfs 0.077 af Secondary=3.98 cfs 0.272 af Outflow=4.00 cfs 0.350 af
Pond 13P: CHAMBER2	Peak Elev=107.12' Storage=0.053 af Inflow=4.70 cfs 0.408 af Primary=0.02 cfs 0.085 af Secondary=4.58 cfs 0.323 af Outflow=4.60 cfs 0.408 af
Pond 14P: FocalPoint 1	Peak Elev=108.97' Storage=96 cf Inflow=3.06 cfs 0.260 af Primary=0.15 cfs 0.138 af Secondary=2.91 cfs 0.122 af Outflow=3.06 cfs 0.260 af
Pond 15P: FocalPoint 2	Peak Elev=108.84' Storage=39 cf Inflow=1.00 cfs 0.087 af Primary=0.15 cfs 0.042 af Secondary=0.84 cfs 0.023 af Outflow=0.99 cfs 0.066 af
Pond 16P: FocalPoint 3	Peak Elev=109.00' Storage=97 cf Inflow=3.61 cfs 0.310 af Primary=0.18 cfs 0.148 af Secondary=3.41 cfs 0.146 af Outflow=3.59 cfs 0.294 af
Pond 17P: FocalPoint 4	Peak Elev=108.83' Storage=52 cf Inflow=1.08 cfs 0.094 af Primary=0.07 cfs 0.066 af Secondary=1.00 cfs 0.036 af Outflow=1.07 cfs 0.102 af
Pond 88P: Gravel Wetlan Primary=2.40 cfs 4.166 af	d #1 Peak Elev=104.19' Storage=128,663 cf Inflow=55.56 cfs 4.561 af Secondary=0.32 cfs 0.395 af Tertiary=0.00 cfs 0.000 af Outflow=2.73 cfs 4.561 af
Total Runoff	Area = 93 822 ac Runoff Volume = 48 372 af Average Runoff Denth = 6 19

Total Runoff Area = 93.822 acRunoff Volume = 48.372 afAverage Runoff Depth = 6.19"73.50% Pervious = 68.955 ac26.50% Impervious = 24.867 ac

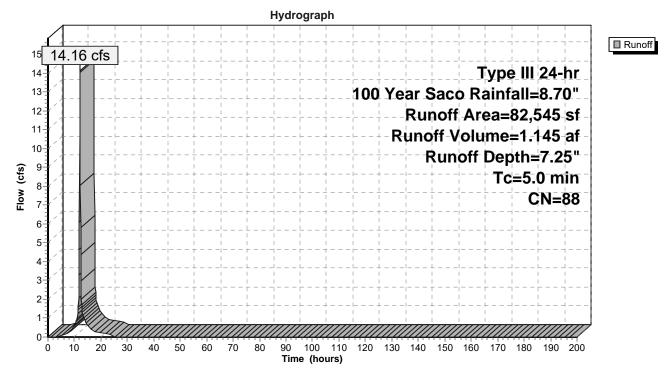

Summary for Subcatchment 1S: Sub to GUSF #1

Runoff = 13.12 cfs @ 12.08 hrs, Volume= 1.094 af, Depth= 7.74" Routed to Pond 1P : GUSF #1

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-200.00 hrs, dt= 0.10 hrs Type III 24-hr 100 Year Saco Rainfall=8.70"

A	rea (sf)	CN	Description			
	49,677	98	Paved park	ing, HSG D)	
	24,256	80	>75% Gras	s cover, Go	bod, HSG D	
	73,933	92	Weighted Average			
	24,256		32.81% Pervious Area			
	49,677	(67.19% Impervious Area			
Tc	Length	Slope	Velocity	Capacity	Description	
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)		
5.0					Direct Entry,	
					• •	

Subcatchment 1S: Sub to GUSF #1

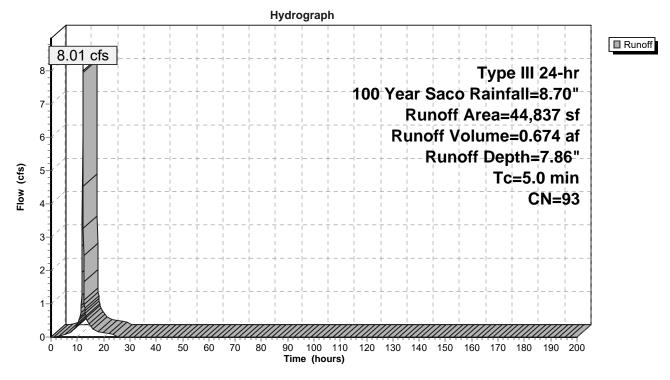

Summary for Subcatchment 2S: Sub to GUSF #2

Runoff = 14.16 cfs @ 12.09 hrs, Volume= 1.145 af, Depth= 7.25" Routed to Pond 2P : GUSF #2

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-200.00 hrs, dt= 0.10 hrs Type III 24-hr 100 Year Saco Rainfall=8.70"

A	rea (sf)	CN	Description				
	38,830	98	Paved park	ing, HSG D)		
	43,715	80	>75% Gras	s cover, Go	ood, HSG D		
	82,545	88	Weighted Average				
	43,715	:	52.96% Pervious Area				
	38,830		47.04% Impervious Area				
Тс	Length	Slope		Capacity	Description		
<u>(min)</u>	(feet)	(ft/ft)	(ft/sec)	(cfs)			
5.0					Direct Entry,		
					-		

Subcatchment 2S: Sub to GUSF #2

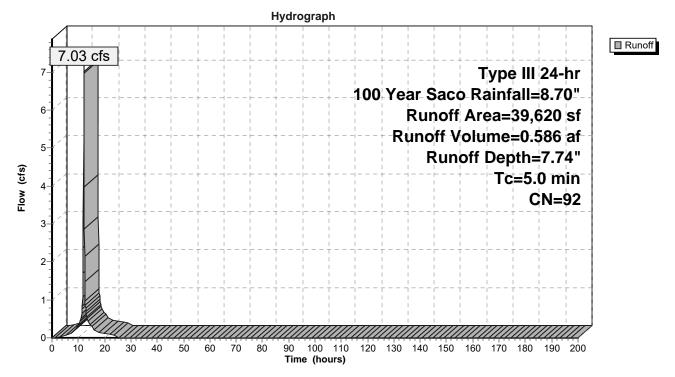

Summary for Subcatchment 3S: Sub to GUSF #3

Runoff = 8.01 cfs @ 12.08 hrs, Volume= 0.674 af, Depth= 7.86" Routed to Pond 3P : GUSF #3

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-200.00 hrs, dt= 0.10 hrs Type III 24-hr 100 Year Saco Rainfall=8.70"

A	rea (sf)	CN	Description						
	32,243		Paved parking, HSG D						
	12,594	80	>75% Gras	s cover, Go	bod, HSG D				
	44,837	93	Weighted Average						
	12,594		28.09% Pervious Area						
	32,243		71.91% Imp	ervious Are	ea				
Tc	Length	Slope	Velocity	Capacity	Description				
<u>(min)</u>	(feet)	(ft/ft)	(ft/sec)	(cfs)					
5.0					Direct Entry,				
					•				

Subcatchment 3S: Sub to GUSF #3

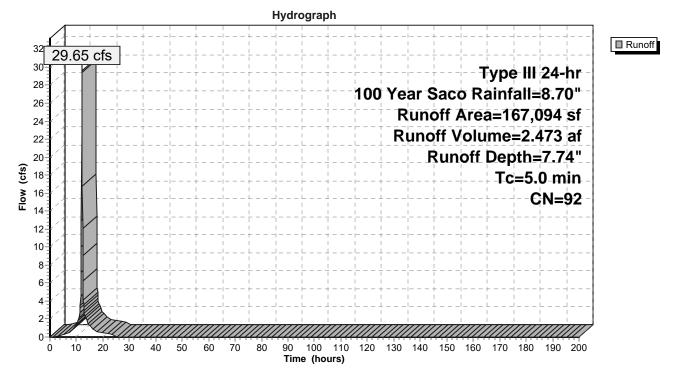

Summary for Subcatchment 4S: Sub to GUSF #5

Runoff = 7.03 cfs @ 12.08 hrs, Volume= 0.586 af, Depth= 7.74" Routed to Pond 4P : GUSF #5

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-200.00 hrs, dt= 0.10 hrs Type III 24-hr 100 Year Saco Rainfall=8.70"

A	rea (sf)	CN	Description						
	26,921	98	Paved parking, HSG D						
	439	39	>75% Gras	s cover, Go	lood, HSG A				
	12,260	80	>75% Gras	s cover, Go	ood, HSG D				
	39,620	92	Weighted Average						
	12,699		32.05% Per	vious Area	a				
	26,921		67.95% Imp	ervious Ar	rea				
Tc (min)	Length (feet)	Slope (ft/ft)		Capacity (cfs)					
5.0	()	(1411)	(()	Direct Entry,				

Subcatchment 4S: Sub to GUSF #5

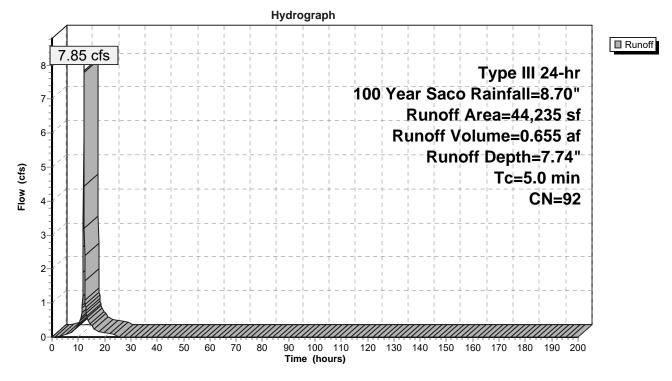

Summary for Subcatchment 5S: Sub to GW #2

Runoff = 29.65 cfs @ 12.08 hrs, Volume= 2.473 af, Depth= 7.74" Routed to Pond 5P : Gravel Wetland #2

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-200.00 hrs, dt= 0.10 hrs Type III 24-hr 100 Year Saco Rainfall=8.70"

Α	vrea (sf)	CN I	Description							
	106,853	98 I	Paved parking, HSG D							
	60,241	80 >	>75% Grass cover, Good, HSG D							
-	167,094	92 \	Weighted Average							
	60,241	3	36.05% Pervious Area							
	106,853	6	63.95% Impervious Area							
-		01		0						
TC	Length	Slope	,	Capacity	Description					
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)						
5.0					Direct Entry,					

Subcatchment 5S: Sub to GW #2

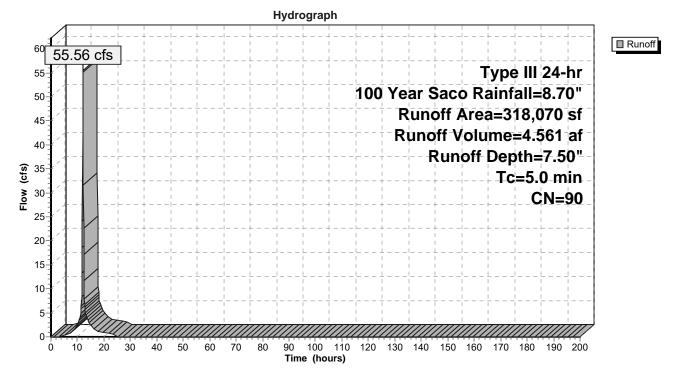

Summary for Subcatchment 6S: Sub to GUSF #4

Runoff = 7.85 cfs @ 12.08 hrs, Volume= 0.655 af, Depth= 7.74" Routed to Pond 6P : GUSF #4

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-200.00 hrs, dt= 0.10 hrs Type III 24-hr 100 Year Saco Rainfall=8.70"

A	rea (sf)	CN	Description							
	29,518	98	Paved parking, HSG D							
	14,717	80	>75% Gras	s cover, Go	bod, HSG D					
	44,235	92	2 Weighted Average							
	14,717		33.27% Pervious Area							
	29,518		6.73% Imp	ervious Are	ea					
Тс	Length	Slope	,	Capacity	Description					
<u>(min)</u>	(feet)	(ft/ft)	(ft/sec)	(cfs)						
5.0					Direct Entry,					

Subcatchment 6S: Sub to GUSF #4

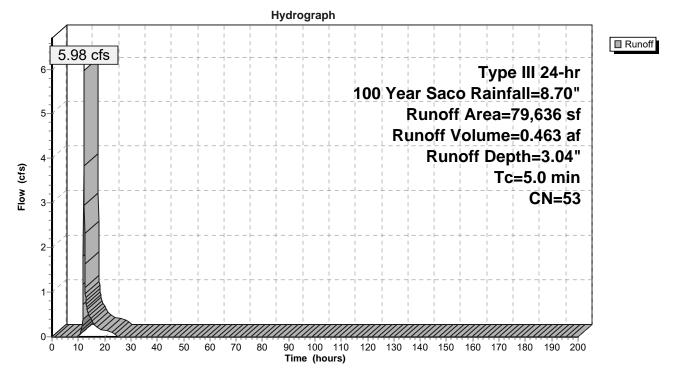

Summary for Subcatchment 7S: Sub to GW #1

Runoff = 55.56 cfs @ 12.09 hrs, Volume= 4.561 af, Depth= 7.50" Routed to Pond 88P : Gravel Wetland #1

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-200.00 hrs, dt= 0.10 hrs Type III 24-hr 100 Year Saco Rainfall=8.70"

Area (sf)	CN	Description	Description							
191,968	98	Paved park	Paved parking, HSG D							
7,411	39	>75% Gras	>75% Grass cover, Good, HSG A							
118,691	80	>75% Gras	>75% Grass cover, Good, HSG D							
318,070	90	Weighted Average								
126,102		39.65% Per	vious Area	a						
191,968		60.35% Imp	pervious Ar	rea						
Tc Length		,	Capacity	I						
(min) (feet)	(ft/	ft) (ft/sec)	ft) (ft/sec) (cfs)							
5.0				Direct Entry,						

Subcatchment 7S: Sub to GW #1

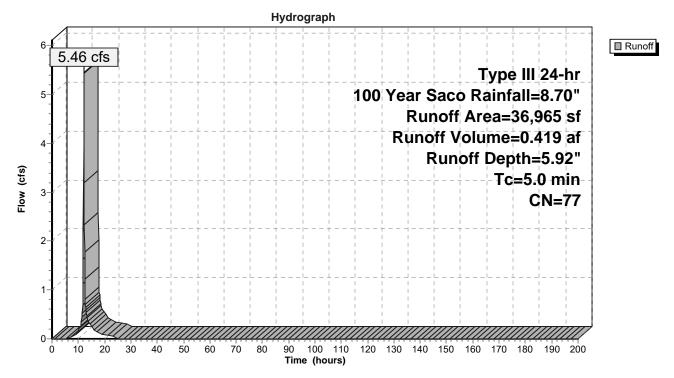

Summary for Subcatchment 8S: Sub to GUSF #6

Runoff = 5.98 cfs @ 12.10 hrs, Volume= 0.463 af, Depth= 3.04" Routed to Pond 8/9P : GUSF #6 & #7

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-200.00 hrs, dt= 0.10 hrs Type III 24-hr 100 Year Saco Rainfall=8.70"

Area (sf)	CN	Description						
18,778	98	Paved parking, HSG D						
60,443	39	>75% Grass cover, Good, HSG A						
415	80	>75% Grass cover, Good, HSG D						
79,636	53	Weighted Average						
60,858		76.42% Pervious Area						
18,778		23.58% Impervious Area						
Tc Length	Slop							
(min) (feet)	(ft/	/ft) (ft/sec) (cfs)						
5.0		Direct Entry,						

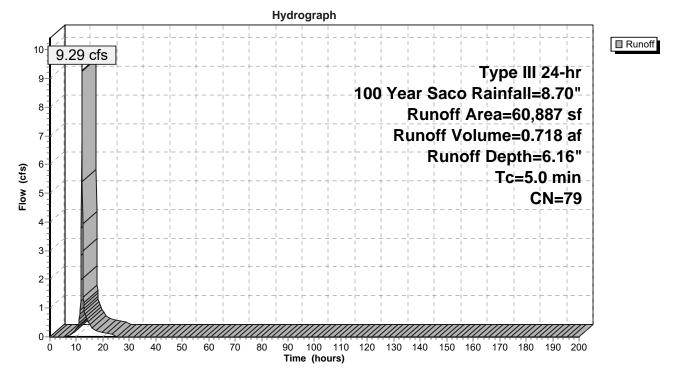
Subcatchment 8S: Sub to GUSF #6


Summary for Subcatchment 9S: Sub to GUSF #7

Runoff = 5.46 cfs @ 12.09 hrs, Volume= 0.419 af, Depth= 5.92" Routed to Pond 8/9P : GUSF #6 & #7

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-200.00 hrs, dt= 0.10 hrs Type III 24-hr 100 Year Saco Rainfall=8.70"

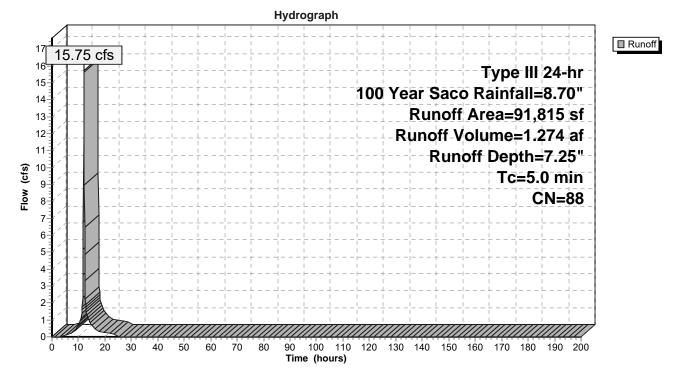
A	rea (sf)	CN I	Description					
	23,580	98 I	Paved park	ing, HSG D	D			
	405	80 3	>75% Gras	s cover, Go	Good, HSG D			
	12,980	39 :	>75% Gras	s cover, Go	Good, HSG A			
	36,965	77 \	Weighted Average					
	13,385		36.21% Pervious Area					
	23,580	6	63.79% Imp	pervious Ar	rea			
-		~		o "				
Tc	Length	Slope		Capacity	1			
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
5.0					Direct Entry,			


Summary for Subcatchment 10S: Sub to GUSF #8

Runoff = 9.29 cfs @ 12.09 hrs, Volume= 0.718 af, Depth= 6.16" Routed to Pond 10P : GUSF #8

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-200.00 hrs, dt= 0.10 hrs Type III 24-hr 100 Year Saco Rainfall=8.70"

A	rea (sf)	CN	Description							
	36,998	98	Paved parking, HSG D							
	6,024	80	>75% Grass cover, Good, HSG D							
	17,865	39 :	>75% Gras	s cover, Go	ood, HSG A					
	60,887	79	Weighted Average							
	23,889		39.23% Per	vious Area						
	36,998	(60.77% Imp	ervious Ar	ea					
-		~		o	–					
ŢĊ	Length	Slope		Capacity	Description					
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)						
5.0					Direct Entry,					

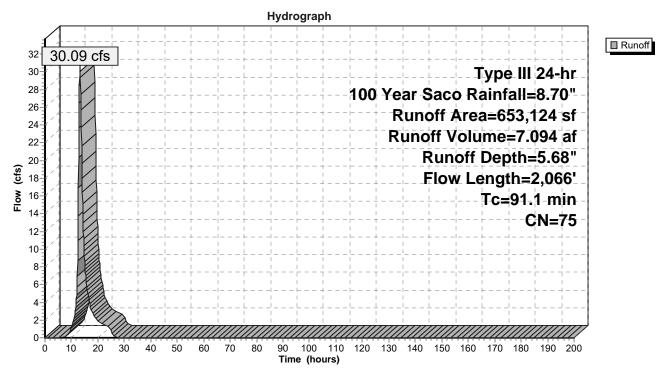

Summary for Subcatchment 11S: Sub to GUSF #9

Runoff = 15.75 cfs @ 12.09 hrs, Volume= 1.274 af, Depth= 7.25" Routed to Pond 11P : GUSF #9

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-200.00 hrs, dt= 0.10 hrs Type III 24-hr 100 Year Saco Rainfall=8.70"

A	rea (sf)	CN	Description							
	64,781	98	Paved parking, HSG D							
	17,188	80	>75% Ġras	s cover, Go	ood, HSG D					
	9,846	39	>75% Gras	s cover, Go	ood, HSG A					
	91,815	88	Weighted Average							
	27,034		29.44% Per	vious Area	а					
	64,781		70.56% Imp	ervious Ar	rea					
Tc	Length	Slope	,	Capacity	1					
<u>(min)</u>	(feet)	(ft/ft)	(ft/sec)	(cfs)						
5.0					Direct Entry,					

Subcatchment 11S: Sub to GUSF #9


Summary for Subcatchment 12S: PRE S1

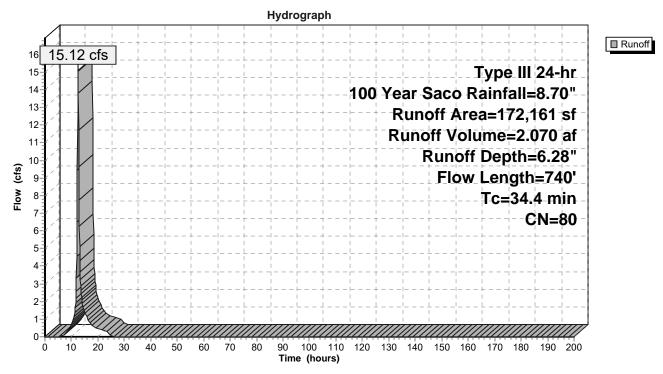
Runoff = 30.09 cfs @ 13.21 hrs, Volume= Routed to Reach 1R : POI #1 7.094 af, Depth= 5.68"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-200.00 hrs, dt= 0.10 hrs Type III 24-hr 100 Year Saco Rainfall=8.70"

A	rea (sf)	CN E	Description		
	64,275	30 V	Voods, Go	od, HSG A	
4	39,956	77 V	Voods, Go	od, HSG D	
	36,631	85 1	/8 acre lots	s, 65% imp	, HSG B
	4,922		Roofs, HSG		
	29,435			ing, HSG D	
	48,787			s, 30% imp	
	5,619			s, 30% imp	
	7,971			s, 65% imp	
	15,528		75% Gras	s cover, Go	bod, HSG D
	53,124		Veighted A	•	
5	573,454	-		vious Area	
	79,670	79,670 12.20% Impervious A			ea
Та	l e e este	Clana	Valacity	Consolity	Description
Tc (min)	Length	Slope	Velocity		Description
<u>(min)</u>	(feet)	(ft/ft)	(ft/sec)	(cfs)	
22.0	105	0.0200	0.08		Sheet Flow, A - B
00.4	704	0 0070	0.40		Woods: Light underbrush n= 0.400 P2= 3.30"
29.1	731	0.0070	0.42		Shallow Concentrated Flow, B - C
9.7	265	0.0083	0.46		Woodland Kv= 5.0 fps
9.7	205	0.0005	0.40		Shallow Concentrated Flow, C - D Woodland Kv= 5.0 fps
28.4	408	0.0023	0.24		Shallow Concentrated Flow, D - E
20.4	400	0.0023	0.24		Woodland Kv= 5.0 fps
1.9	557	0.0083	4.89	29.32	
1.9	557	0.0003	4.09	29.32	Area= 6.0 sf Perim= 7.0' r= 0.86'
					n = 0.025 Earth, clean & winding
01.1	2.066	Total			

91.1 2,066 Total

Subcatchment 12S: PRE S1

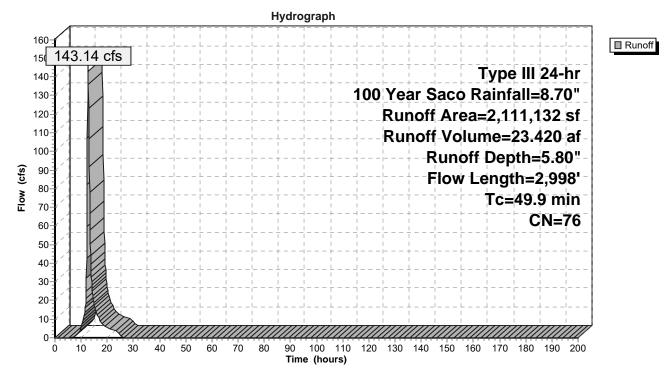

Summary for Subcatchment 13S: PRE S2

Runoff = 15.12 cfs @ 12.47 hrs, Volume= 2.070 af, Depth= 6.28" Routed to Reach 4R : POI #2

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-200.00 hrs, dt= 0.10 hrs Type III 24-hr 100 Year Saco Rainfall=8.70"

_	A	rea (sf)	CN E	escription		
	1	12,222	77 V	Voods, Go	od, HSG D	
		47,872	87 1	/4 acre lots	s, 38% imp	, HSG D
		11,315	80 >	75% Gras	s cover, Go	bod, HSG D
_		752	98 F	aved park	<u>ing, HSG D</u>	
	1	72,161		Veighted A		
	153,218 89.00% Pervious				vious Area	
		18,943	1	1.00% Imp	pervious Ar	ea
	_				_	
	Tc	Length	Slope	Velocity	Capacity	Description
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	13.5	84	0.0436	0.10		Sheet Flow, A - B
						Woods: Light underbrush n= 0.400 P2= 3.30"
	3.4	220	0.0454	1.07		Shallow Concentrated Flow, B - C
						Woodland Kv= 5.0 fps
	17.5	436	0.0069	0.42		Shallow Concentrated Flow, C - D
_						Woodland Kv= 5.0 fps
	34.4	740	Total			

Subcatchment 13S: PRE S2



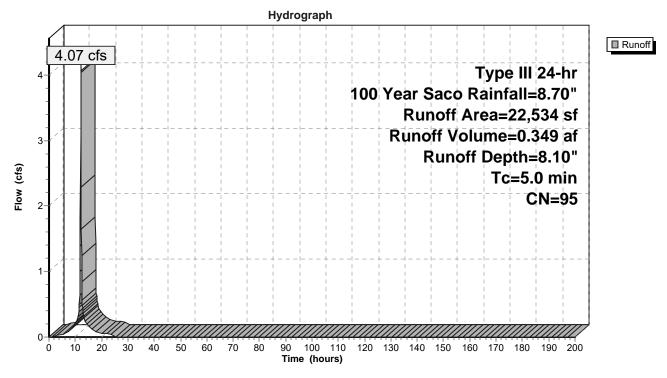
Summary for Subcatchment 14S: PRE S3

Runoff = 143.14 cfs @ 12.67 hrs, Volume= 23.420 af, Depth= 5.80" Routed to Reach 5R : POI #3

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-200.00 hrs, dt= 0.10 hrs Type III 24-hr 100 Year Saco Rainfall=8.70"

A	rea (sf)	CN D	escription		
	62,552	30 V	Voods, Go	od, HSG A	
,	67,368		,	od, HSG D	
	09,654			s, 25% imp	
	19,137			s, 38% imp	
	80,960			s, 25% imp	
	26,858			ing, HSG D	
	44,603				ood, HSG D
	11,132		Veighted A		
1,8	41,348	8	7.22% Per	vious Area	
2	69,784	1	2.78% Imp	pervious Ar	ea
т.	1 11.		M. L	0	Description
Tc	Length	Slope	Velocity	Capacity	Description
<u>(min)</u>	(feet)	(ft/ft)	(ft/sec)	(cfs)	
12.6	125	0.0161	0.17		Sheet Flow, A - B
	000	0.0470	4.07		Grass: Short n= 0.150 P2= 3.30"
3.2	380	0.0172	1.97		Shallow Concentrated Flow, B - C
0.4	10	0 0070	44.40	00.00	Grassed Waterway Kv= 15.0 fps
0.1	40	0.0373	11.48	20.29	
					18.0" Round Area= 1.8 sf Perim= 4.7' r= 0.38'
04.0	704	0.0004	0.40		n= 0.013 Corrugated PE, smooth interior
24.8	721	0.0094	0.48		Shallow Concentrated Flow, D - E
3.3	584	0.0062	2.93	23.40	Woodland Kv= 5.0 fps Channel Flow, E - F
3.3	304	0.0062	2.93	23.40	Area= 8.0 sf Perim= 8.0' r= 1.00'
2.5	540	0.0095	3.62	28.97	n= 0.040 Winding stream, pools & shoals Channel Flow, F - G
2.0	540	0.0095	3.02	20.97	Area= 8.0 sf Perim= 8.0' r= 1.00'
					n= 0.040 Winding stream, pools & shoals
3.4	608	0.0066	3.02	24.14	
5.4	000	0.0000	J.0Z	24.14	Area= 8.0 sf Perim= 8.0' r= 1.00'
					n= 0.040 Winding stream, pools & shoals
49.9	2 000	Total			
49.9	2,998	rotar			

Subcatchment 14S: PRE S3


Summary for Subcatchment 15S: Chamber 1 Subcatchment

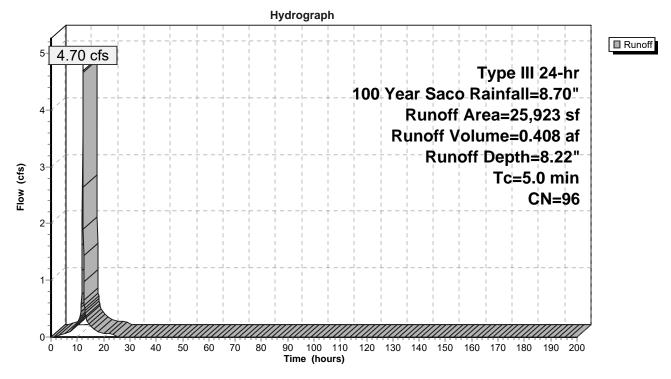
Runoff = 4.07 cfs @ 12.08 hrs, Volume= 0.349 af, Depth= 8.10" Routed to Pond 12P : CHAMBER1

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-200.00 hrs, dt= 0.10 hrs Type III 24-hr 100 Year Saco Rainfall=8.70"

A	rea (sf)	CN [Description		
	18,955	98 F	Paved park	ing, HSG D)
	3,579	80 >	>75% Gras	s cover, Go	ood, HSG D
	22,534	95 \	Neighted A	verage	
	3,579		15.88% Per	vious Area	3
	18,955	8	34.12% Imp	pervious Are	rea
Тс	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
5.0					Direct Entry,
					-

Subcatchment 15S: Chamber 1 Subcatchment

Summary for Subcatchment 16S: Chamber 2 Subcatchment

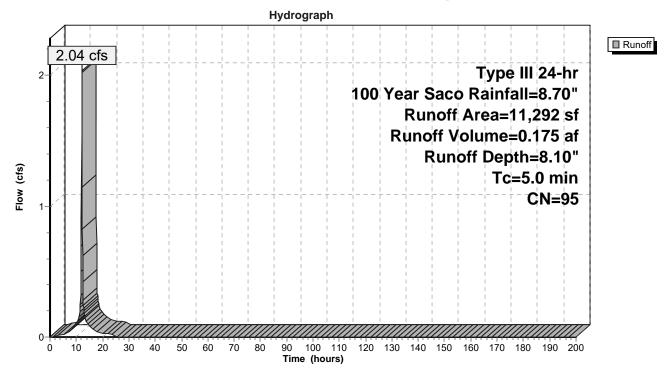

0.408 af, Depth= 8.22"

Runoff = 4.70 cfs @ 12.08 hrs, Volume= Routed to Pond 13P : CHAMBER2

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-200.00 hrs, dt= 0.10 hrs Type III 24-hr 100 Year Saco Rainfall=8.70"

A	rea (sf)	CN I	Description		
	22,426	98 I	Paved park	ing, HSG D)
	3,497	80 ;	>75% Gras	s cover, Go	bod, HSG D
	25,923	96 \	Neighted A	verage	
	3,497		13.49% Per	vious Area	1
	22,426	8	36.51% Imp	pervious Are	ea
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
5.0					Direct Entry,

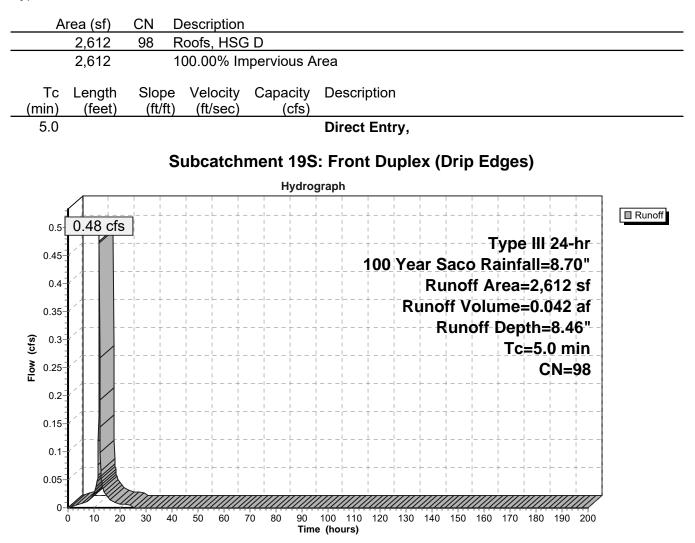
Subcatchment 16S: Chamber 2 Subcatchment


Summary for Subcatchment 17S: SF Dripedges

Runoff = 2.04 cfs @ 12.08 hrs, Volume= 0.175 af, Depth= 8.10" Routed to Reach 7R :

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-200.00 hrs, dt= 0.10 hrs Type III 24-hr 100 Year Saco Rainfall=8.70"

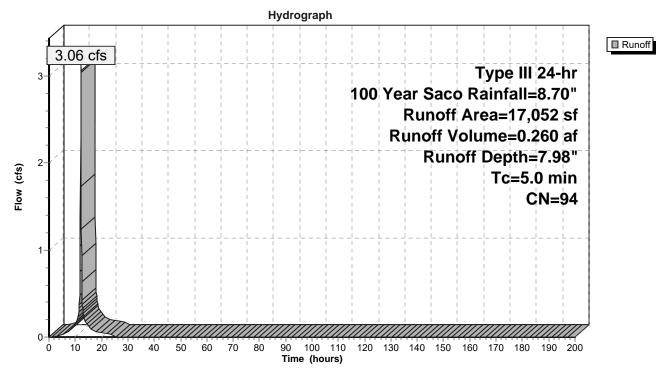
Α	rea (sf)	CN I	Description		
	9,276	98	Paved park	ing, HSG D)
	2,016	80 ;	>75% Ġras	s cover, Go	bod, HSG D
	11,292	95	Neighted A	verage	
	2,016		17.85% Per	vious Area	3
	9,276	ł	32.15% Imp	pervious Are	ea
Тс	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
5.0					Direct Entry,


Subcatchment 17S: SF Dripedges

Summary for Subcatchment 19S: Front Duplex (Drip Edges)

Runoff = 0.48 cfs @ 12.08 hrs, Volume= Routed to Reach 4R : POI #2 0.042 af, Depth= 8.46"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-200.00 hrs, dt= 0.10 hrs Type III 24-hr 100 Year Saco Rainfall=8.70"

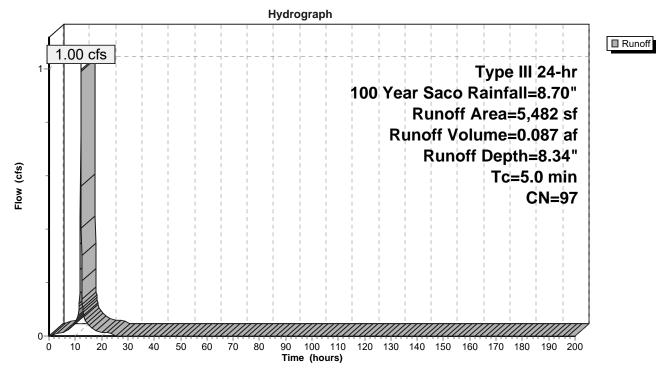

Summary for Subcatchment 20S: FP 1 Subcatchment

Runoff = 3.06 cfs @ 12.08 hrs, Volume= 0.260 af, Depth= 7.98" Routed to Pond 14P : FocalPoint 1

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-200.00 hrs, dt= 0.10 hrs Type III 24-hr 100 Year Saco Rainfall=8.70"

A	rea (sf)	CN	Description		
	13,730	98	Paved park	ing, HSG D)
	3,322	80	>75% Gras	s cover, Go	ood, HSG D
	17,052	94	Weighted A	verage	
	3,322		19.48% Per	vious Area	3
	13,730		80.52% Imp	pervious Are	ea
Тс	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
5.0					Direct Entry,
					•

Subcatchment 20S: FP 1 Subcatchment

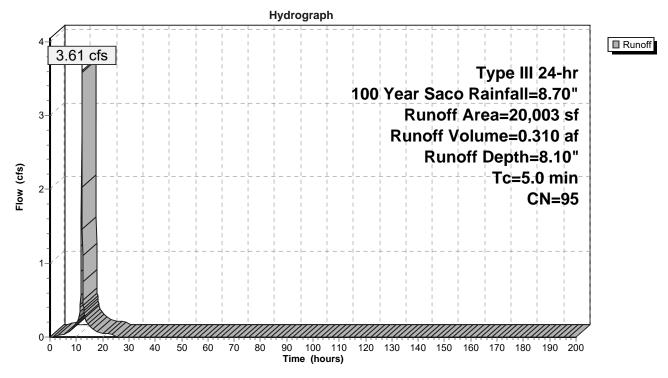

Summary for Subcatchment 21S: FP 2 Subcatchment

Runoff = 1.00 cfs @ 12.08 hrs, Volume= 0.087 af, Depth= 8.34" Routed to Pond 15P : FocalPoint 2

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-200.00 hrs, dt= 0.10 hrs Type III 24-hr 100 Year Saco Rainfall=8.70"

Α	rea (sf)	CN	Description		
	5,225	98	Paved park	ing, HSG D	
	257	80	>75% Gras	s cover, Go	ood, HSG D
	5,482		Weighted A		
	257		4.69% Perv	ious Area	
	5,225	9	95.31% Imp	pervious Ar	rea
_				_	
Тс	Length	Slope	,	Capacity	•
<u>(min)</u>	(feet)	(ft/ft)	(ft/sec)	(cfs)	
5.0					Direct Entry,
					-

Subcatchment 21S: FP 2 Subcatchment

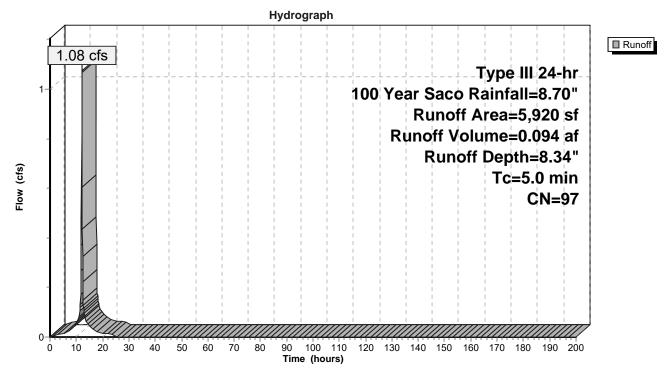

Summary for Subcatchment 22S: FP 3 Subcatchment

Runoff = 3.61 cfs @ 12.08 hrs, Volume= 0.310 af, Depth= 8.10" Routed to Pond 16P : FocalPoint 3

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-200.00 hrs, dt= 0.10 hrs Type III 24-hr 100 Year Saco Rainfall=8.70"

A	rea (sf)	CN	Description		
	16,742		Paved park		
	3,261	80 3	<u>>75% Gras</u>	s cover, Go	bod, HSG D
	20,003	95	Neighted A	verage	
	3,261		16.30% Pei	vious Area	1
	16,742	1	33.70% Imp	pervious Are	ea
Tc	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
5.0					Direct Entry,
					• ·

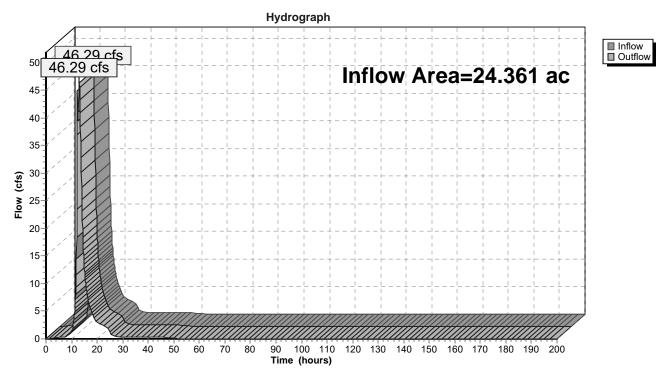
Subcatchment 22S: FP 3 Subcatchment


Summary for Subcatchment 23S: FP 4 Subcatchment

Runoff = 1.08 cfs @ 12.08 hrs, Volume= 0.094 af, Depth= 8.34" Routed to Pond 17P : FocalPoint 4

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-200.00 hrs, dt= 0.10 hrs Type III 24-hr 100 Year Saco Rainfall=8.70"

A	rea (sf)	CN	Description						
	5,684		Paved parking, HSG D						
	236	80	>75% Gras	s cover, Go	ood, HSG D				
	5,920		97 Weighted Average						
	236	;	3.99% Pervious Area						
	5,684	9	96.01% Impervious Area						
Тс	Length	Slope	Velocity	Capacity	Description				
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
5.0					Direct Entry,				
					•				


Subcatchment 23S: FP 4 Subcatchment

Summary for Reach 1R: POI #1

Inflow Area	a =	24.361 ac, 31.49% Impervious, Inflow Depth = 6.44" for 100 Year Saco event
Inflow	=	46.29 cfs @ 13.02 hrs, Volume= 13.068 af
Outflow	=	46.29 cfs @ 13.02 hrs, Volume= 13.068 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-200.00 hrs, dt= 0.10 hrs

Reach 1R: POI #1

Post - Development Update - February 2023 ReType III 24-hr 100 Year Saco Rainfall=8.70"Prepared by Gorrill Palmer Consulting EngsPrinted 7/17/2023HydroCAD® 10.20-3c s/n 01265 © 2023 HydroCAD Software Solutions LLCPage 29

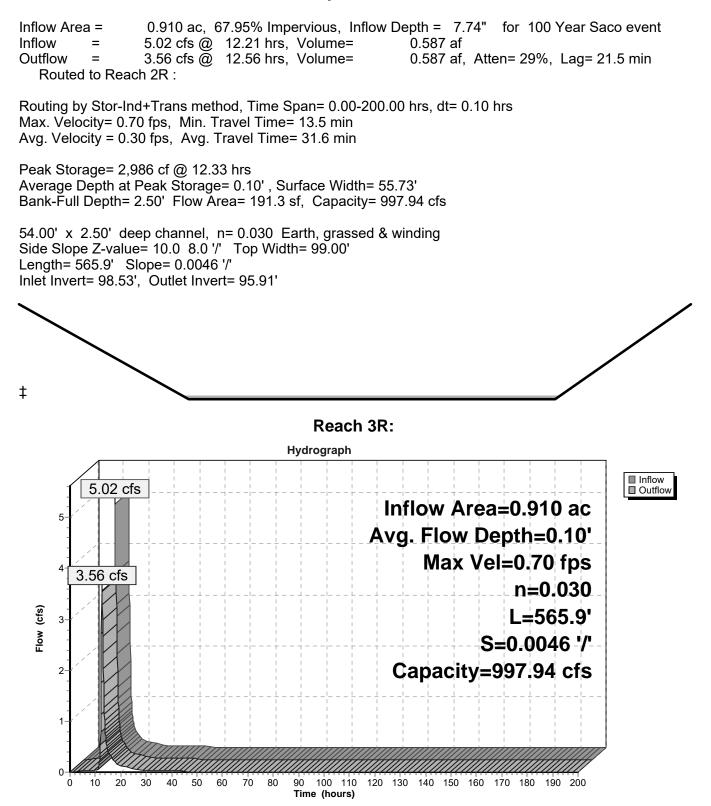
Summary for Reach 2R:

32.82 cfs @ 12.23 hrs, Volume=

7.670 ac, 61.31% Impervious, Inflow Depth = 7.63" for 100 Year Saco event

4.880 af

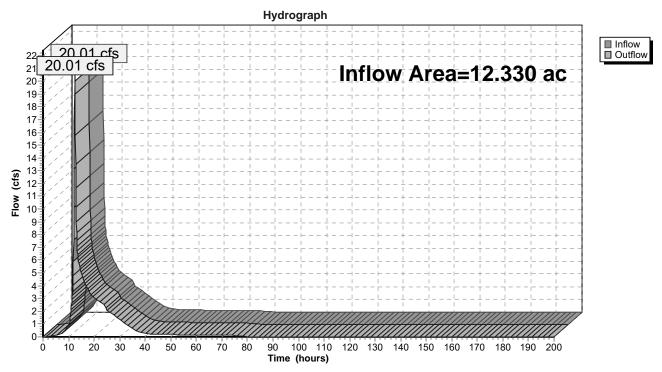
Inflow Area =


=

Inflow

29.95 cfs @ 12.31 hrs, Volume= Outflow = 4.880 af, Atten= 9%, Lag= 4.8 min Routed to Reach 1R : POI #1 Routing by Stor-Ind+Trans method, Time Span= 0.00-200.00 hrs, dt= 0.10 hrs Max. Velocity= 4.28 fps, Min. Travel Time= 1.8 min Avg. Velocity = 1.19 fps, Avg. Travel Time= 6.4 min Peak Storage= 3,325 cf @ 12.28 hrs Average Depth at Peak Storage= 1.17', Surface Width= 9.35' Bank-Full Depth= 3.00' Flow Area= 30.0 sf, Capacity= 232.90 cfs 15.00' x 3.00' deep Parabolic Channel, n= 0.025 Earth, clean & winding Length= 457.6' Slope= 0.0077 '/' Inlet Invert= 95.91', Outlet Invert= 92.40' Reach 2R: Hydrograph Inflow 32.82 cfs Outflow 36 Inflow Area=7.670 ac 34 32 29.95 cfs Avg. Flow Depth=1.17' 30 28 Max Vel=4.28 fps 26-24 n=0.025 22 (cfs) L=457.6' 20 Flow 18 S=0.0077 '/' 16-14 Capacity=232.90 cfs 12 10-8 6 4 2-0-10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 n Time (hours)

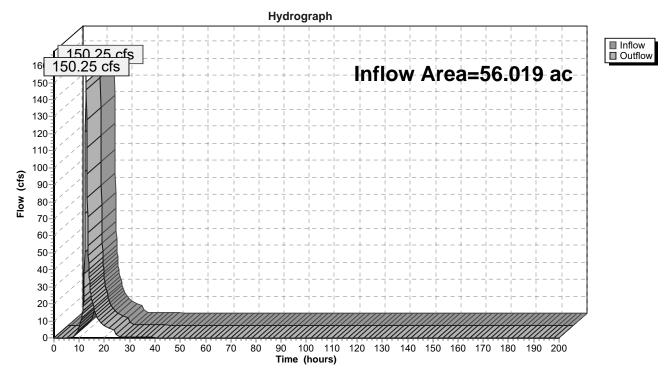
Post - Development Update - February 2023 ReType III 24-hr 100 Year Saco Rainfall=8.70"Prepared by Gorrill Palmer Consulting EngsPrinted 7/17/2023HydroCAD® 10.20-3c s/n 01265 © 2023 HydroCAD Software Solutions LLCPage 30


Summary for Reach 3R:

Summary for Reach 4R: POI #2

Inflow Are	a =	12.330 ac, 45.25% Impervious, Inflow Depth = 7.13" for 100 Year Saco event
Inflow	=	20.01 cfs @ 12.45 hrs, Volume= 7.328 af
Outflow	=	20.01 cfs @ 12.45 hrs, Volume= 7.328 af, Atten= 0%, Lag= 0.0 min

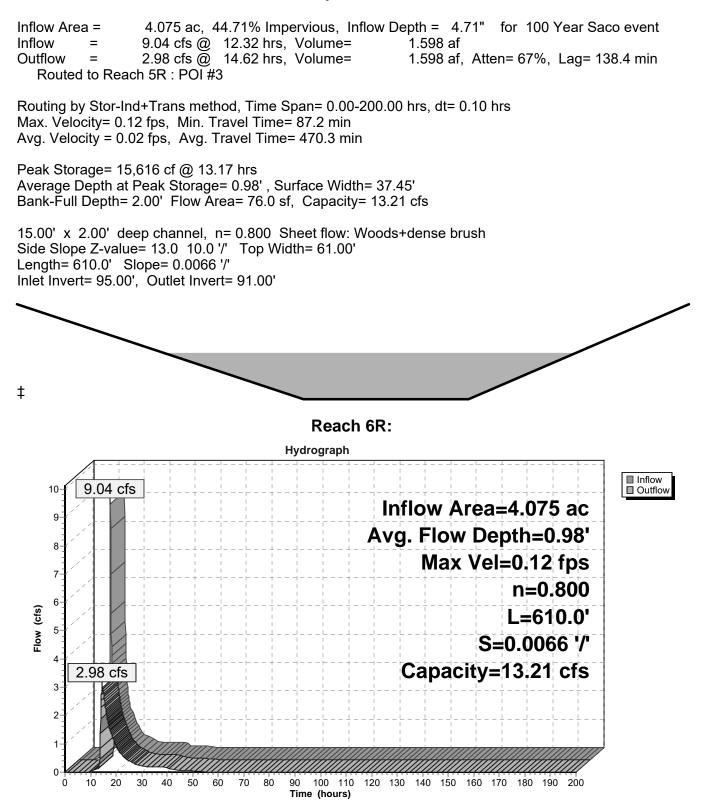
Routing by Stor-Ind+Trans method, Time Span= 0.00-200.00 hrs, dt= 0.10 hrs



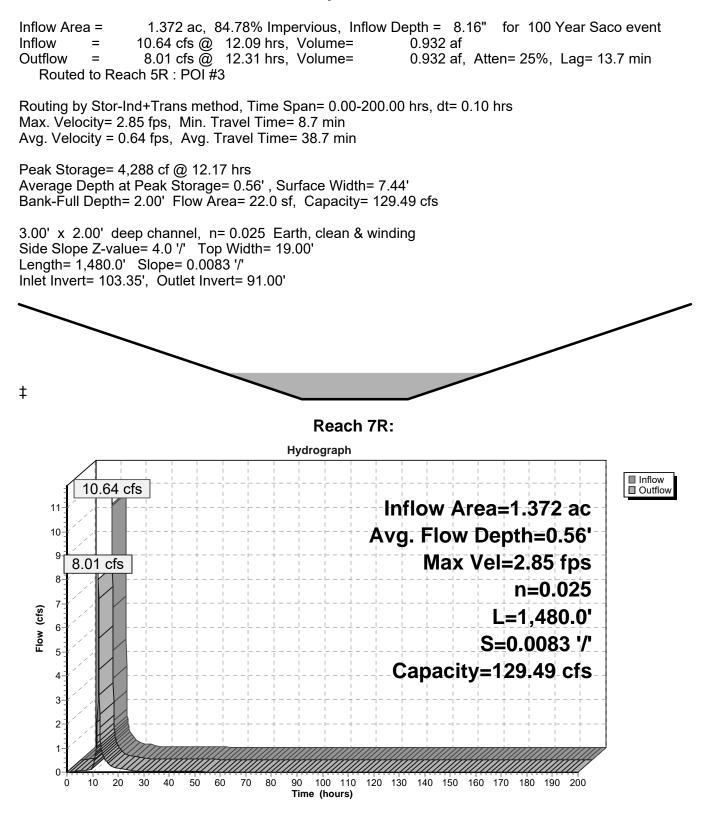
Reach 4R: POI #2

Summary for Reach 5R: POI #3

Inflow Area	a =	56.019 ac, 19.04% Impervious, Inflow Depth = 5.83" for 100 Year Saco event
Inflow	=	150.25 cfs @ 12.66 hrs, Volume= 27.224 af
Outflow	=	150.25 cfs @ 12.66 hrs, Volume= 27.224 af, Atten= 0%, Lag= 0.0 min


Routing by Stor-Ind+Trans method, Time Span= 0.00-200.00 hrs, dt= 0.10 hrs

Reach 5R: POI #3


Post - Development Update - February 2023 ReType III 24-hr 100 Year Saco Rainfall=8.70"Prepared by Gorrill Palmer Consulting EngsPrinted 7/17/2023HydroCAD® 10.20-3c s/n 01265 © 2023 HydroCAD Software Solutions LLCPage 33

Summary for Reach 6R:

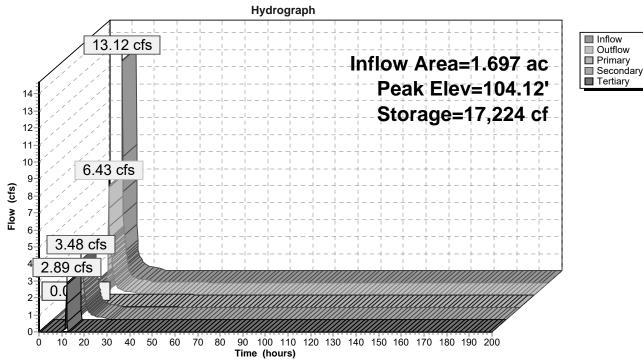
Post - Development Update - February 2023 ReType III 24-hr 100 Year Saco Rainfall=8.70"Prepared by Gorrill Palmer Consulting EngsPrinted 7/17/2023HydroCAD® 10.20-3c s/n 01265 © 2023 HydroCAD Software Solutions LLCPage 34

Summary for Reach 7R:

Summary for Pond 1P: GUSF #1

Inflow Area =		1.697 ac, 67.19% Impervious, Inflow Depth = 7.74" for 100 Year Saco e	event
Inflow	=	13.12 cfs @ 12.08 hrs, Volume= 1.094 af	
Outflow	=	6.43 cfs @ 12.26 hrs, Volume= 1.094 af, Atten= 51%, Lag= 10.6	min
Primary	=	0.06 cfs @ 4.00 hrs, Volume= 0.229 af	
Routed	to Rea	ch 1R : POI #1	
Secondary	=	3.48 cfs @ 12.26 hrs, Volume= 0.802 af	
Routed	to Rea	ch 1R : POI #1	
Tertiary	=	2.89 cfs @ 12.26 hrs, Volume= 0.063 af	
Routed	to Rea	ch 1R : POI #1	

Routing by Stor-Ind method, Time Span= 0.00-200.00 hrs, dt= 0.10 hrs Peak Elev= 104.12' @ 12.26 hrs Surf.Area= 6,840 sf Storage= 17,224 cf


Plug-Flow detention time= 221.6 min calculated for 1.094 af (100% of inflow) Center-of-Mass det. time= 222.3 min (988.3 - 766.0)

Volume	Invert	Ava	il.Stor	age	Storage Descript	ion	
#1	98.40'		23,68	9 cf	Custom Stage	Data (Prismatic)Lis	sted below (Recalc)
Elevatio	on Su	ırf.Area	Void	s	Inc.Store	Cum.Store	
(fee		(sq-ft)	(%		(cubic-feet)	(cubic-feet)	
98.4		3,110	0.		0	0	
100.		3,110	0.		0	0	
100.0		3,110	100.		31	31	
101.0	00	3,450	100.	0	1,312	1,343	
102.0	00	4,334	100.	0	3,892	5,235	
103.0	00	5,677	100.	0	5,006	10,241	
104.0	00	6,715	100.	0	6,196	16,437	
105.0	00	7,789	100.	0	7,252	23,689	
Device	Routing	In	vert	Outb	et Devices		
#1	Primary		8.40'	• • •	cfs Exfiltration a	t all alayations	
#1	Secondary		3.40 3.30'		" Round Culvert		
#2	Secondary	30	0.00			ting, no headwall,	Ke= 0.900
							0.0050 '/' Cc= 0.900
							r, Flow Area= 1.77 sf
#3	Device 2	101	.94'		" Vert. Orifice/Gr	-	
110	Dovido 2		.01		ted to weir flow at		
#4	Tertiary	103	8.93'				d Rectangular Weir
	,						1.20 1.40 1.60 1.80 2.00
					3.00 3.50 4.00		
				Coe	f. (English) 2.37 2	2.51 2.70 2.68 2.	68 2.67 2.65 2.65 2.65
				2.65	2.66 2.66 2.67	2.69 2.72 2.76 2	.83

Primary OutFlow Max=0.06 cfs @ 4.00 hrs HW=100.59' (Free Discharge)

Secondary OutFlow Max=3.48 cfs @ 12.26 hrs HW=104.11' (Free Discharge) 2=Culvert (Passes 3.48 cfs of 15.11 cfs potential flow) 3=Orifice/Grate (Orifice Controls 3.48 cfs @ 6.37 fps)

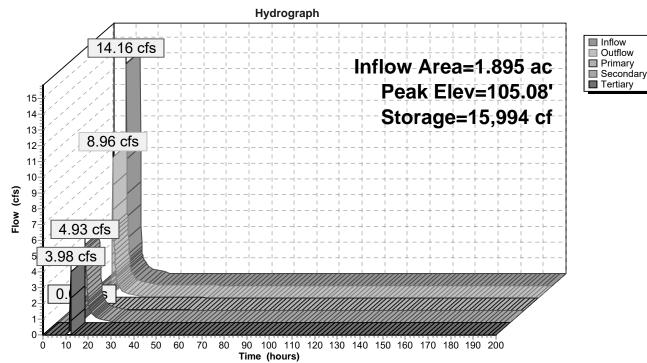
Tertiary OutFlow Max=2.69 cfs @ 12.26 hrs HW=104.11' (Free Discharge) 4=Broad-Crested Rectangular Weir (Weir Controls 2.69 cfs @ 1.00 fps)

Pond 1P: GUSF #1

Summary for Pond 2P: GUSF #2

Inflow Area	ı =	1.895 ac, 4	17.04% Imper	rvious, Inflow De	pth = 7.25" for 1	00 Year Saco event
Inflow	=	14.16 cfs @	12.09 hrs, \	Volume=	1.145 af	
Outflow	=	8.96 cfs @	12.22 hrs, \	√olume=	1.146 af, Atten= 37	%, Lag= 8.2 min
Primary	=	0.05 cfs @	4.80 hrs, ∖	√olume=	0.201 af	
Routed	to Rea	ch 2R :				
Secondary	=	4.93 cfs @	12.23 hrs, \	√olume=	0.886 af	
Routed	to Rea	ch 2R :				
Tertiary	=	3.98 cfs @	12.22 hrs, \	Volume=	0.058 af	
Routed	to Rea	ch 2R :				

Routing by Stor-Ind method, Time Span= 0.00-200.00 hrs, dt= 0.10 hrs Peak Elev= 105.08' @ 12.23 hrs Surf.Area= 6,120 sf Storage= 15,994 cf


Plug-Flow detention time= 204.1 min calculated for 1.145 af (100% of inflow) Center-of-Mass det. time= 204.9 min (983.5 - 778.6)

Volume	Invert	Ava	il.Storage	e Storage Descri	ption	
#1	99.30'		22,037 c	f Custom Stage	Data (Prismatic)Lis	ted below (Recalc)
Elevatio	on Su	ırf.Area	Voids	Inc.Store	Cum.Store	
(fee		(sq-ft)	(%)	(cubic-feet)	(cubic-feet)	
99.3	- /	2,848	0.0	0	0	
101.4		2,848	0.0	0	0	
101.5		2,848	100.0	28	28	
102.0		3,087	100.0	1,484	1,512	
103.0		4,294	100.0	3,691	5,203	
104.0		5,146	100.0	4,720	9,923	
105.0	00	6,046	100.0	5,596	15,519	
106.0	00	6,991	100.0	6,519	22,037	
Device	Routing	In	vert Ou	utlet Devices		
#1	Secondary		-	.0" Round Culve	rt	
	cocondary	00	-		cting, no headwall, I	Ke= 0.900
					99.20' / 99.00' S= 0	
						, Flow Area= 1.77 sf
#2	Primary	99		05 cfs Exfiltration		
#3	Device 1	102	2.88' 12	.0" Vert. Orifice/G	Grate C= 0.600	
			Lir	nited to weir flow a	at low heads	
#4	Tertiary	104				d Rectangular Weir
						1.20 1.40 1.60 1.80 2.00
				50 3.00 3.50 4.00		
						58 2.68 2.66 2.64 2.64
			2.0	04 2.05 2.05 2.00	5 2.66 2.68 2.70 2	./4

Primary OutFlow Max=0.05 cfs @ 4.80 hrs HW=101.49' (Free Discharge) —2=Exfiltration (Exfiltration Controls 0.05 cfs)

Secondary OutFlow Max=4.88 cfs @ 12.23 hrs HW=105.04' (Free Discharge) 1=Culvert (Passes 4.88 cfs of 15.16 cfs potential flow) -3=Orifice/Grate (Orifice Controls 4.88 cfs @ 6.21 fps)

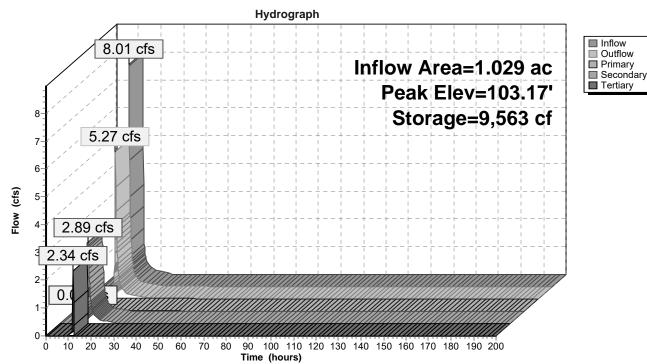
Tertiary OutFlow Max=3.49 cfs @ 12.22 hrs HW=105.05' (Free Discharge) **4=Broad-Crested Rectangular Weir** (Weir Controls 3.49 cfs @ 1.11 fps)

Pond 2P: GUSF #2

Summary for Pond 3P: GUSF #3

Inflow Area = 1.029 ac, 71.91% Impervious, Inflow Depth = 7.86" for 100 Year Saco event Inflow = 8.01 cfs @ 12.08 hrs, Volume= 0.674 af 5.27 cfs @ 12.22 hrs, Volume= Outflow = 0.674 af, Atten= 34%, Lag= 8.0 min 3.80 hrs, Volume= 0.04 cfs @ Primary = 0.148 af Routed to Reach 2R : 2.89 cfs @ 12.23 hrs, Volume= 0.495 af Secondary = Routed to Reach 2R : 2.34 cfs @ 12.22 hrs, Volume= Tertiarv = 0.032 af Routed to Reach 2R :

Routing by Stor-Ind method, Time Span= 0.00-200.00 hrs, dt= 0.10 hrs Peak Elev= 103.17' @ 12.23 hrs Surf.Area= 4,613 sf Storage= 9,563 cf


Plug-Flow detention time= 209.5 min calculated for 0.674 af (100% of inflow) Center-of-Mass det. time= 210.1 min (972.5 - 762.4)

Volume	Invert	Ava	il.Storage	e Storage Descri	iption	
#1	98.20'		13,683 c	f Custom Stage	e Data (Prismatic)L	isted below (Recalc)
Elevatio	on Su	rf.Area	Voids	Inc.Store	Cum.Store	
(fee		(sq-ft)	(%)	(cubic-feet)	(cubic-feet)	
98.2		2,466	0.0	0		
100.3		2,466	0.0	0	0	
100.4	10	2,466	100.0	25	25	
101.0	00	2,593	100.0	1,518	1,542	
102.0	00	3,724	100.0	3,159	4,701	
103.0		4,479	100.0	4,102	8,802	
104.0	00	5,282	100.0	4,881	13,683	
Device	Routing	In	vert Ou	utlet Devices		
#1	Primary	98			at all elevations	
#2	Secondary			.0" Round Culve		
	2		L=	23.0' CPP, proje	ecting, no headwall,	Ke= 0.900
						0.0043 '/' Cc= 0.900
			n=	0.013 Corrugate	d PE, smooth interio	or, Flow Area= 1.77 sf
#3	Device 2	101	.54' 10	.0" Vert. Orifice/0	Grate C= 0.600	
				nited to weir flow a		
#4	Tertiary	103				ed Rectangular Weir
						1.20 1.40 1.60 1.80 2.00
					0 4.50 5.00 5.50	
						2.68 2.67 2.65 2.65 2.65
			2.0	5 2.66 2.66 2.6	7 2.69 2.72 2.76	2.83

Primary OutFlow Max=0.04 cfs @ 3.80 hrs HW=100.39' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.04 cfs)

Secondary OutFlow Max=2.86 cfs @ 12.23 hrs HW=103.14' (Free Discharge) 2=Culvert (Passes 2.86 cfs of 13.92 cfs potential flow) 3=Orifice/Grate (Orifice Controls 2.86 cfs @ 5.25 fps)

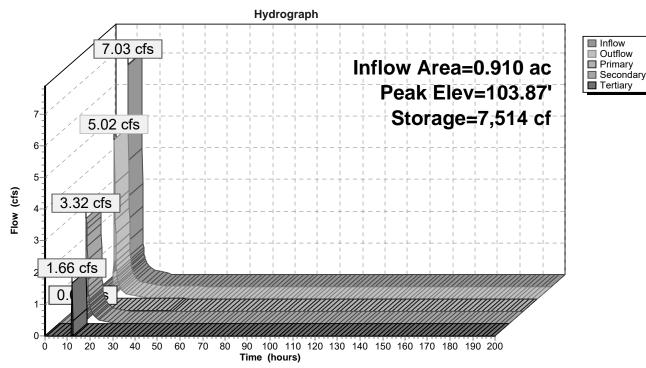
Tertiary OutFlow Max=2.05 cfs @ 12.22 hrs HW=103.15' (Free Discharge) 4=Broad-Crested Rectangular Weir (Weir Controls 2.05 cfs @ 0.92 fps)

Pond 3P: GUSF #3

Summary for Pond 4P: GUSF #5

Inflow Area =	0.910 ac, 6	67.95% Impervious,	Inflow Depth = 7.74" for 100 Year Saco event
Inflow =	7.03 cfs @	12.08 hrs, Volume	= 0.586 af
Outflow =	5.02 cfs @	12.21 hrs, Volume	= 0.587 af, Atten= 29%, Lag= 7.3 min
Primary =	0.04 cfs @	4.40 hrs, Volume	= 0.135 af
Routed to Re	each 3R :		
Secondary =	3.32 cfs @	12.21 hrs, Volume	= 0.432 af
Routed to Re	each 3R :		
Tertiary =	1.66 cfs @	12.21 hrs, Volume	= 0.019 af
Routed to Re	each 3R :		

Routing by Stor-Ind method, Time Span= 0.00-200.00 hrs, dt= 0.10 hrs Peak Elev= 103.87' @ 12.21 hrs Surf.Area= 4,534 sf Storage= 7,514 cf


Plug-Flow detention time= 189.5 min calculated for 0.586 af (100% of inflow) Center-of-Mass det. time= 190.2 min (956.1 - 766.0)

Volume	Invert	Ava	il.Storage	Storage Descrip	otion	
#1	99.23'		13,370 cf	Custom Stage	Data (Prismatic)Liste	ed below (Recalc)
Elevatio	on Su	rf.Area	Voids	Inc.Store	Cum.Store	
(fee		(sq-ft)	(%)	(cubic-feet)	(cubic-feet)	
99.2	23	1,763	0.0	0	0	
101.4	12	1,763	0.0	0	0	
101.4	13	1,763	100.0	18	18	
102.0	00	2,135	100.0	1,111	1,129	
103.0	00	3,583	100.0	2,859	3,988	
104.0	00	4,677	100.0	4,130	8,118	
105.0	00	5,828	100.0	5,253	13,370	
Device	Routing		_	et Devices		
#1	Primary			cfs Exfiltration		
#2	Secondary	99		" Round Culver		
					cting, no headwall, K	
					99.20' / 98.62' S= 0.0	
					PE, smooth interior,	Flow Area= 1.77 st
#3	Device 2	102		" Vert. Orifice/G		
	- ··	400		ted to weir flow a		_
#4	Tertiary	103			adth Broad-Crested	
						.20 1.40 1.60 1.80 2.00
					4.50 5.00 5.50	
						8 2.67 2.65 2.65 2.65
			2.65	2.00 2.00 2.0/	2.69 2.72 2.76 2.8	00

Primary OutFlow Max=0.04 cfs @ 4.40 hrs HW=101.42' (Free Discharge)

Secondary OutFlow Max=3.30 cfs @ 12.21 hrs HW=103.86' (Free Discharge) 2=Culvert (Passes 3.30 cfs of 13.28 cfs potential flow) -3=Orifice/Grate (Orifice Controls 3.30 cfs @ 4.20 fps)

Tertiary OutFlow Max=1.55 cfs @ 12.21 hrs HW=103.86' (Free Discharge) **4=Broad-Crested Rectangular Weir** (Weir Controls 1.55 cfs @ 0.83 fps)

Pond 4P: GUSF #5

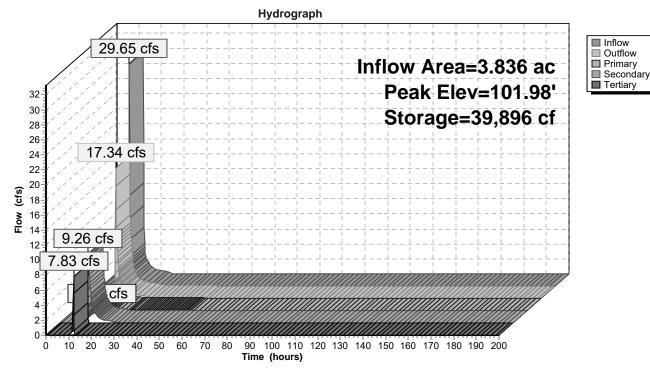
Summary for Pond 5P: Gravel Wetland #2

Inflow Area =	3.836 ac, 6	3.95% Impervious,	Inflow Depth = 7.74" for 100 Year Saco event
Inflow =	29.65 cfs @	12.08 hrs, Volume	= 2.473 af
Outflow =	17.34 cfs @	12.23 hrs, Volume	= 2.473 af, Atten= 42%, Lag= 8.8 min
Primary =	0.25 cfs @	12.24 hrs, Volume	= 0.572 af
Routed to Rea	ach 2R :		
Secondary =	9.26 cfs @	12.24 hrs, Volume	= 1.767 af
Routed to Rea	ach 2R :		
Tertiary =	7.83 cfs @	12.23 hrs, Volume	= 0.134 af
Routed to Rea	ach 2R :		

Routing by Stor-Ind method, Time Span= 0.00-200.00 hrs, dt= 0.10 hrs Peak Elev= 101.98' @ 12.24 hrs Surf.Area= 14,469 sf Storage= 39,896 cf

Plug-Flow detention time= 230.0 min calculated for 2.472 af (100% of inflow) Center-of-Mass det. time= 230.7 min (996.7 - 766.0)

Volume	Invert	Avai	il.Stor	age	Storage Descript	tion	
#1	95.14'		55,66	0 cf	Custom Stage I	Data (Prismatic) Lis	ted below (Recalc)
Elevatio	on Si	urf.Area	Void	s	Inc.Store	Cum.Store	
(fee		(sq-ft)	(%		(cubic-feet)	(cubic-feet)	
95.1	-	6,646	0.	-	0	0	
97.9		6,646	0.	-	0	0	
98.3		6,646	0.		0	0	
98.3		6,646	100.		66	66	
99.0		7,763	100.		4,971	5,038	
100.0		11,190	100.		9,477	14,514	
100.0		12,808	100.		11,999	26,513	
101.0		14,501	100.		13,655	40,168	
102.0		16,484	100.		15,493	55,660	
100.0		10,101	100.	0	10,400	00,000	
Device	Routing	In	vert	Outle	et Devices		
#1	Device 2	95	.14'	2.2"	Vert. Orifice/Gra	te C= 0.600 Limi	ted to weir flow at low heads
#2	Device 3	97	.98'	0.5'	long x 6.0' bread	th Broad-Crested	Rectangular Weir
				Hea	d (feet) 0.20 0.40	0.60 0.80 1.00	1.20 1.40 1.60 1.80 2.00
				2.50	3.00 3.50 4.00	4.50 5.00 5.50	
							68 2.67 2.65 2.65 2.65
				2.65	2.66 2.66 2.67	2.69 2.72 2.76 2	.83
#3	Primary	97	.90'	24.0	" Round Culvert	t	
						e edge headwall, K	
							.0050 '/' Cc= 0.900
							, Flow Area= 3.14 sf
#4	Secondary	99	.67'	-	" Vert. Orifice/Gr		
					ted to weir flow at		
#5	Secondary	100	.27'	-	" Vert. Orifice/Gr		
					ted to weir flow at		
#6	Tertiary	101	.74'				d Rectangular Weir
							1.20 1.40 1.60 1.80 2.00
					3.00 3.50 4.00		
				Coe	t. (English) 2.37	2.51 2.70 2.68 2.0	68 2.67 2.65 2.65 2.65


2.65 2.66 2.66 2.67 2.69 2.72 2.76 2.83

Primary OutFlow Max=0.25 cfs @ 12.24 hrs HW=101.95' (Free Discharge) 3=Culvert (Passes 0.25 cfs of 26.40 cfs potential flow) 2=Broad-Crested Rectangular Weir (Passes 0.25 cfs of 10.62 cfs potential flow) 1=Orifice/Grate (Orifice Controls 0.25 cfs @ 9.59 fps)

Secondary OutFlow Max=9.14 cfs @ 12.24 hrs HW=101.95' (Free Discharge) 4=Orifice/Grate (Orifice Controls 5.04 cfs @ 6.42 fps) 5=Orifice/Grate (Orifice Controls 4.10 cfs @ 5.22 fps)

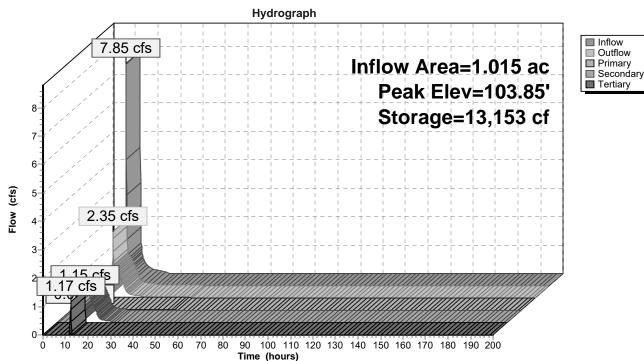
Tertiary OutFlow Max=6.80 cfs @ 12.23 hrs HW=101.95' (Free Discharge) **G=Broad-Crested Rectangular Weir** (Weir Controls 6.80 cfs @ 1.09 fps)

Pond 5P: Gravel Wetland #2

Summary for Pond 6P: GUSF #4

Inflow Area =	1.015 ac, 66.73% Impervious, Inflow I	Depth = 7.74" for 100 Year Saco event
Inflow =	7.85 cfs @ 12.08 hrs, Volume=	0.655 af
Outflow =	2.35 cfs @ 12.43 hrs, Volume=	0.655 af, Atten= 70%, Lag= 20.7 min
Primary =	0.04 cfs @ 4.20 hrs, Volume=	0.143 af
Routed to Rea	ach 4R : POI #2	
Secondary =	1.15 cfs @ 12.43 hrs, Volume=	0.488 af
Routed to Rea	ach 4R : POI #2	
Tertiary =	1.17 cfs @ 12.43 hrs, Volume=	0.024 af
Routed to Rea	ach 4R : POI #2	

Routing by Stor-Ind method, Time Span= 0.00-200.00 hrs, dt= 0.10 hrs Peak Elev= 103.85' @ 12.43 hrs Surf.Area= 4,928 sf Storage= 13,153 cf


Plug-Flow detention time= 250.0 min calculated for 0.655 af (100% of inflow) Center-of-Mass det. time= 250.7 min (1,016.6 - 766.0)

Volume	Invert	Avai	I.Storage	Storage Descrip	tion	
#1	97.70'		16,672 cf	Custom Stage	Data (Prismatic)List	ed below (Recalc)
Elevati	on Su	rf.Area	Voids	Inc.Store	Cum.Store	
(fe		(sq-ft)	(%)	(cubic-feet)	(cubic-feet)	
97.	-	1,869	0.0	0		
99.	-	1,869	0.0	0	0	
99.	90	1,869	100.0	19	19	
100.	00	1,924	100.0	190	208	
101.	00	2,446	100.0	2,185	2,393	
102.		3,511	100.0	2,979	5,372	
103.		4,241	100.0	3,876	9,248	
104.	00	5,047	100.0	4,644	13,892	
104.	50	6,072	100.0	2,780	16,672	
Device	Routing	In	vert Out	let Devices		
#1	Primary	97	.70' 0.04	cfs Exfiltration	at all elevations	
#2	Secondary			" Round Culver	t	
	,		L= 2	20.0' CPP, squar	e edge headwall, Ke	e= 0.500
					7.60'/97.50' S= 0.0	
			n= (0.013 Corrugated	PE, smooth interior,	Flow Area= 1.77 sf
#3	Device 2	101				ed to weir flow at low heads
#4	Tertiary	103	.75' 15.0)' long x 6.0' brea	adth Broad-Crested	Rectangular Weir
						.20 1.40 1.60 1.80 2.00
) 3.00´3.50 4.00		
			Coe	f. (English) 2.37	2.51 2.70 2.68 2.6	8 2.67 2.65 2.65 2.65
			2.65	5 2.66 2.66 2.67	2.69 2.72 2.76 2.8	33

Primary OutFlow Max=0.04 cfs @ 4.20 hrs HW=99.89' (Free Discharge)

Secondary OutFlow Max=1.14 cfs @ 12.43 hrs HW=103.84' (Free Discharge) 2=Culvert (Passes 1.14 cfs of 19.94 cfs potential flow) -3=Orifice/Grate (Orifice Controls 1.14 cfs @ 7.46 fps)

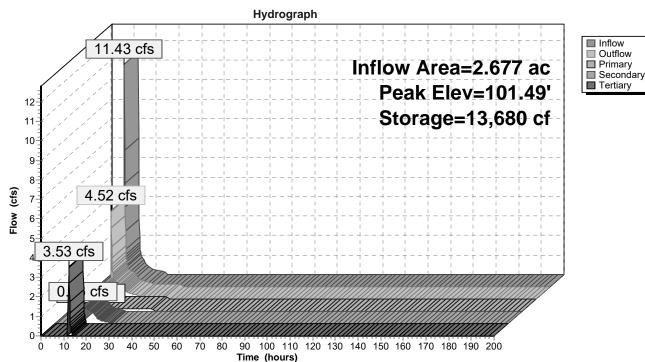
Tertiary OutFlow Max=1.01 cfs @ 12.43 hrs HW=103.84' (Free Discharge) **4=Broad-Crested Rectangular Weir** (Weir Controls 1.01 cfs @ 0.72 fps)

Pond 6P: GUSF #4

Summary for Pond 8/9P: GUSF #6 & #7

Inflow Area = 2.677 ac, 36.33% Impervious, Inflow Depth = 3.95" for 100 Year Saco event Inflow = 11.43 cfs @ 12.09 hrs, Volume= 0.881 af 4.52 cfs @ 12.38 hrs, Volume= Outflow = 0.880 af, Atten= 60%, Lag= 16.8 min 0.14 cfs @ 9.80 hrs, Volume= Primary = 0.334 af Routed to Reach 6R : 0.86 cfs @ 12.38 hrs, Volume= Secondary = 0.411 af Routed to Reach 6R : 3.53 cfs @ 12.38 hrs, Volume= Tertiarv = 0.134 af Routed to Reach 6R :

Routing by Stor-Ind method, Time Span= 0.00-200.00 hrs, dt= 0.10 hrs / 2 Peak Elev= 101.49' @ 12.38 hrs Surf.Area= 8,030 sf Storage= 13,680 cf


Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= 249.1 min (1,081.5 - 832.3)

Volume	Invert	Ava	il.Stora	age Storage Descr	ription	
#1	97.00'		27,13	9 cf Custom Stage	e Data (Prismatic)Listed below	(Recalc)
Elevatio	on Su	rf.Area	Void	s Inc.Store	Cum.Store	
(fee		(sq-ft)	(%		(cubic-feet)	
97.0	-	4,024	0.0) 0	0	
99. ⁻	19	4,024	0.0) 0	0	
99.2	20	4,024	100.0) 40	40	
100.0	00	4,989	100.0) 3,605	3,645	
101.0	00	7,445	100.0) 6,217	9,862	
102.0	00	8,631	100.0) 8,038	17,900	
103.0	00	9,847	100.0) 9,239	27,139	
Dovice	Pouting	In	vort	Outlat Daviaga		
Device	Routing			Outlet Devices		
#1	Primary			0.14 cfs Exfiltration		
#2	Secondary	96	5.90'	18.0" Round Culve		0
					ojecting, no headwall, Ke= 0.900	
					= 96.90' / 95.97' S= 0.0090 '/' (
#2	Device 2	100	101		ed PE, smooth interior, Flow Are Grate C= 0.600 Limited to weir	
#3						
#4	Tertiary	101	.32'		readth Broad-Crested Rectang	
					.40 0.60 0.80 1.00 1.20 1.40	1.60 1.80 2.00
				2.50 3.00 3.50 4.0		00 0 04 0 04
					3 2.54 2.70 2.69 2.68 2.68 2	.66 2.64 2.64
				2.64 2.65 2.65 2.6	6 2.66 2.68 2.70 2.74	

Primary OutFlow Max=0.14 cfs @ 9.80 hrs HW=99.19' (Free Discharge)

Secondary OutFlow Max=0.86 cfs @ 12.38 hrs HW=101.49' (Free Discharge) 2=Culvert (Passes 0.86 cfs of 13.16 cfs potential flow) -3=Orifice/Grate (Orifice Controls 0.86 cfs @ 4.36 fps)

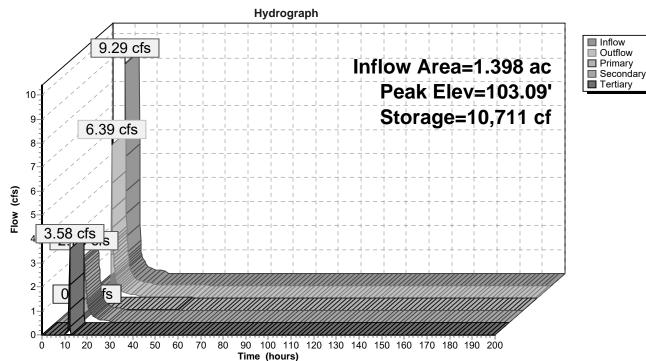
Tertiary OutFlow Max=3.40 cfs @ 12.38 hrs HW=101.49' (Free Discharge) 4=Broad-Crested Rectangular Weir (Weir Controls 3.40 cfs @ 1.00 fps)

Pond 8/9P: GUSF #6 & #7

Summary for Pond 10P: GUSF #8

Inflow Area	=	1.398 ac, 6	60.77% Imp	ervious, Inflow De	Pepth = 6.16" for 100 Year Saco even	t
Inflow	=	9.29 cfs @	12.09 hrs,	Volume=	0.718 af	
Outflow	=	6.39 cfs @	12.22 hrs,	Volume=	0.718 af, Atten= 31%, Lag= 8.0 min	
Primary	=	0.05 cfs @	7.30 hrs,	Volume=	0.171 af	
Routed t	to Read	h 6R :				
Secondary	=	2.76 cfs @	12.23 hrs,	Volume=	0.490 af	
Routed t	to Read	h 6R :				
Tertiary	=	3.58 cfs @	12.22 hrs,	Volume=	0.057 af	
Routed t	to Read	:h 6R :				

Routing by Stor-Ind method, Time Span= 0.00-200.00 hrs, dt= 0.10 hrs Peak Elev= 103.09' @ 12.23 hrs Surf.Area= 5,089 sf Storage= 10,711 cf


Plug-Flow detention time= 230.5 min calculated for 0.718 af (100% of inflow) Center-of-Mass det. time= 231.3 min (1,032.4 - 801.1)

Volume	Invert	Ava	il.Stor	age	Storage Descript	tion		
#1	98.16' 21		21,975 cf		Custom Stage Data (Prismatic)Listed below (Recalc)			
Elevatio	on Su	ırf.Area	Void	s	Inc.Store	Cum.Store		
	(feet) (sq-ft)		(%)		(cubic-feet)	(cubic-feet)		
		2,918	0.		0	0		
100.35		2,918 0			0 0	0		
100.3		2,918	100.		29	29		
101.0		3,108	100.		1,928	1,958		
102.0	00	4,231	100.	0	3,670	5,627		
103.0	00	5,012	100.	0	4,622	10,249		
104.0	00	5,850	100.	0	5,431	15,680		
105.0	00	6,741	100.	0	6,296	21,975		
Device	Routing	In	vert	Outle	et Devices			
#1	Primary	98	3.16'	0.05	cfs Exfiltration a	at all elevations		
#2	Secondary	98.06'		18.0" Round Culvert				
	, i i i i i i i i i i i i i i i i i i i			L= 30.8' CPP, projecting, no headwall, Ke= 0.900				
				Inlet	/ Outlet Invert= 98	8.06'/97.90' S=	0.0052 '/' Cc= 0.900	
							or, Flow Area= 1.77 sf	
#3	#3 Device 2 101.57'		10.0" Vert. Orifice/Grate C= 0.600					
					ted to weir flow at			
#4	Tertiary	rtiary 102.87		15.0' long x 6.0' breadth Broad-Crested Rectangular Weir Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00				
							1.20 1.40 1.60 1.80 2.00	
					3.00 3.50 4.00		268 267 265 265 265	
					2.66 2.66 2.67		2.68 2.67 2.65 2.65 2.65	
				2.00	2.00 2.00 2.07	2.03 2.12 2.10	2.00	

Primary OutFlow Max=0.05 cfs @ 7.30 hrs HW=100.35' (Free Discharge)

Secondary OutFlow Max=2.73 cfs @ 12.23 hrs HW=103.06' (Free Discharge) 2=Culvert (Passes 2.73 cfs of 13.85 cfs potential flow) -3=Orifice/Grate (Orifice Controls 2.73 cfs @ 5.00 fps)

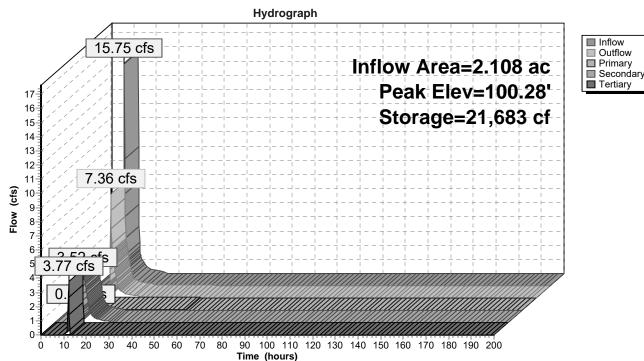
Tertiary OutFlow Max=3.14 cfs @ 12.22 hrs HW=103.07' (Free Discharge) —4=Broad-Crested Rectangular Weir (Weir Controls 3.14 cfs @ 1.06 fps)

Pond 10P: GUSF #8

Summary for Pond 11P: GUSF #9

Inflow Area =	2.108 ac, 70.56% Impervious, Inflow I	Depth = 7.25" for 100 Year Saco event					
Inflow =	15.75 cfs @ 12.09 hrs, Volume=	1.274 af					
Outflow =	7.36 cfs @ 12.29 hrs, Volume=	1.274 af, Atten= 53%, Lag= 12.4 min					
Primary =	0.07 cfs @ 5.10 hrs, Volume=	0.275 af					
Routed to Reach 5R : POI #3							
Secondary =	3.52 cfs @ 12.29 hrs, Volume=	0.907 af					
Routed to Reach 5R : POI #3							
Tertiary =	3.77 cfs @ 12.29 hrs, Volume=	0.092 af					
Routed to Reach 5R : POI #3							

Routing by Stor-Ind method, Time Span= 0.00-200.00 hrs, dt= 0.10 hrs Peak Elev= 100.28' @ 12.29 hrs Surf.Area= 8,435 sf Storage= 21,683 cf


Plug-Flow detention time= 249.0 min calculated for 1.274 af (100% of inflow) Center-of-Mass det. time= 249.8 min (1,028.4 - 778.6)

Volume	Invert	ert Avail.Storag		age	Storage Descript	ion	
#1	94.46' 28,		28,06	8 cf	Custom Stage Data (Prismatic)Listed below (Recalc)		
Elevatio	on Su	ırf.Area	Void	c	Inc.Store	Cum.Store	
		(sq-ft)			(cubic-feet)	(cubic-feet)	
94.46		3,783	0.0		0	0	
94.40 96.65		,		0	0	0	
96.6		3,783			38	38	
97.0		4,087	100.		1,338	1,376	
98.0		5,074	100.		4,581	5,956	
99.0		6,824			5,949	11,905	
100.0		8,066			7,445	19,350	
101.0		9,370	100.		8,718	28,068	
					,	,	
Device	Routing	In	vert	Outle	et Devices		
#1	Primary	94	.46'	0.07	cfs Exfiltration a	t all elevations	
#2	Secondary	94.36'		18.0" Round Culvert			
				L= 5	8.1' CPP, project	ting, no headwall,	Ke= 0.900
							0.0076 '/' Cc= 0.900
							or, Flow Area= 1.77 sf
#3 Device 2 9		98	98.07' 10.0		D.0" Vert. Orifice/Grate C= 0.600		
				Limited to weir flow at low heads			
#4	Tertiary	/ 100.0		15.0' long x 6.0' breadth Broad-Crested Rectangular Weir			
							1.20 1.40 1.60 1.80 2.00
					3.00 3.50 4.00		
							2.68 2.67 2.65 2.65 2.65
				2.65	2.66 2.66 2.67	2.69 2.72 2.76	2.83

Primary OutFlow Max=0.07 cfs @ 5.10 hrs HW=96.65' (Free Discharge)

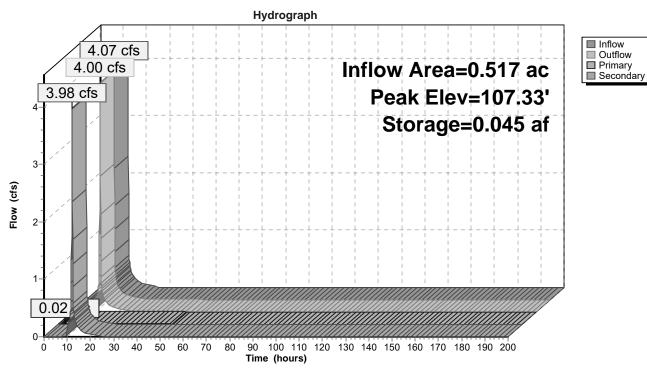
Secondary OutFlow Max=3.52 cfs @ 12.29 hrs HW=100.28' (Free Discharge) 2=Culvert (Passes 3.52 cfs of 15.27 cfs potential flow) -3=Orifice/Grate (Orifice Controls 3.52 cfs @ 6.45 fps)

Tertiary OutFlow Max=3.68 cfs @ 12.29 hrs HW=100.28' (Free Discharge) **4=Broad-Crested Rectangular Weir** (Weir Controls 3.68 cfs @ 1.12 fps)

Pond 11P: GUSF #9

Summary for Pond 12P: CHAMBER1

Inflow Area = 0.517 ac, 84.12% Impervious, Inflow Depth = 8.10" for 100 Year Saco event Inflow 4.07 cfs @ 12.08 hrs, Volume= 0.349 af = 4.00 cfs @ 12.09 hrs, Volume= Outflow = 0.350 af, Atten= 2%, Lag= 0.1 min 3.20 hrs, Volume= Primary = 0.02 cfs @ 0.077 af Routed to Reach 7R : 3.98 cfs @ 12.09 hrs, Volume= 0.272 af Secondary = Routed to Reach 7R :


Routing by Stor-Ind method, Time Span= 0.00-200.00 hrs, dt= 0.10 hrs / 2 Peak Elev= 107.33' @ 12.09 hrs Surf.Area= 0.021 ac Storage= 0.045 af

Plug-Flow detention time= 198.3 min calculated for 0.349 af (100% of inflow) Center-of-Mass det. time= 201.1 min (955.4 - 754.4)

Volume	Invert	Avail.Storage	e Storage Description		
#1	104.10'	0.018 at	f 5.33'W x 7.21'L x 3.54'H Prismatoid x 24		
#2	104.60'	0.029 at	0.075 af Overall - 0.029 af Embedded = 0.046 af x 40.0% Voids f Cultec R-330XLHD x 24 Inside #1 Effective Size= 47.8"W x 30.0"H => 7.45 sf x 7.00'L = 52.2 cf Overall Size= 52.0"W x 30.5"H x 8.50'L with 1.50' Overlap		
		0 047 at	f Total Available Storage		
		0.047 0			
Device	Routing	Invert C	Dutlet Devices		
#1	Primary	104.10' 0	4.10' 0.02 cfs Exfiltration at all elevations		
#2	Secondary	H 2 C	6.0' long x 0.7' breadth Broad-Crested Rectangular Weir Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.50 Coef. (English) 2.76 2.82 2.93 3.09 3.18 3.22 3.27 3.30 3.32 3.31 3.32		
Primary OutFlow Max=0.02 cfs @ 3.20 hrs HW=104.14' (Free Discharge)					

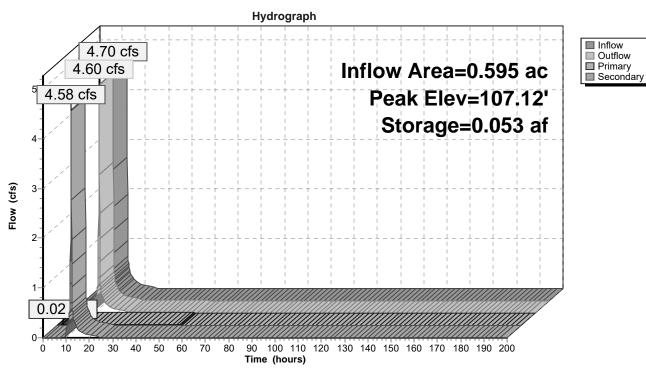
1=Exfiltration (Exfiltration Controls 0.02 cfs)

Secondary OutFlow Max=3.82 cfs @ 12.09 hrs HW=107.32' (Free Discharge) 2=Broad-Crested Rectangular Weir (Weir Controls 3.82 cfs @ 1.71 fps)

Pond 12P: CHAMBER1

Summary for Pond 13P: CHAMBER2

Inflow Area = 0.595 ac, 86.51% Impervious, Inflow Depth = 8.22" for 100 Year Saco event Inflow 4.70 cfs @ 12.08 hrs, Volume= 0.408 af = 4.60 cfs @ 12.09 hrs, Volume= Outflow = 0.408 af, Atten= 2%, Lag= 0.2 min 2.60 hrs, Volume= 0.02 cfs @ Primary = 0.085 af Routed to Reach 7R : 4.58 cfs @ 12.09 hrs, Volume= Secondary = 0.323 af Routed to Reach 7R :


Routing by Stor-Ind method, Time Span= 0.00-200.00 hrs, dt= 0.10 hrs / 2 Peak Elev= 107.12' @ 12.09 hrs Surf.Area= 0.026 ac Storage= 0.053 af

Plug-Flow detention time= 217.8 min calculated for 0.407 af (100% of inflow) Center-of-Mass det. time= 218.6 min (968.5 - 749.9)

Volume	Invert	Avail.Stora	age Storage Description						
#1	104.10'	0.023	B af 5.33'W x 7.21'L x 3.54'H Prismatoid x 30						
#2	104.60'	0.036	0.094 af Overall - 0.036 af Embedded = 0.058 af x 40.0% Voids Cultec R-330XLHD x 30 Inside #1 Effective Size= 47.8"W x 30.0"H => 7.45 sf x 7.00'L = 52.2 cf Overall Size= 52.0"W x 30.5"H x 8.50'L with 1.50' Overlap						
0.059 af Total Available Storage									
Device	Routing	Invert	Outlet Devices						
#1	Primary	104.10'	0.02 cfs Exfiltration at all elevations						
#2	Secondary	106.70'	6.0' long x 0.7' breadth Broad-Crested Rectangular Weir						
			Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00						
			2.50						
			Coef. (English) 2.76 2.82 2.93 3.09 3.18 3.22 3.27 3.30 3.32						
			3.31 3.32						
Primary	Primary OutFlow Max=0.02 cfs @ 2.60 hrs HW=104.14' (Free Discharge)								

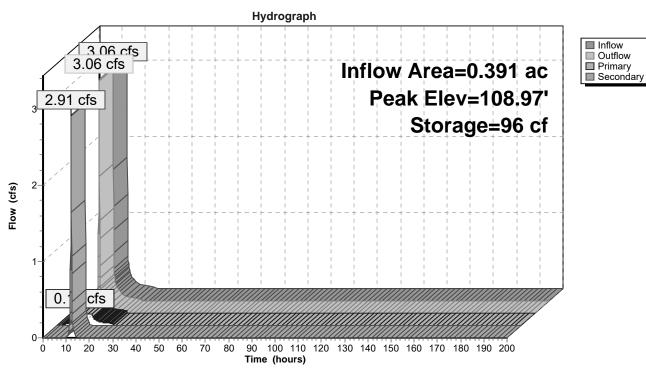
1=Exfiltration (Exfiltration Controls 0.02 cfs)

Secondary OutFlow Max=4.41 cfs @ 12.09 hrs HW=107.11' (Free Discharge) 2=Broad-Crested Rectangular Weir (Weir Controls 4.41 cfs @ 1.80 fps)

Pond 13P: CHAMBER2

Summary for Pond 14P: FocalPoint 1

Inflow Area =	0.391 ac, 80.52% Impervious, Inflow De	epth = 7.98" for 100 Year Saco event
Inflow =	3.06 cfs @ 12.08 hrs, Volume=	0.260 af
Outflow =	3.06 cfs @ 12.09 hrs, Volume=	0.260 af, Atten= 0%, Lag= 0.2 min
Primary =	0.15 cfs @ 10.00 hrs, Volume=	0.138 af
Secondary =	2.91 cfs @ 12.09 hrs, Volume=	0.122 af


Routing by Stor-Ind method, Time Span= 0.00-200.00 hrs, dt= 0.10 hrs Peak Elev= 108.97' @ 12.09 hrs Surf.Area= 64 sf Storage= 96 cf

Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= 1.6 min (760.1 - 758.5)

Volume	Invert	Avail.Sto	rage	Storage D	Storage Description				
#1	105.95'		0 cf	16.00'W >	k 4.00'L x 2.25'	H FocalPoint			
					erall_x 0.0% V				
#2	108.20'	1(00 cf	Custom S	Stage Data (Pr	ismatic)Listed b	<u>elow (Recalc) -Impervio</u> us		
		1(00 cf	Total Ava	Total Available Storage				
Elevatio	n Su	rf.Area	Inc	.Store	Cum.Store				
(fee			(cubi	c-feet)	(cubic-feet)				
108.2	20	64		0	0				
108.5	60	124		28	28				
109.0	0	164		72	100				
Device	Routing	Invert	Outl	et Devices					
#1	Primary	105.95'	100.	000 in/hr E	Exfiltration over	er Surface area	Phase-In= 0.10'		
#2	Secondary	108.70'	24.0	" Horiz. O	rifice/Grate C	= 0.600			
			Limi	Limited to weir flow at low heads					
- ·									

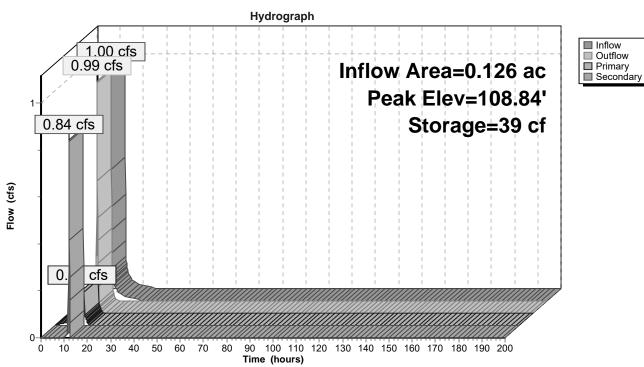
Primary OutFlow Max=0.15 cfs @ 10.00 hrs HW=108.21' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.15 cfs)

Secondary OutFlow Max=2.80 cfs @ 12.09 hrs HW=108.96' (Free Discharge) —2=Orifice/Grate (Weir Controls 2.80 cfs @ 1.68 fps)

Pond 14P: FocalPoint 1

Summary for Pond 15P: FocalPoint 2

Inflow Area =	0.126 ac, 95.31% Impervious, Inflow De	pth = 8.34" for 100 Year Saco event
Inflow =	1.00 cfs @ 12.08 hrs, Volume=	0.087 af
Outflow =	0.99 cfs @ 12.08 hrs, Volume=	0.066 af, Atten= 1%, Lag= 0.0 min
Primary =	0.15 cfs @ 11.60 hrs, Volume=	0.042 af
Secondary =	0.84 cfs @ 12.08 hrs, Volume=	0.023 af


Routing by Stor-Ind method, Time Span= 0.00-200.00 hrs, dt= 0.10 hrs / 2 Peak Elev= 108.84' @ 12.08 hrs Surf.Area= 64 sf Storage= 39 cf

Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= (not calculated: outflow precedes inflow)

Volume	Invert	Avail.Sto	rage	Storage D	Storage Description				
#1	105.95'		0 cf		4.00'L x 2.25'H				
					erall x 0.0% Vo				
#2	108.20'		<u>53 cf</u>	Custom S	Stage Data (Pris	smatic)Listed below (Recalc) -Impervious			
		:	53 cf	Total Avai	lable Storage				
Elevatio	on Sur	f.Area	Inc	Store	Cum.Store				
(fee	et)	(sq-ft)	(cubi	c-feet)	(cubic-feet)				
108.2	20	24		0	0				
108.5	50	64		13	13				
109.0	00	96		40	53				
Device	Routing	Invert	Outl	et Devices					
#1	Primary	105.95'	100.	00.000 in/hr Exfiltration over Surface area Phase-In= 0.10					
#2	#2 Secondary 108.70' 18.0		"Horiz. Orifice/Grate C= 0.600						
	Limited to weir flow at low heads								

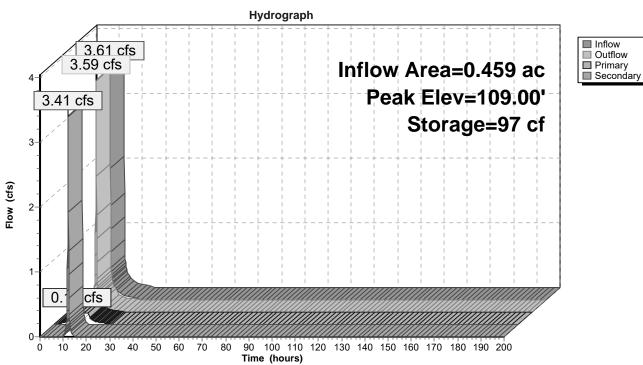
Primary OutFlow Max=0.15 cfs @ 11.60 hrs HW=108.24' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.15 cfs)

Secondary OutFlow Max=0.80 cfs @ 12.08 hrs HW=108.84' (Free Discharge) 2=Orifice/Grate (Weir Controls 0.80 cfs @ 1.22 fps)

Pond 15P: FocalPoint 2

Summary for Pond 16P: FocalPoint 3

Inflow Area =	0.459 ac, 83.70% Impervious, Inflow De	epth = 8.10" for 100 Year Saco event
Inflow =	3.61 cfs @ 12.08 hrs, Volume=	0.310 af
Outflow =	3.59 cfs @ 12.09 hrs, Volume=	0.294 af, Atten= 1%, Lag= 0.1 min
Primary =	0.18 cfs @ 9.90 hrs, Volume=	0.148 af
Secondary =	3.41 cfs @ 12.09 hrs, Volume=	0.146 af


Routing by Stor-Ind method, Time Span= 0.00-200.00 hrs, dt= 0.10 hrs / 2 Peak Elev= 109.00' @ 12.08 hrs Surf.Area= 76 sf Storage= 97 cf

Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= (not calculated: outflow precedes inflow)

Volume	Invert	Avail.Sto	rage	Storage	Storage Description				
#1	105.95'		0 cf		19.00'W x 4.00'L x 2.25'H FocalPoint				
	(00.00)				verall x 0.0% Vo				
#2	108.20'	ę	97 cf	Custom	Stage Data (Pr	rismatic)Listed below (Recalc) -Impervious			
		ę	97 cf	Total Ava	ailable Storage				
Elevatio	n Sur	f.Area	Inc	Store	Cum.Store				
(fee		(sq-ft)		c-feet)	(cubic-feet)				
108.2	0	76		0	0				
108.5	60	128		31	31				
108.9	5	168		67	97				
. .			0 11						
Device	Routing	Invert	Out	et Devices	,				
#1	Primary	105.95'	100.	00.000 in/hr Exfiltration over Surface area Phase-In= 0.					
#2	#2 Secondary 108.70' 24.0		24.0	.0" Horiz. Orifice/Grate C= 0.600					
	-		Limi	imited to weir flow at low heads					

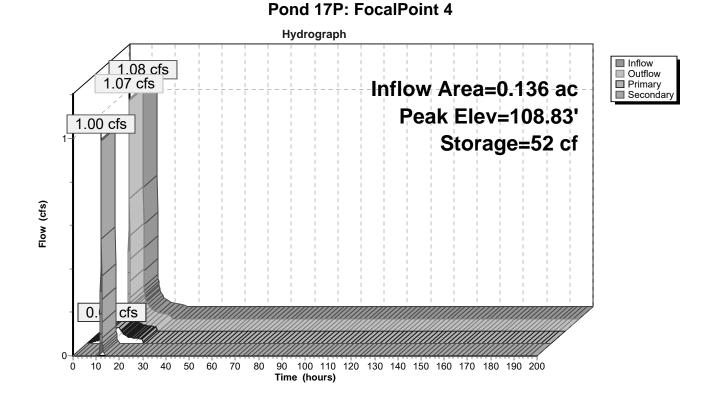
Primary OutFlow Max=0.18 cfs @ 9.90 hrs HW=108.20' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.18 cfs)

Secondary OutFlow Max=3.27 cfs @ 12.09 hrs HW=108.99' (Free Discharge) 2=Orifice/Grate (Weir Controls 3.27 cfs @ 1.77 fps)

Pond 16P: FocalPoint 3

Summary for Pond 17P: FocalPoint 4

Inflow Area =	0.136 ac, 96.01% Impervious, Inflow De	epth = 8.34" for 100 Year Saco event
Inflow =	1.08 cfs @ 12.08 hrs, Volume=	0.094 af
Outflow =	1.07 cfs @ 12.08 hrs, Volume=	0.102 af, Atten= 1%, Lag= 0.0 min
Primary =	0.07 cfs @ 10.70 hrs, Volume=	0.066 af
Secondary =	1.00 cfs @ 12.08 hrs, Volume=	0.036 af


Routing by Stor-Ind method, Time Span= 0.00-200.00 hrs, dt= 0.10 hrs / 2 Peak Elev= 108.83' @ 12.08 hrs Surf.Area= 32 sf Storage= 52 cf

Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= 33.1 min (778.0 - 744.9)

Volume	Invert	Avail.Sto	rage	Storage	Storage Description				
#1	105.95'		0 cf	8.00'W >	x 4.00'L x 2.25'H	I FocalPoint			
				. =	erall x 0.0% Vo				
#2	108.20'		67 cf	Custom	Stage Data (Pr	ismatic)Listed below (Recalc) -Impervious			
		(67 cf	Total Available Storage					
Elevatio	n Sur	f.Area	Inc	Store	Cum.Store				
(fee			(cubi	c-feet)	(cubic-feet)				
108.2	0	32		0	0				
108.5	0	88		18	18				
108.9	5	128		49	67				
Device	Routing	Invert	Outl	et Device	S				
#1	Primary	105.95'	100.	0.000 in/hr Exfiltration over Surface area Phase-In= 0.10					
#2	#2 Secondary 108.70' 24.0" Horiz. Or		Drifice/Grate C	c= 0.600					
			Limi	imited to weir flow at low heads					

Primary OutFlow Max=0.07 cfs @ 10.70 hrs HW=108.20' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.07 cfs)

Secondary OutFlow Max=0.95 cfs @ 12.08 hrs HW=108.83' (Free Discharge) 2=Orifice/Grate (Weir Controls 0.95 cfs @ 1.17 fps)

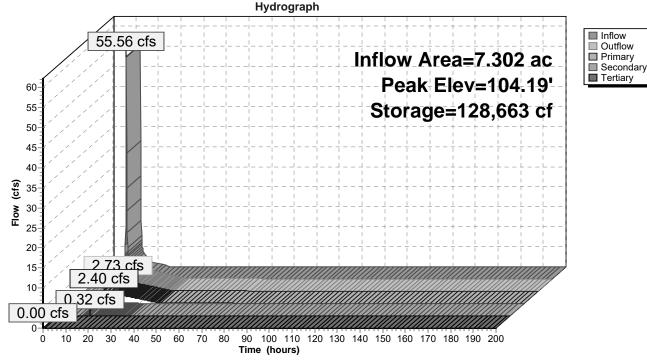
Summary for Pond 88P: Gravel Wetland #1

Inflow Area =	7.302 ac, 60.35% Impervious, Inflow [Depth = 7.50" for 100 Year Saco event						
Inflow =	55.56 cfs @ 12.09 hrs, Volume=	4.561 af						
Outflow =	2.73 cfs @ 14.57 hrs, Volume=	4.561 af, Atten= 95%, Lag= 149.0 min						
Primary =	2.40 cfs @ 14.57 hrs, Volume=	4.166 af						
Routed to Rea	ach 4R : POI #2							
Secondary =	0.32 cfs @ 14.57 hrs, Volume=	0.395 af						
Routed to Reach 4R : POI #2								
Tertiary =	0.00 cfs @ 0.00 hrs, Volume=	0.000 af						
Routed to Rea	ach 4R : POI #2							

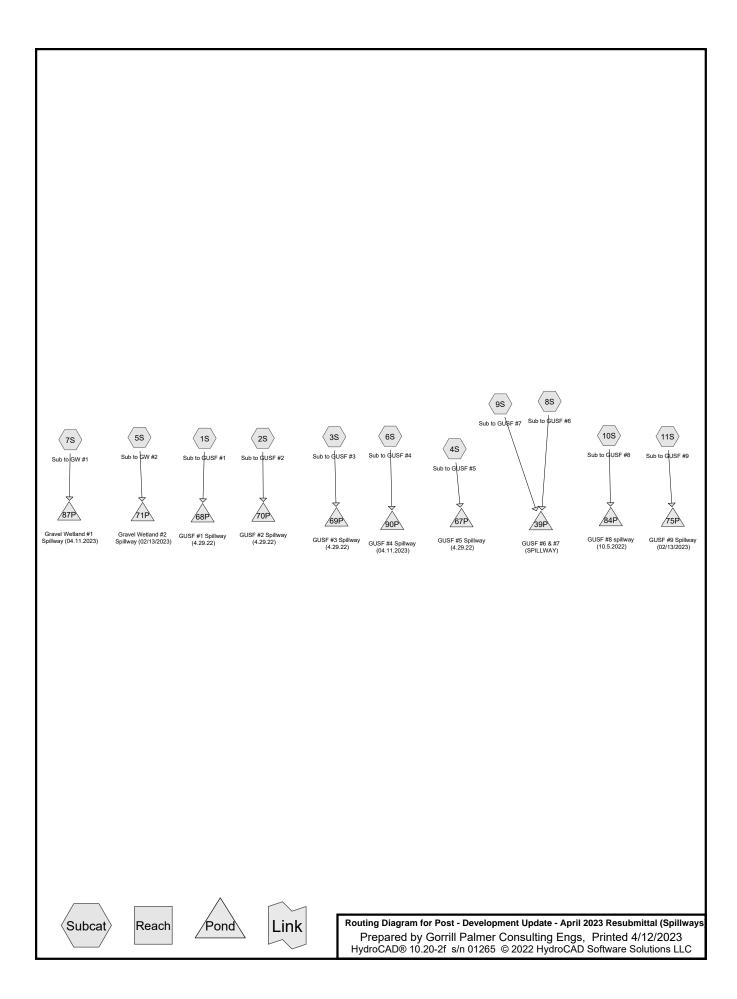
Routing by Stor-Ind method, Time Span= 0.00-200.00 hrs, dt= 0.10 hrs Peak Elev= 104.19' @ 14.57 hrs Surf.Area= 29,193 sf Storage= 128,663 cf

Plug-Flow detention time= 737.0 min calculated for 4.559 af (100% of inflow) Center-of-Mass det. time= 738.3 min (1,510.9 - 772.6)

Volume	Invert	Ava	il.Stora	ge Storage Desci	ription	
#1	94.76'	1	38,013	cf Custom Stag	e Data (Prismatic	Listed below (Recalc)
Elevatio	on Su	rf.Area	Voids	Inc.Store	Cum.Store	
(fee	et)	(sq-ft)	(%)	(cubic-feet)	(cubic-feet)	
94.7	76	12,121	0.0	0	0	
97.6		12,121	0.0	0	0	
97.9	92	12,121	0.0	0	0	
97.9	93	12,121	100.0	121	121	
98.0		12,239	100.0	853	974	
99.0	00	14,188	100.0	13,214	14,187	
100.0	00	18,901	100.0	16,545	30,732	
101.0	00	20,916	100.0	19,909	50,640	
102.0	00	23,050	100.0	21,983	72,623	
103.0	00	25,237	100.0	24,144	96,767	
104.0	00	27,639	100.0	26,438	123,205	
104.2	25	29,662	100.0	7,163	130,367	
104.5	50	31,500	100.0	7,645	138,013	
Davias	Deuting	l a	t	Outlet Devices		
Device	Routing			Outlet Devices		
#1	Device 2	-	-			_imited to weir flow at low heads
#2	Device 3	97				ted Rectangular Weir
					.40 0.60 0.80 1.0	00 1.20 1.40 1.60 1.80 2.00
				2.50 2.50		2 4 0 2 0 0 0 7 2 2 0 2 0 0
				()	6 2.82 2.93 3.09	3.18 3.22 3.27 3.30 3.32
	Di	07		3.31 3.32		
#3	Primary	97		36.0" Round Culv		
				L= 69.0' CPP, squ		
						= 0.0145 '/' Cc= 0.900
ЩА	Davis 0	00				erior, Flow Area= 7.07 sf
#4 #5	Device 2					_imited to weir flow at low heads
#5	Secondary					Limited to weir flow at low heads
#6	Tertiary	104				ested Rectangular Weir
				Head (feet) 0.20 0	.40 0.60 0.80 1.0	JU 1.2U 1.4U 1.6U


Coef. (English) 2.49 2.56 2.70 2.69 2.68 2.69 2.67 2.64

Primary OutFlow Max=2.40 cfs @ 14.57 hrs HW=104.19' (Free Discharge) 3=Culvert (Passes 2.40 cfs of 77.55 cfs potential flow) 2=Broad-Crested Rectangular Weir (Passes 2.40 cfs of 337.14 cfs potential flow) 1=Orifice/Grate (Orifice Controls 0.39 cfs @ 12.36 fps) 4=Orifice/Grate (Orifice Controls 2.01 cfs @ 10.25 fps)


Secondary OutFlow Max=0.32 cfs @ 14.57 hrs HW=104.19' (Free Discharge) 5=Orifice/Grate (Orifice Controls 0.32 cfs @ 9.52 fps)

Tertiary OutFlow Max=0.00 cfs @ 0.00 hrs HW=94.76' (Free Discharge) **6=Broad-Crested Rectangular Weir** (Controls 0.00 cfs)

Pond 88P: Gravel Wetland #1

EMERGENCY SPILLWAY CALCULATIONS

Event#	Event	Storm Type	Curve	Mode	Duration	B/B	Depth	AMC
	Name				(hours)		(inches)	
 1	25 Year Saco	Type III 24-hr		Default	24.00	1	6.20	2
2	100 Year Saco	Type III 24-hr		Default	24.00	1	8.70	2

Rainfall Events Listing (selected events)

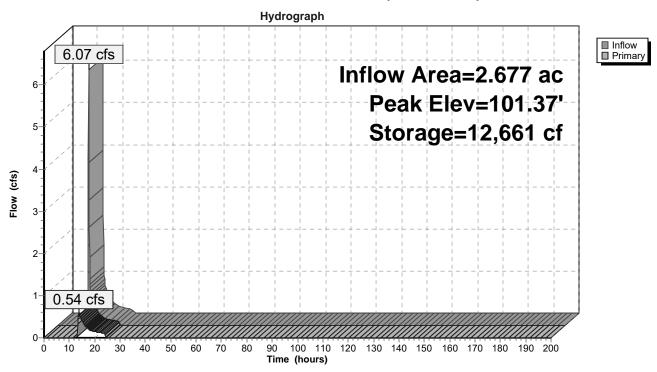
Post - Development Update - April 2023 ResubType III 24-hr25 Year Saco Rainfall=6.20"Prepared by Gorrill Palmer Consulting EngsPrinted 4/12/2023HydroCAD® 10.20-2f s/n 01265 © 2022 HydroCAD Software Solutions LLCPage 3

Time span=0.00-200.00 hrs, dt=0.10 hrs, 2001 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment1S: Sub to GUSF #1	Runoff Area=73,933 sf 67.19% Impervious Runoff Depth=5.27" Tc=5.0 min CN=92 Runoff=9.13 cfs 0.745 af
Subcatchment 2S: Sub to GUSF #2	Runoff Area=82,545 sf 47.04% Impervious Runoff Depth=4.82" Tc=5.0 min CN=88 Runoff=9.64 cfs 0.761 af
Subcatchment 3S: Sub to GUSF #3	Runoff Area=44,837 sf 71.91% Impervious Runoff Depth=5.38" Tc=5.0 min CN=93 Runoff=5.60 cfs 0.461 af
Subcatchment 4S: Sub to GUSF #5	Runoff Area=39,620 sf 67.95% Impervious Runoff Depth=5.27" Tc=5.0 min CN=92 Runoff=4.89 cfs 0.399 af
Subcatchment 5S: Sub to GW #2	Runoff Area=167,094 sf 63.95% Impervious Runoff Depth=5.27" Tc=5.0 min CN=92 Runoff=20.64 cfs 1.683 af
Subcatchment 6S: Sub to GUSF #4	Runoff Area=44,235 sf 66.73% Impervious Runoff Depth=5.27" Tc=5.0 min CN=92 Runoff=5.46 cfs 0.446 af
Subcatchment7S: Sub to GW #1	Runoff Area=318,070 sf 60.35% Impervious Runoff Depth=5.04" Tc=5.0 min CN=90 Runoff=38.28 cfs 3.067 af
Subcatchment 8S: Sub to GUSF #6	Runoff Area=79,636 sf 23.58% Impervious Runoff Depth=1.47" Tc=5.0 min CN=53 Runoff=2.67 cfs 0.225 af
Subcatchment9S: Sub to GUSF #7	Runoff Area=36,965 sf 63.79% Impervious Runoff Depth=3.65" Tc=5.0 min CN=77 Runoff=3.42 cfs 0.258 af
Subcatchment10S: Sub to GUSF #8	Runoff Area=60,887 sf 60.77% Impervious Runoff Depth=3.86" Tc=5.0 min CN=79 Runoff=5.92 cfs 0.449 af
Subcatchment11S: Sub to GUSF #9	Runoff Area=91,815 sf 70.56% Impervious Runoff Depth=4.82" Tc=5.0 min CN=88 Runoff=10.72 cfs 0.846 af
Pond 39P: GUSF #6 & #7 (SPILLWAY)	Peak Elev=101.37' Storage=12,661 cf Inflow=6.07 cfs 0.483 af Outflow=0.54 cfs 0.200 af
Pond 67P: GUSF #5 Spillway (4.29.22)	Peak Elev=103.96' Storage=7,933 cf Inflow=4.89 cfs 0.399 af Outflow=3.69 cfs 0.240 af
Pond 68P: GUSF #1 Spillway (4.29.22)	Peak Elev=104.16' Storage=17,517 cf Inflow=9.13 cfs 0.745 af Outflow=3.91 cfs 0.378 af
Pond 69P: GUSF #3 Spillway (4.29.22)	Peak Elev=103.24' Storage=9,885 cf Inflow=5.60 cfs 0.461 af Outflow=4.08 cfs 0.259 af
Pond 70P: GUSF #2 Spillway (4.29.22)	Peak Elev=105.09' Storage=16,078 cf Inflow=9.64 cfs 0.761 af Outflow=4.70 cfs 0.427 af

Post - Development Update - April 2023 Resub Type III 24-hr 25 Year Saco Rainfall=6.20" Prepared by Gorrill Palmer Consulting Engs Printed 4/12/2023 HydroCAD® 10.20-2f s/n 01265 © 2022 HydroCAD Software Solutions LLC Page 4 Peak Elev=101.99' Storage=39,954 cf Inflow=20.64 cfs 1.683 af Pond 71P: Gravel Wetland #2 Spillway Outflow=8.64 cfs 0.847 af Pond 75P: GUSF #9 Spillway (02/13/2023) Peak Elev=100.24' Storage=21,296 cf Inflow=10.72 cfs 0.846 af Outflow=2.68 cfs 0.391 af Peak Elev=103.00' Storage=10,239 cf Inflow=5.92 cfs 0.449 af Pond 84P: GUSF #8 spillway (10.5.2022) Outflow=1.64 cfs 0.229 af Pond 87P: Gravel Wetland #1 Spillway Peak Elev=104.29' Storage=131,615 cf Inflow=38.28 cfs 3.067 af Outflow=0.37 cfs 0.074 af Pond 90P: GUSF #4 Spillway (04.11.2023) Peak Elev=103.59' Storage=11,883 cf Inflow=5.46 cfs 0.446 af Outflow=1.32 cfs 0.184 af Total Runoff Area = 23.867 ac Runoff Volume = 9.342 af Average Runoff Depth = 4.70" 59.65% Impervious = 14.237 ac 40.35% Pervious = 9.630 ac

Summary for Pond 39P: GUSF #6 & #7 (SPILLWAY)


Inflow Area =	2.677 ac, 36.33% Impervious, Inflow Dep	pth = 2.17" for 25 Year Saco event
Inflow =	6.07 cfs @ 12.10 hrs, Volume=	0.483 af
Outflow =	0.54 cfs @ 13.80 hrs, Volume= (0.200 af, Atten= 91%, Lag= 102.3 min
Primary =	0.54 cfs @ 13.80 hrs, Volume= 0	0.200 af

Routing by Stor-Ind method, Time Span= 0.00-200.00 hrs, dt= 0.10 hrs Peak Elev= 101.37' @ 13.80 hrs Surf.Area= 7,878 sf Storage= 12,661 cf

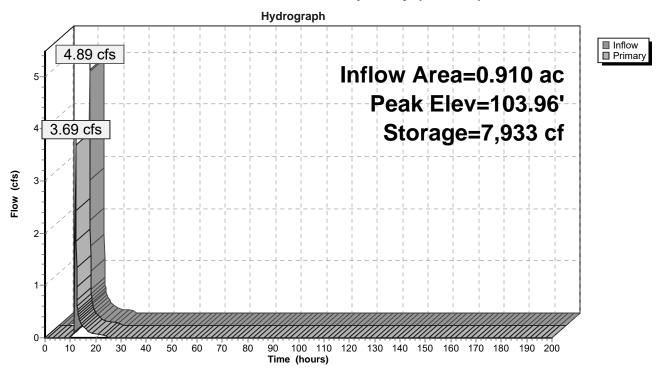
Plug-Flow detention time= 318.2 min calculated for 0.200 af (42% of inflow) Center-of-Mass det. time= 181.1 min (1,028.5 - 847.5)

Volume	In	vert Ava	il.Storage	Storage Descri	ption	
#1	97	.00'	27,139 cf	Custom Stage	Data (Prismatic	JListed below (Recalc)
		0 ()				
Elevatio		Surf.Area	Voids	Inc.Store	Cum.Store	
(fee	et)	(sq-ft)	(%)	(cubic-feet)	(cubic-feet)	
97.0	00	4,024	0.0	0	0	
99.1	19	4,024	0.0	0	0	
99.2	20	4,024	100.0	40	40	
100.0	00	4,989	100.0	3,605	3,645	
101.0	00	7,445	100.0	6,217	9,862	
102.0	00	8,631	100.0	8,038	17,900	
103.0	00	9,847	100.0	9,239	27,139	
Device	Routing	g Ir	nvert Out	let Devices		
#1	Primar	y 10 [.]	1.32' 20.0)' long x 8.0' bro	eadth Broad-Cre	sted Rectangular Weir
						00 1.20 1.40 1.60 1.80 2.00
				()	0 4.50 5.00 5.50	
						2.68 2.68 2.66 2.64 2.64
					6 2.66 2.68 2.70	
			2.04	+ 2.00 2.00 2.00	0 2.00 2.00 2.70	J Z.14

Primary OutFlow Max=0.47 cfs @ 13.80 hrs HW=101.37' (Free Discharge) **1=Broad-Crested Rectangular Weir** (Weir Controls 0.47 cfs @ 0.52 fps)

Pond 39P: GUSF #6 & #7 (SPILLWAY)

Summary for Pond 67P: GUSF #5 Spillway (4.29.22)


Inflow Area =	0.910 ac, 67.95% Impervious, Inflow De	epth = 5.27" for 25 Year Saco event
Inflow =	4.89 cfs @ 12.09 hrs, Volume=	0.399 af
Outflow =	3.69 cfs @ 12.21 hrs, Volume=	0.240 af, Atten= 25%, Lag= 7.6 min
Primary =	3.69 cfs @ 12.21 hrs, Volume=	0.240 af

Routing by Stor-Ind method, Time Span= 0.00-200.00 hrs, dt= 0.10 hrs Peak Elev= 103.96' @ 12.21 hrs Surf.Area= 4,634 sf Storage= 7,933 cf

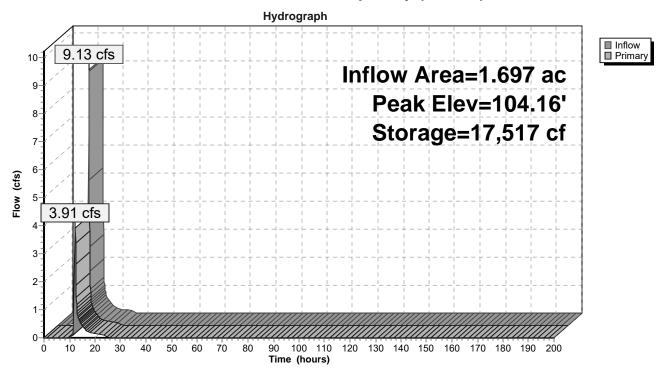
Plug-Flow detention time= 200.0 min calculated for 0.240 af (60% of inflow) Center-of-Mass det. time= 96.4 min (871.7 - 775.3)

Volume	Ir	nvert	Ava	il.Stora	age	Storage Descr	iption	
#1	99	9.23'		13,370) cf	Custom Stage	e Data (Prismati	c) Listed below (Recalc)
Floveti		Surf A	\roo	Voide	_	Ina Stara	Cum Store	
Elevatio		Surf.A		Voids		Inc.Store	Cum.Store	
(fee	et)	(S	q-ft)	(%)	(cubic-feet)	(cubic-feet)	-
99.2	23	1,	763	0.0)	0	0	1
101.4	42	1,	763	0.0)	0	0)
101.4	43	1,	763	100.0)	18	18	
102.0	00	2,	135	100.0)	1,111	1,129	1
103.0	00	3,	583	100.0)	2,859	3,988	
104.0	00	4,	677	100.0)	4,130	8,118	
105.0	00	5,	828	100.0)	5,253	13,370	1
Device	Routin	g	In	vert	Outle	et Devices		
#1	Primar	'Y	103	8.74'	15.0	' long x 6.0' br	eadth Broad-Cr	ested Rectangular Weir
		,						.00 1.20 1.40 1.60 1.80 2.00
							0 4.50 5.00 5.5	
								8 2.68 2.67 2.65 2.65 2.65
					2.05	2.00 2.00 2.0	7 2.69 2.72 2.7	10 2.83

Primary OutFlow Max=3.51 cfs @ 12.21 hrs HW=103.95' (Free Discharge) —1=Broad-Crested Rectangular Weir (Weir Controls 3.51 cfs @ 1.10 fps)

Pond 67P: GUSF #5 Spillway (4.29.22)

Summary for Pond 68P: GUSF #1 Spillway (4.29.22)


Inflow Area =	1.697 ac, 67.19% Impervious, Inflow De	pth = 5.27" for 25 Year Saco event
Inflow =	9.13 cfs @ 12.09 hrs, Volume=	0.745 af
Outflow =	3.91 cfs @ 12.33 hrs, Volume=	0.378 af, Atten= 57%, Lag= 14.9 min
Primary =	3.91 cfs @ 12.33 hrs, Volume=	0.378 af

Routing by Stor-Ind method, Time Span= 0.00-200.00 hrs, dt= 0.10 hrs Peak Elev= 104.16' @ 12.34 hrs Surf.Area= 6,886 sf Storage= 17,517 cf

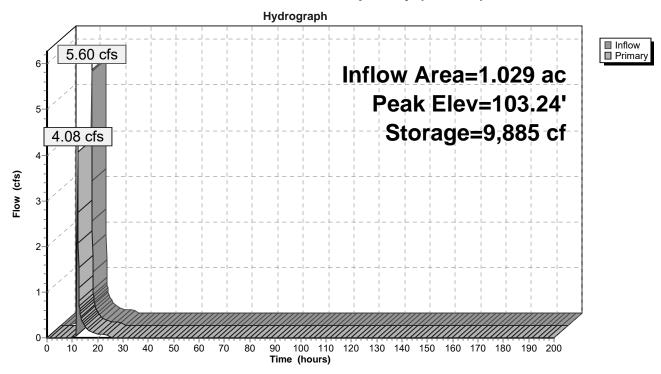
Plug-Flow detention time= 241.6 min calculated for 0.378 af (51% of inflow) Center-of-Mass det. time= 126.0 min (901.3 - 775.3)

Volume	In	vert Ava	il.Storage	Storage Descri	ption	
#1	98	.40'	23,689 cf	Custom Stage	Data (Prismatic)	Listed below (Recalc)
F laveti) / a i al a	la e Otene	Ourse Otherse	
Elevatio		Surf.Area	Voids	Inc.Store	Cum.Store	
(fee	et)	(sq-ft)	(%)	(cubic-feet)	(cubic-feet)	
98.4	40	3,110	0.0	0	0	
100.5	59	3,110	0.0	0	0	
100.6	60	3,110	100.0	31	31	
101.0	00	3,450	100.0	1,312	1,343	
102.0	00	4,334	100.0	3,892	5,235	
103.0	00	5,677	100.0	5,006	10,241	
104.0	00	6,715	100.0	6,196	16,437	
105.0	00	7,789	100.0	7,252	23,689	
Device	Routing	g Ir	vert Out	let Devices		
#1	Primary	/ 103	3.93' 15.0)' long x 6.0' bre	eadth Broad-Cres	sted Rectangular Weir
	-		Hea	nd (feet) 0 20 0 4	40 0 60 0 80 1 0	0 1.20 1.40 1.60 1.80 2.00
				\ /	0 4.50 5.00 5.50	
				· • /		2.68 2.67 2.65 2.65 2.65
			2.65	5 2.66 2.66 2.6	7 2.69 2.72 2.76	5 2.83

Primary OutFlow Max=3.61 cfs @ 12.33 hrs HW=104.15' (Free Discharge) **1=Broad-Crested Rectangular Weir** (Weir Controls 3.61 cfs @ 1.11 fps)

Pond 68P: GUSF #1 Spillway (4.29.22)

Summary for Pond 69P: GUSF #3 Spillway (4.29.22)


Inflow Area =	1.029 ac, 71.91% Impervious, Inflow Depth = 5.38" for 25 Year Saco event
Inflow =	5.60 cfs @ 12.09 hrs, Volume= 0.461 af
Outflow =	4.08 cfs @ 12.22 hrs, Volume= 0.259 af, Atten= 27%, Lag= 8.3 min
Primary =	4.08 cfs @ 12.22 hrs, Volume= 0.259 af

Routing by Stor-Ind method, Time Span= 0.00-200.00 hrs, dt= 0.10 hrs Peak Elev= 103.24' @ 12.23 hrs Surf.Area= 4,669 sf Storage= 9,885 cf

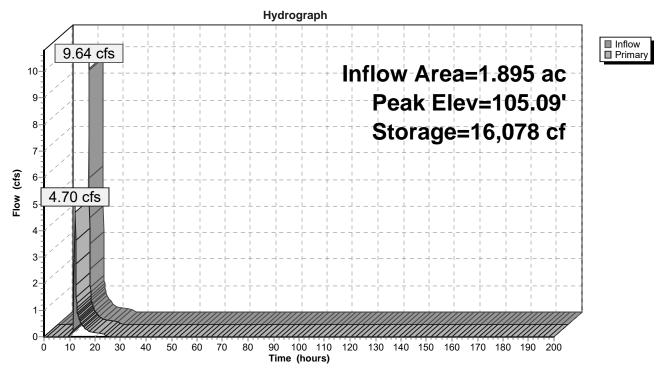
Plug-Flow detention time= 217.9 min calculated for 0.259 af (56% of inflow) Center-of-Mass det. time= 108.9 min (880.0 - 771.2)

Volume	Inv	vert Ava	il.Storage	Storage Descrip	otion	
#1	98.	20'	13,683 cf	Custom Stage	Data (Prismatic)Li	sted below (Recalc)
_		~ ~ ~				
Elevatio		Surf.Area	Voids	Inc.Store	Cum.Store	
(fee	et)	(sq-ft)	(%)	(cubic-feet)	(cubic-feet)	
98.2	20	2,466	0.0	0	0	
100.3	39	2,466	0.0	0	0	
100.4	10	2,466	100.0	25	25	
101.0	00	2,593	100.0	1,518	1,542	
102.0	00	3,724	100.0	3,159	4,701	
103.0	00	4,479	100.0	4,102	8,802	
104.0	00	5,282	100.0	4,881	13,683	
Device	Routing	l Ir	vert Outl	et Devices		
#1	Primary	103	3.00' 15.0	long x 6.0' bre	adth Broad-Creste	ed Rectangular Weir
	•					1.20 1.40 1.60 1.80 2.00
				· · ·	4.50 5.00 5.50	
			Coe	f. (English) 2.37	2.51 2.70 2.68 2	.68 2.67 2.65 2.65 2.65
					2.69 2.72 2.76	

Primary OutFlow Max=3.63 cfs @ 12.22 hrs HW=103.22' (Free Discharge) —1=Broad-Crested Rectangular Weir (Weir Controls 3.63 cfs @ 1.11 fps)

Pond 69P: GUSF #3 Spillway (4.29.22)

Summary for Pond 70P: GUSF #2 Spillway (4.29.22)


Inflow Area =	1.895 ac, 47.04% Impervious, Inflow De	pth = 4.82" for 25 Year Saco event
Inflow =	9.64 cfs @ 12.09 hrs, Volume=	0.761 af
Outflow =	4.70 cfs @ 12.29 hrs, Volume=	0.427 af, Atten= 51%, Lag= 12.5 min
Primary =	4.70 cfs @ 12.29 hrs, Volume=	0.427 af

Routing by Stor-Ind method, Time Span= 0.00-200.00 hrs, dt= 0.10 hrs Peak Elev= 105.09' @ 12.29 hrs Surf.Area= 6,133 sf Storage= 16,078 cf

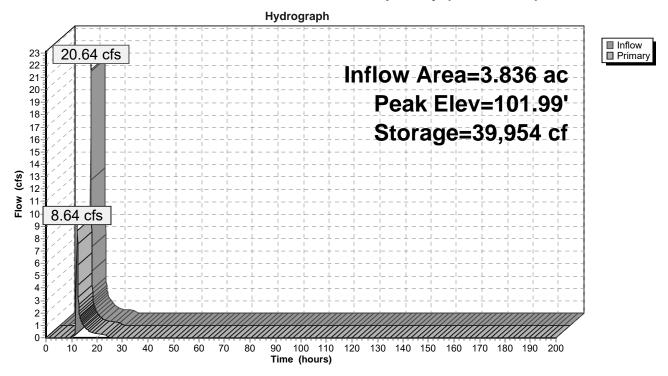
Plug-Flow detention time= 211.4 min calculated for 0.426 af (56% of inflow) Center-of-Mass det. time= 104.7 min (894.1 - 789.4)

Volume	In	vert Ava	il.Storage	Storage Descri	ption	
#1	99	.30'	22,037 cf	Custom Stage	Data (Prismatic	Listed below (Recalc)
		0 ()				
Elevatio	on	Surf.Area	Voids	Inc.Store	Cum.Store	
(fee	et)	(sq-ft)	(%)	(cubic-feet)	(cubic-feet)	
99.3	30	2,848	0.0	0	0	
101.4	49	2,848	0.0	0	0	
101.5	50	2,848	100.0	28	28	
102.0	00	3,087	100.0	1,484	1,512	
103.0	00	4,294	100.0	3,691	5,203	
104.0	00	5,146	100.0	4,720	9,923	
105.0	00	6,046	100.0	5,596	15,519	
106.0	00	6,991	100.0	6,519	22,037	
Device	Routing	ı İr	nvert Out	let Devices		
#1	Primary	[,] 104	4.84' 15.0)' long x 8.0' bre	eadth Broad-Cre	sted Rectangular Weir
	,					00 1.20 1.40 1.60 1.80 2.00
					4.50 5.00 5.50	
						2.68 2.68 2.66 2.64 2.64
			2.64	2.05 2.05 2.00	5 2.66 2.68 2.70	J Z.14

Primary OutFlow Max=4.61 cfs @ 12.29 hrs HW=105.09' (Free Discharge) **1=Broad-Crested Rectangular Weir** (Weir Controls 4.61 cfs @ 1.23 fps)

Pond 70P: GUSF #2 Spillway (4.29.22)

Summary for Pond 71P: Gravel Wetland #2 Spillway (02/13/2023)


Inflow Area	a =	3.836 ac, 63.95% Impervious, Inflow Depth = 5.27" for 25 Year Saco event
Inflow	=	20.64 cfs @ 12.09 hrs, Volume= 1.683 af
Outflow	=	8.64 cfs @ 12.34 hrs, Volume= 0.847 af, Atten= 58%, Lag= 15.2 min
Primary	=	8.64 cfs @ 12.34 hrs, Volume= 0.847 af

Routing by Stor-Ind method, Time Span= 0.00-200.00 hrs, dt= 0.10 hrs Peak Elev= 101.99' @ 12.34 hrs Surf.Area= 14,476 sf Storage= 39,954 cf

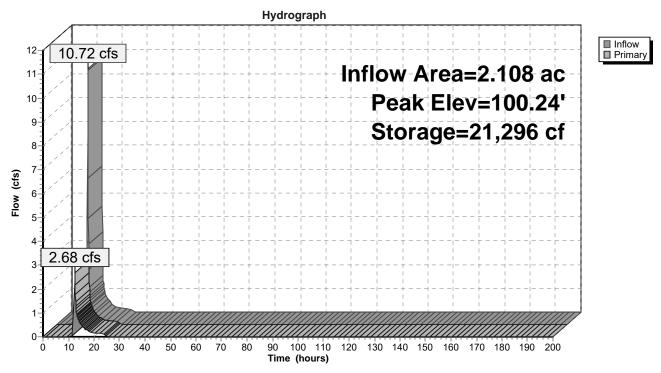
Plug-Flow detention time= 246.7 min calculated for 0.847 af (50% of inflow) Center-of-Mass det. time= 128.0 min (903.2 - 775.3)

Volume	Inve	rt Ava	il.Storage	Storage Descrip	otion	
#1	95.1 ₄	4'	55,660 cf	Custom Stage	Data (Prismatic)	₋isted below (Recalc)
Elevation		Surf.Area	Voids	Inc.Store	Cum.Store	
(feet)		(sq-ft)	(%)	(cubic-feet)	(cubic-feet)	
95.14		6,646	0.0	0	0	
97.98		6,646	0.0	0	0	
98.30		6,646	0.0	0	0	
98.31		6,646	100.0	66	66	
99.00		7,763	100.0	4,971	5,038	
100.00		11,190	100.0	9,477	14,514	
101.00		12,808	100.0	11,999	26,513	
102.00		14,501	100.0	13,655	40,168	
103.00		16,484	100.0	15,493	55,660	
Device F	Routing	In	vert Out	let Devices		
	Primary	101	1.74' 30. 0 Hea 2.50 Coe	D' long x 6.0' bre ad (feet) 0.20 0.4 D 3.00 3.50 4.00 ef. (English) 2.37	0 0.60 0.80 1.00 4.50 5.00 5.50	ted Rectangular Weir 1.20 1.40 1.60 1.80 2.00 2.68 2.67 2.65 2.65 2.65 2.83

Primary OutFlow Max=7.95 cfs @ 12.34 hrs HW=101.97' (Free Discharge) ☐ 1=Broad-Crested Rectangular Weir (Weir Controls 7.95 cfs @ 1.15 fps)

Pond 71P: Gravel Wetland #2 Spillway (02/13/2023)

Summary for Pond 75P: GUSF #9 Spillway (02/13/2023)


Inflow Area =	2.108 ac, 70.56% Impervious, Inflow	Depth = 4.82" for 25 Year Saco event
Inflow =	10.72 cfs @ 12.09 hrs, Volume=	0.846 af
Outflow =	2.68 cfs @ 12.49 hrs, Volume=	0.391 af, Atten= 75%, Lag= 24.2 min
Primary =	2.68 cfs @ 12.49 hrs, Volume=	0.391 af

Routing by Stor-Ind method, Time Span= 0.00-200.00 hrs, dt= 0.10 hrs Peak Elev= 100.24' @ 12.49 hrs Surf.Area= 8,375 sf Storage= 21,296 cf

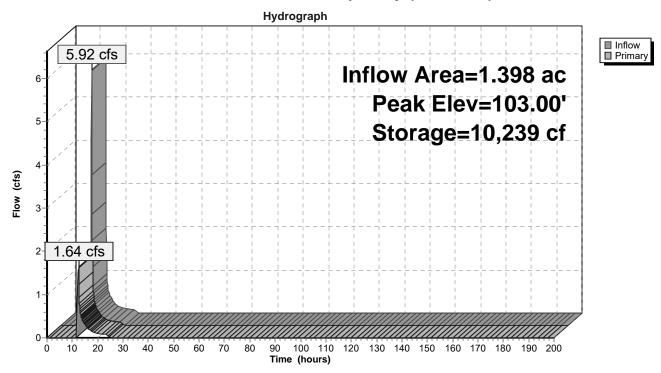
Plug-Flow detention time= 260.1 min calculated for 0.391 af (46% of inflow) Center-of-Mass det. time= 142.6 min (932.0 - 789.4)

Volume	Inv	/ert Ava	il.Storage	Storage Descrip	otion	
#1	94.	.46'	28,068 cf	Custom Stage	Data (Prismatic)	Listed below (Recalc)
Elevatio	an	Surf.Area	Voids	Inc.Store	Cum.Store	
(fee	et)	(sq-ft)	(%)	(cubic-feet)	(cubic-feet)	
94.4	46	3,783	0.0	0	0	
96.6	65	3,783	0.0	0	0	
96.6	56	3,783	100.0	38	38	
97.0	00	4,087	100.0	1,338	1,376	
98.0	00	5,074	100.0	4,581	5,956	
99.0	00	6,824	100.0	5,949	11,905	
100.0	00	8,066	100.0	7,445	19,350	
101.0	00	9,370	100.0	8,718	28,068	
Device	Routing	ı İr	vert Outl	et Devices		
#1	Primary	[,] 100).06' 15.0	long x 6.0' bre	adth Broad-Cres	sted Rectangular Weir
	,					0 1.20 1.40 1.60 1.80 2.00
					4.50 5.00 5.50	
						, 2.68 2.67 2.65 2.65 2.65
				· · · ·		
			2.65	2.66 2.66 2.67	2.69 2.72 2.76	0 2.83

Primary OutFlow Max=2.61 cfs @ 12.49 hrs HW=100.24' (Free Discharge) **1=Broad-Crested Rectangular Weir** (Weir Controls 2.61 cfs @ 0.99 fps)

Pond 75P: GUSF #9 Spillway (02/13/2023)

Summary for Pond 84P: GUSF #8 spillway (10.5.2022)


Inflow Area =	1.398 ac, 60.77% Impervious, Inflow Depth = 3.86" for 25 Year Saco event
Inflow =	5.92 cfs @ 12.09 hrs, Volume= 0.449 af
Outflow =	1.64 cfs @ 12.48 hrs, Volume= 0.229 af, Atten= 72%, Lag= 23.1 min
Primary =	1.64 cfs @ 12.48 hrs, Volume= 0.229 af

Routing by Stor-Ind method, Time Span= 0.00-200.00 hrs, dt= 0.10 hrs Peak Elev= 103.00' @ 12.48 hrs Surf.Area= 5,011 sf Storage= 10,239 cf

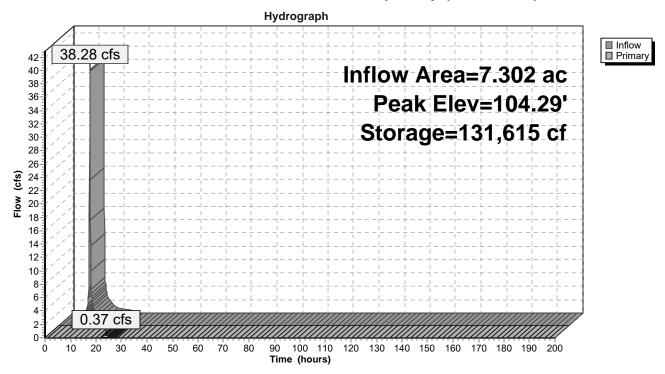
Plug-Flow detention time= 235.5 min calculated for 0.229 af (51% of inflow) Center-of-Mass det. time= 120.0 min (934.3 - 814.4)

Volume	Inv	/ert Ava	il.Storage	Storage Descri	ption	
#1	98.	.16'	21,975 cf	Custom Stage	Data (Prismatic	Listed below (Recalc)
		~ ~ ~			A A	
Elevatio	on	Surf.Area	Voids	Inc.Store	Cum.Store	
(fee	et)	(sq-ft)	(%)	(cubic-feet)	(cubic-feet)	
98.1	16	2,918	0.0	0	0	
100.3	35	2,918	0.0	0	0	
100.3	36	2,918	100.0	29	29	
101.0	00	3,108	100.0	1,928	1,958	
102.0	00	4,231	100.0	3,670	5,627	
103.0	00	5,012	100.0	4,622	10,249	
104.0	00	5,850	100.0	5,431	15,680	
105.0	00	6,741	100.0	6,296	21,975	
Device	Routing	l Ir	vert Outl	et Devices		
#1	Primary	102	2.87' 15.0)' long x 6.0' bre	eadth Broad-Cre	sted Rectangular Weir
	2		Hea	d (feet) 0.20 0.4	40 0.60 0.80 1.0	00 1.20 1.40 1.60 1.80 2.00
				\ /	0 4.50 5.00 5.50	
						2.68 2.67 2.65 2.65 2.65
				(U)	7 2.69 2.72 2.76	
			2.00	2.00 2.00 2.0	1 2.05 2.12 2.10	5 2.05

Primary OutFlow Max=1.58 cfs @ 12.48 hrs HW=103.00' (Free Discharge) ☐ 1=Broad-Crested Rectangular Weir (Weir Controls 1.58 cfs @ 0.84 fps)

Pond 84P: GUSF #8 spillway (10.5.2022)

Summary for Pond 87P: Gravel Wetland #1 Spillway (04.11.2023)


Inflow Area =	7.302 ac, 60.35% Impervious, Inflow	Depth = 5.04" for 25 Year Saco event	
Inflow =	38.28 cfs @ 12.09 hrs, Volume=	3.067 af	
Outflow =	0.37 cfs @ 23.96 hrs, Volume=	0.074 af, Atten= 99%, Lag= 712.5 min	۱
Primary =	0.37 cfs @ 23.96 hrs, Volume=	0.074 af	

Routing by Stor-Ind method, Time Span= 0.00-200.00 hrs, dt= 0.10 hrs Peak Elev= 104.29' @ 23.96 hrs Surf.Area= 29,970 sf Storage= 131,615 cf

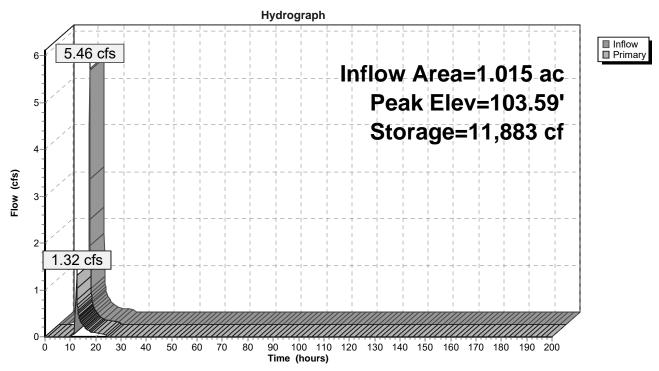
Plug-Flow detention time= 1,046.6 min calculated for 0.074 af (2% of inflow) Center-of-Mass det. time= 653.4 min (1,436.1 - 782.7)

Volume	Invert Ava	il.Storage	Storage Descrip	tion	
#1	94.76'	38,013 cf	Custom Stage	Data (Prismatic)Listed below (Re	calc)
Elevation (feet)	Surf.Area (sq-ft)	Voids (%)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	
94.76	12,121	0.0	0	0	
97.60	12,121	0.0	0	0	
97.92	12,121	0.0	0	0	
97.93	12,121	100.0	121	121	
98.00	12,239	100.0	853	974	
99.00	14,188	100.0	13,214	14,187	
100.00	18,901	100.0	16,545	30,732	
101.00	20,916	100.0	19,909	50,640	
102.00	23,050	100.0	21,983	72,623	
103.00	25,237	100.0	24,144	96,767	
104.00	27,639	100.0	26,438	123,205	
104.25	29,662	100.0	7,163	130,367	
104.50	31,500	100.0	7,645	138,013	
Device Ro	outing Ir	vert Outl	et Devices		
#1 Pri	mary 104	Hea	d (feet) 0.20 0.4	eadth Broad-Crested Rectangula 0 0.60 0.80 1.00 1.20 1.40 1.6 2.56 2.70 2.69 2.68 2.69 2.67	0

Primary OutFlow Max=0.32 cfs @ 23.96 hrs HW=104.29' (Free Discharge) 1=Broad-Crested Rectangular Weir (Weir Controls 0.32 cfs @ 0.51 fps)

Pond 87P: Gravel Wetland #1 Spillway (04.11.2023)

Summary for Pond 90P: GUSF #4 Spillway (04.11.2023)


Inflow Area =	1.015 ac, 66.73% Impervious, Inflow De	epth = 5.27" for 25 Year Saco event
Inflow =	5.46 cfs @ 12.09 hrs, Volume=	0.446 af
Outflow =	1.32 cfs @ 12.51 hrs, Volume=	0.184 af, Atten= 76%, Lag= 25.4 min
Primary =	1.32 cfs @ 12.51 hrs, Volume=	0.184 af

Routing by Stor-Ind method, Time Span= 0.00-200.00 hrs, dt= 0.10 hrs Peak Elev= 103.59' @ 12.51 hrs Surf.Area= 4,715 sf Storage= 11,883 cf

Plug-Flow detention time= 288.5 min calculated for 0.184 af (41% of inflow) Center-of-Mass det. time= 157.8 min (933.0 - 775.3)

Volume	In	vert Ava	il.Storage	Storage Descrip	ption	
#1	97	.70'	16,672 cf	Custom Stage	Data (Prismatic)	_isted below (Recalc)
Elevatio	on	Surf.Area	Voids	Inc.Store	Cum.Store	
(fee	et)	(sq-ft)	(%)	(cubic-feet)	(cubic-feet)	
97.7	70	1,869	0.0	0	0	
99.8	39	1,869	0.0	0	0	
99.9	90	1,869	100.0	19	19	
100.0	00	1,924	100.0	190	208	
101.0		2,446	100.0	2,185	2,393	
102.0		3,511	100.0	2,979	5,372	
103.0		4,241	100.0	3,876	9,248	
104.0		5,047	100.0	4,644	13,892	
104.8	50	6,072	100.0	2,780	16,672	
Device	Routing	g Ir	vert Out	let Devices		
#1	Primary	/ 103				ted Rectangular Weir 0 1.20 1.40 1.60 1.80 2.00
			2.50	3.00 3.50 4.00	4.50 5.00 5.50	
						2.68 2.67 2.65 2.65 2.65
			2.6	5 2.66 2.66 2.67	7 2.69 2.72 2.76	2.83

Primary OutFlow Max=1.24 cfs @ 12.51 hrs HW=103.59' (Free Discharge) 1=Broad-Crested Rectangular Weir (Weir Controls 1.24 cfs @ 0.77 fps)

Pond 90P: GUSF #4 Spillway (04.11.2023)

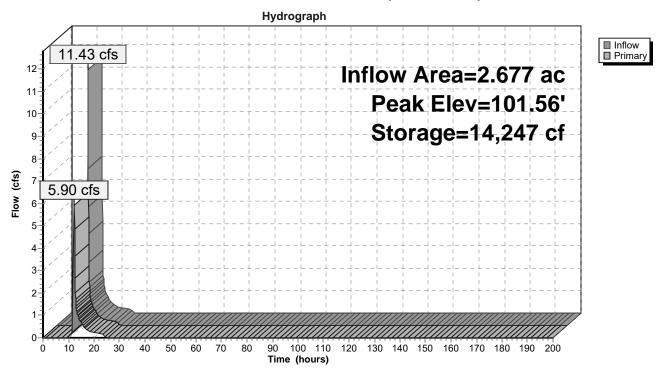
Post - Development Update - April 2023 ResubType III 24-hr 100 Year Saco Rainfall=8.70"Prepared by Gorrill Palmer Consulting EngsPrinted 4/12/2023HydroCAD® 10.20-2f s/n 01265 © 2022 HydroCAD Software Solutions LLCPage 36

Time span=0.00-200.00 hrs, dt=0.10 hrs, 2001 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment 1S: Sub to GUSF #1	Runoff Area=73,933 sf 67.19% Impervious Runoff Depth=7.74" Tc=5.0 min CN=92 Runoff=13.12 cfs 1.094 af
Subcatchment 2S: Sub to GUSF #2	Runoff Area=82,545 sf 47.04% Impervious Runoff Depth=7.25" Tc=5.0 min CN=88 Runoff=14.16 cfs 1.145 af
Subcatchment 3S: Sub to GUSF #3	Runoff Area=44,837 sf 71.91% Impervious Runoff Depth=7.86" Tc=5.0 min CN=93 Runoff=8.01 cfs 0.674 af
Subcatchment 4S: Sub to GUSF #5	Runoff Area=39,620 sf 67.95% Impervious Runoff Depth=7.74" Tc=5.0 min CN=92 Runoff=7.03 cfs 0.586 af
Subcatchment 5S: Sub to GW #2	Runoff Area=167,094 sf 63.95% Impervious Runoff Depth=7.74" Tc=5.0 min CN=92 Runoff=29.65 cfs 2.473 af
Subcatchment 6S: Sub to GUSF #4	Runoff Area=44,235 sf 66.73% Impervious Runoff Depth=7.74" Tc=5.0 min CN=92 Runoff=7.85 cfs 0.655 af
Subcatchment7S: Sub to GW #1	Runoff Area=318,070 sf 60.35% Impervious Runoff Depth=7.50" Tc=5.0 min CN=90 Runoff=55.56 cfs 4.561 af
Subcatchment8S: Sub to GUSF #6	Runoff Area=79,636 sf 23.58% Impervious Runoff Depth=3.04" Tc=5.0 min CN=53 Runoff=5.98 cfs 0.463 af
Subcatchment9S: Sub to GUSF #7	Runoff Area=36,965 sf 63.79% Impervious Runoff Depth=5.92" Tc=5.0 min CN=77 Runoff=5.46 cfs 0.419 af
Subcatchment10S: Sub to GUSF #8	Runoff Area=60,887 sf 60.77% Impervious Runoff Depth=6.16" Tc=5.0 min CN=79 Runoff=9.29 cfs 0.718 af
Subcatchment11S: Sub to GUSF #9	Runoff Area=91,815 sf 70.56% Impervious Runoff Depth=7.25" Tc=5.0 min CN=88 Runoff=15.75 cfs 1.274 af
Pond 39P: GUSF #6 & #7 (SPILLWAY)	Peak Elev=101.56' Storage=14,247 cf Inflow=11.43 cfs 0.881 af Outflow=5.90 cfs 0.599 af
Pond 67P: GUSF #5 Spillway (4.29.22)	Peak Elev=104.05' Storage=8,357 cf Inflow=7.03 cfs 0.586 af Outflow=6.38 cfs 0.427 af
Pond 68P: GUSF #1 Spillway (4.29.22)	Peak Elev=104.39' Storage=19,106 cf Inflow=13.12 cfs 1.094 af Outflow=11.64 cfs 0.728 af
Pond 69P: GUSF #3 Spillway (4.29.22)	Peak Elev=103.34' Storage=10,368 cf Inflow=8.01 cfs 0.674 af Outflow=7.33 cfs 0.472 af
Pond 70P: GUSF #2 Spillway (4.29.22)	Peak Elev=105.32' Storage=17,507 cf Inflow=14.16 cfs 1.145 af Outflow=12.97 cfs 0.811 af

Post - Development Update - April 2023 ResubType III 24-hr100 Year Saco Rainfall=8.70"Prepared by Gorrill Palmer Consulting EngsPrinted 4/12/2023HydroCAD® 10.20-2f s/n 01265 © 2022 HydroCAD Software Solutions LLCPage 37	
Pond 71P: Gravel Wetland #2 SpillwayPeak Elev=102.23'Storage=43,571 cfInflow=29.65 cfs2.473 afOutflow=26.25 cfs1.636 af	
Pond 75P: GUSF #9 Spillway (02/13/2023) Peak Elev=100.52' Storage=23,709 cf Inflow=15.75 cfs 1.274 af Outflow=11.99 cfs 0.819 af	
Pond 84P: GUSF #8 spillway (10.5.2022) Peak Elev=103.21' Storage=11,338 cf Inflow=9.29 cfs 0.718 af Outflow=7.47 cfs 0.497 af	
Pond 87P: Gravel Wetland #1 Spillway Peak Elev=104.48' Storage=137,460 cf Inflow=55.56 cfs 4.561 af Outflow=4.25 cfs 1.568 af	
Pond 90P: GUSF #4 Spillway (04.11.2023) Peak Elev=103.79' Storage=12,827 cf Inflow=7.85 cfs 0.655 af Outflow=6.22 cfs 0.394 af	
Total Runoff Area = 23.867 ac Runoff Volume = 14.062 af Average Runoff Depth = 7.0 40.35% Pervious = 9.630 ac 59.65% Impervious = 14.237 a	

Summary for Pond 39P: GUSF #6 & #7 (SPILLWAY)


Inflow Area =	2.677 ac, 36.33% Impervious, Inflow De	pth = 3.95" for 100 Year Saco event
Inflow =	11.43 cfs @ 12.09 hrs, Volume=	0.881 af
Outflow =	5.90 cfs @ 12.31 hrs, Volume=	0.599 af, Atten= 48%, Lag= 13.1 min
Primary =	5.90 cfs @ 12.31 hrs, Volume=	0.599 af

Routing by Stor-Ind method, Time Span= 0.00-200.00 hrs, dt= 0.10 hrs Peak Elev= 101.56' @ 12.31 hrs Surf.Area= 8,113 sf Storage= 14,247 cf

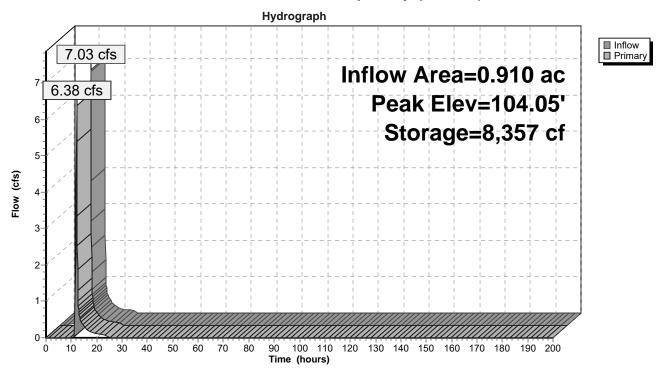
Plug-Flow detention time= 177.2 min calculated for 0.599 af (68% of inflow) Center-of-Mass det. time= 73.4 min (905.8 - 832.3)

Volume	In	vert Ava	il.Storage	Storage Descri	ption	
#1	97	.00'	27,139 cf	Custom Stage	Data (Prismatic	JListed below (Recalc)
Floveti		Surf Area	Voido	Inc Store	Cum Store	
Elevatio		Surf.Area	Voids	Inc.Store	Cum.Store	
(fee	et)	(sq-ft)	(%)	(cubic-feet)	(cubic-feet)	
97.0	00	4,024	0.0	0	0	
99.1	19	4,024	0.0	0	0	
99.2	20	4,024	100.0	40	40	
100.0	00	4,989	100.0	3,605	3,645	
101.0	00	7,445	100.0	6,217	9,862	
102.0	00	8,631	100.0	8,038	17,900	
103.0	00	9,847	100.0	9,239	27,139	
Device	Routing	g Ir	nvert Out	let Devices		
#1	Primar	y 10 ⁻	1.32' 20.0)' long x 8.0' bre	eadth Broad-Cre	sted Rectangular Weir
			Hea	d (feet) 0.20 0.4	40 0.60 0.80 1.0	00 1.20 1.40 1.60 1.80 2.00
					0 4.50 5.00 5.50	
						2.68 2.68 2.66 2.64 2.64
					6 2.66 2.68 2.70	
			2.04	r 2.00 2.00 2.00	0 2.00 2.00 2.10	0 2.17

Primary OutFlow Max=5.73 cfs @ 12.31 hrs HW=101.56' (Free Discharge) —1=Broad-Crested Rectangular Weir (Weir Controls 5.73 cfs @ 1.20 fps)

Pond 39P: GUSF #6 & #7 (SPILLWAY)

Summary for Pond 67P: GUSF #5 Spillway (4.29.22)


Inflow Area =	0.910 ac, 67.95% Impervious, Inflow De	epth = 7.74" for 100 Year Saco event
Inflow =	7.03 cfs @ 12.08 hrs, Volume=	0.586 af
Outflow =	6.38 cfs @ 12.12 hrs, Volume=	0.427 af, Atten= 9%, Lag= 2.1 min
Primary =	6.38 cfs @ 12.12 hrs, Volume=	0.427 af

Routing by Stor-Ind method, Time Span= 0.00-200.00 hrs, dt= 0.10 hrs Peak Elev= 104.05' @ 12.12 hrs Surf.Area= 4,736 sf Storage= 8,357 cf

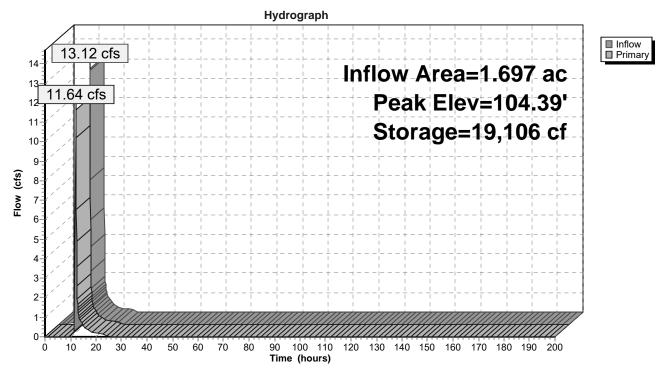
Plug-Flow detention time= 162.8 min calculated for 0.427 af (73% of inflow) Center-of-Mass det. time= 74.4 min (840.3 - 766.0)

Volume	Ir	nvert	Ava	il.Stora	age	Storage Descr	iption	
#1	99	9.23'		13,370) cf	Custom Stage	e Data (Prismati	c) Listed below (Recalc)
Floveti		Surf A	\roo	Voide	_	Ina Stara	Cum Store	
Elevatio		Surf.A		Voids		Inc.Store	Cum.Store	
(fee	et)	(S	q-ft)	(%)	(cubic-feet)	(cubic-feet)	-
99.2	23	1,	763	0.0)	0	0	1
101.4	42	1,	763	0.0)	0	0)
101.4	43	1,	763	100.0)	18	18	
102.0	00	2,	135	100.0)	1,111	1,129	1
103.0	00	3,	583	100.0)	2,859	3,988	
104.0	00	4,	677	100.0)	4,130	8,118	
105.0	00	5,	828	100.0)	5,253	13,370	1
Device	Routin	g	In	vert	Outle	et Devices		
#1	Primar	'Y	103	8.74'	15.0	' long x 6.0' br	eadth Broad-Cr	ested Rectangular Weir
		,						.00 1.20 1.40 1.60 1.80 2.00
							0 4.50 5.00 5.5	
								8 2.68 2.67 2.65 2.65 2.65
					2.05	2.00 2.00 2.0	7 2.69 2.72 2.7	10 2.83

Primary OutFlow Max=6.11 cfs @ 12.12 hrs HW=104.04' (Free Discharge) **1=Broad-Crested Rectangular Weir** (Weir Controls 6.11 cfs @ 1.34 fps)

Pond 67P: GUSF #5 Spillway (4.29.22)

Summary for Pond 68P: GUSF #1 Spillway (4.29.22)


Inflow Area =	1.697 ac, 67.19% Impervious, Infl	ow Depth = 7.74" for 100 Year Sac	o event
Inflow =	13.12 cfs @ 12.08 hrs, Volume=	1.094 af	
Outflow =	11.64 cfs @_ 12.14 hrs, Volume=	0.728 af, Atten= 11%, Lag= 3.3	min
Primary =	11.64 cfs @ 12.14 hrs, Volume=	0.728 af	

Routing by Stor-Ind method, Time Span= 0.00-200.00 hrs, dt= 0.10 hrs Peak Elev= 104.39' @ 12.14 hrs Surf.Area= 7,129 sf Storage= 19,106 cf

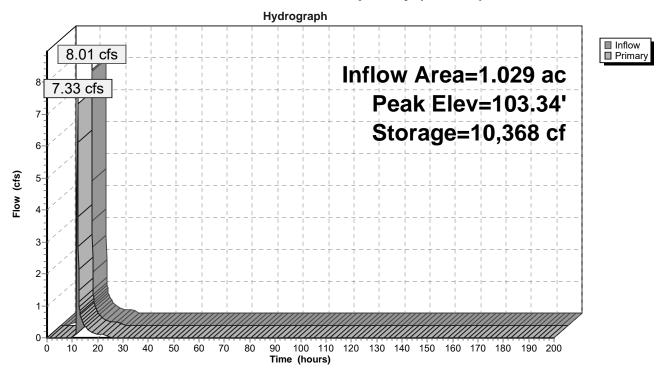
Plug-Flow detention time= 185.4 min calculated for 0.727 af (66% of inflow) Center-of-Mass det. time= 88.5 min (854.5 - 766.0)

Volume	١n	/ert Ava	il.Storage	Storage Descri	ption	
#1	98.	.40'	23,689 cf	Custom Stage	Data (Prismatic	Listed below (Recalc)
		0 ()			0 01	
Elevatio		Surf.Area	Voids	Inc.Store	Cum.Store	
(fee	et)	(sq-ft)	(%)	(cubic-feet)	(cubic-feet)	
98.4	40	3,110	0.0	0	0	
100.5	59	3,110	0.0	0	0	
100.6	50	3,110	100.0	31	31	
101.0	00	3,450	100.0	1,312	1,343	
102.0	00	4,334	100.0	3,892	5,235	
103.0	00	5,677	100.0	5,006	10,241	
104.0	00	6,715	100.0	6,196	16,437	
105.0	00	7,789	100.0	7,252	23,689	
Device	Routing	l Ir	vert Out	let Devices		
#1	Primary	103	3.93' 15.0)' long x 6.0' bro	eadth Broad-Cre	sted Rectangular Weir
	,					00 1.20 1.40 1.60 1.80 2.00
					0 4.50 5.00 5.50	
						2.68 2.67 2.65 2.65 2.65
				(0)	7 2.69 2.72 2.76	
			2.00	2.00 2.00 2.0	1 2.09 2.12 2.10	0 2.00

Primary OutFlow Max=10.64 cfs @ 12.14 hrs HW=104.36' (Free Discharge) ☐ 1=Broad-Crested Rectangular Weir (Weir Controls 10.64 cfs @ 1.66 fps)

Pond 68P: GUSF #1 Spillway (4.29.22)

Summary for Pond 69P: GUSF #3 Spillway (4.29.22)


Inflow Area =	1.029 ac, 71.91% Impervious, Inflow D	Depth = 7.86" for 100 Year Saco event
Inflow =	8.01 cfs @ 12.08 hrs, Volume=	0.674 af
Outflow =	7.33 cfs @ 12.12 hrs, Volume=	0.472 af, Atten= 9%, Lag= 2.1 min
Primary =	7.33 cfs @ 12.12 hrs, Volume=	0.472 af

Routing by Stor-Ind method, Time Span= 0.00-200.00 hrs, dt= 0.10 hrs Peak Elev= 103.34' @ 12.12 hrs Surf.Area= 4,751 sf Storage= 10,368 cf

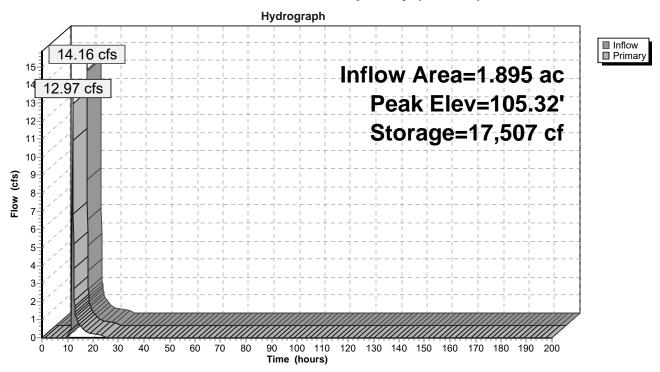
Plug-Flow detention time= 174.6 min calculated for 0.472 af (70% of inflow) Center-of-Mass det. time= 81.7 min (844.1 - 762.4)

Volume	Ir	ivert Av	ail.Storag	ge Storage Desc	ription	
#1	98	3.20'	13,683	cf Custom Stag	e Data (Prismatio	c) Listed below (Recalc)
- 1					0	
Elevatio		Surf.Are		Inc.Store	Cum.Store	
(fee	et)	(sq-fl) (%)	(cubic-feet)	(cubic-feet)	
98.2	20	2,46	6.0	0	0	
100.3	39	2,46	6.0	0	0	
100.4	40	2,46	6 100.0	25	25	
101.0	00	2,59	3 100.0	1,518	1,542	
102.0	00	3,72	100.0	3,159	4,701	
103.0	00	4,47) 100.0	4,102	8,802	
104.0	00	5,28	2 100.0	4,881	13,683	
Device	Routin	g	Invert C	Outlet Devices		
#1	Primar	y 1)3.00' 1	5.0' long x 6.0' b	readth Broad-Cre	ested Rectangular Weir
		-				00 1.20 1.40 1.60 1.80 2.00
				.50 3.00 3.50 4.0		
						3 2.68 2.67 2.65 2.65 2.65
				.65 2.66 2.66 2.		
			2	.00 2.00 2.00 2.	01 2.00 2.12 2.1	0 2.00

Primary OutFlow Max=7.01 cfs @ 12.12 hrs HW=103.33' (Free Discharge) **1=Broad-Crested Rectangular Weir** (Weir Controls 7.01 cfs @ 1.41 fps)

Pond 69P: GUSF #3 Spillway (4.29.22)

Summary for Pond 70P: GUSF #2 Spillway (4.29.22)


Inflow Area =	1.895 ac, 47.04% Impervious, Inflow D	Depth = 7.25" for 100 Year Saco event
Inflow =	14.16 cfs @ 12.09 hrs, Volume=	1.145 af
Outflow =	12.97 cfs @_ 12.13 hrs, Volume=	0.811 af, Atten= 8%, Lag= 2.5 min
Primary =	12.97 cfs @ 12.13 hrs, Volume=	0.811 af

Routing by Stor-Ind method, Time Span= 0.00-200.00 hrs, dt= 0.10 hrs Peak Elev= 105.32' @ 12.13 hrs Surf.Area= 6,349 sf Storage= 17,507 cf

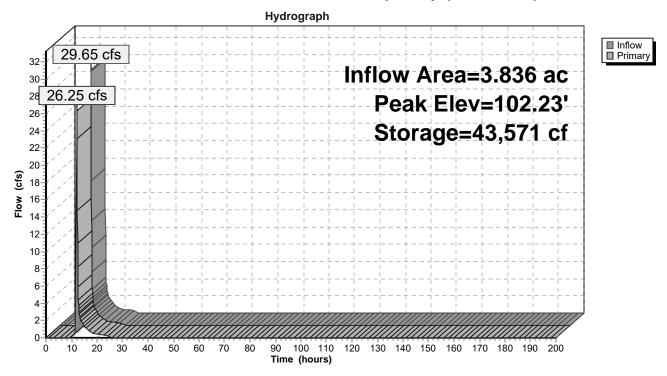
Plug-Flow detention time= 163.8 min calculated for 0.811 af (71% of inflow) Center-of-Mass det. time= 72.9 min (851.5 - 778.6)

Volume	١n	vert Ava	il.Storage	Storage Descri	ption	
#1	99.	30'	22,037 cf	Custom Stage	Data (Prismatic	JListed below (Recalc)
Elevatio	on	Surf.Area	Voids	Inc.Store	Cum.Store	
(fee	et)	(sq-ft)	(%)	(cubic-feet)	(cubic-feet)	
99.3	30	2,848	0.0	0	0	
101.4	49	2,848	0.0	0	0	
101.5	50	2,848	100.0	28	28	
102.0	00	3,087	100.0	1,484	1,512	
103.0	00	4,294	100.0	3,691	5,203	
104.0	00	5,146	100.0	4,720	9,923	
105.0	00	6,046	100.0	5,596	15,519	
106.0	00	6,991	100.0	6,519	22,037	
Device	Routing	Ir	vert Outl	et Devices		
#1	Primary	104	1.84' 15.0)' long x 8.0' bre	eadth Broad-Cre	sted Rectangular Weir
	,					00 1.20 1.40 1.60 1.80 2.00
					0 4.50 5.00 5.50	
						2.68 2.68 2.66 2.64 2.64
			2.64	+ 2.05 2.05 2.00	6 2.66 2.68 2.70	J Z.14

Primary OutFlow Max=12.15 cfs @ 12.13 hrs HW=105.30' (Free Discharge) ☐ 1=Broad-Crested Rectangular Weir (Weir Controls 12.15 cfs @ 1.76 fps)

Pond 70P: GUSF #2 Spillway (4.29.22)

Summary for Pond 71P: Gravel Wetland #2 Spillway (02/13/2023)


Inflow Area	=	3.836 ac, 63.95% Impervious, Inflow Depth = 7.74" for 100 Year Saco event
Inflow	=	29.65 cfs @ 12.08 hrs, Volume= 2.473 af
Outflow	=	26.25 cfs @ 12.14 hrs, Volume= 1.636 af, Atten= 11%, Lag= 3.4 min
Primary	=	26.25 cfs @ 12.14 hrs, Volume= 1.636 af

Routing by Stor-Ind method, Time Span= 0.00-200.00 hrs, dt= 0.10 hrs Peak Elev= 102.23' @ 12.14 hrs Surf.Area= 14,959 sf Storage= 43,571 cf

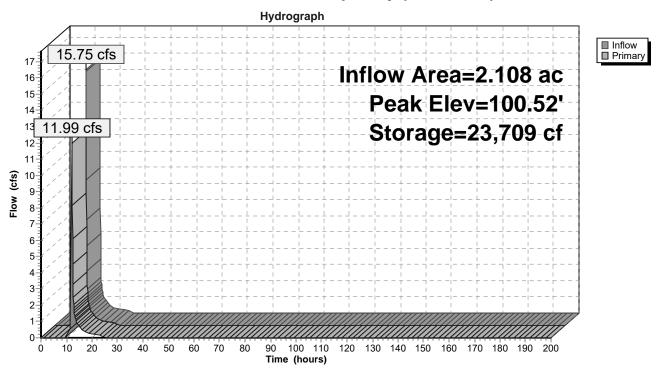
Plug-Flow detention time= 186.8 min calculated for 1.636 af (66% of inflow) Center-of-Mass det. time= 89.6 min (855.5 - 766.0)

Volume	Inve	ert Ava	il.Storage	Storage Descrip	tion	
#1	95.1	4'	55,660 cf	Custom Stage	Data (Prismatic)Liste	ed below (Recalc)
Elevatio		Surf.Area	Voids	Inc.Store	Cum.Store	
(feet	t)	(sq-ft)	(%)	(cubic-feet)	(cubic-feet)	
95.1	4	6,646	0.0	0	0	
97.9	8	6,646	0.0	0	0	
98.3	0	6,646	0.0	0	0	
98.3	1	6,646	100.0	66	66	
99.0	0	7,763	100.0	4,971	5,038	
100.0	0	11,190	100.0	9,477	14,514	
101.0	0	12,808	100.0	11,999	26,513	
102.0	0	14,501	100.0	13,655	40,168	
103.0	0	16,484	100.0	15,493	55,660	
Device	Routing	In	vert Out	et Devices		
#1	Primary	101	Hea 2.50 Coe	d (feet) 0.20 0.4 3.00 3.50 4.00 f. (English) 2.37	4.50 5.00 5.50	.20 1.40 1.60 1.80 2.00 8 2.67 2.65 2.65 2.65

Primary OutFlow Max=23.97 cfs @ 12.14 hrs HW=102.20' (Free Discharge) ☐ 1=Broad-Crested Rectangular Weir (Weir Controls 23.97 cfs @ 1.74 fps)

Pond 71P: Gravel Wetland #2 Spillway (02/13/2023)

Summary for Pond 75P: GUSF #9 Spillway (02/13/2023)


Inflow Area =	2.108 ac, 70.56% Impervious, Ir	nflow Depth = 7.25" for 100 Year Saco event
Inflow =	15.75 cfs @ 12.09 hrs, Volume=	1.274 af
Outflow =	11.99 cfs @ 12.20 hrs, Volume=	0.819 af, Atten= 24%, Lag= 6.6 min
Primary =	11.99 cfs @ 12.20 hrs, Volume=	0.819 af

Routing by Stor-Ind method, Time Span= 0.00-200.00 hrs, dt= 0.10 hrs Peak Elev= 100.52' @ 12.20 hrs Surf.Area= 8,742 sf Storage= 23,709 cf

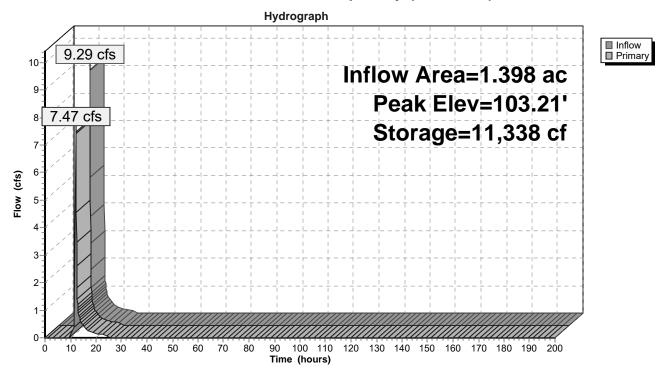
Plug-Flow detention time= 187.7 min calculated for 0.818 af (64% of inflow) Center-of-Mass det. time= 89.2 min (867.8 - 778.6)

Volume	١nv	vert Ava	il.Storage	Storage Descri	ption	
#1	94.	46'	28,068 cf	Custom Stage	Data (Prismatic	JListed below (Recalc)
- 1						
Elevatio		Surf.Area	Voids	Inc.Store	Cum.Store	
(fee	et)	(sq-ft)	(%)	(cubic-feet)	(cubic-feet)	
94.4	46	3,783	0.0	0	0	
96.6	65	3,783	0.0	0	0	
96.6	66	3,783	100.0	38	38	
97.0	00	4,087	100.0	1,338	1,376	
98.0	00	5,074	100.0	4,581	5,956	
99.0	00	6,824	100.0	5,949	11,905	
100.0	00	8,066	100.0	7,445	19,350	
101.0	00	9,370	100.0	8,718	28,068	
Device	Routing	Ir	vert Out	let Devices		
#1	Primary	100).06' 15.0)' long x 6.0' bre	eadth Broad-Cre	sted Rectangular Weir
	,					00 1.20 1.40 1.60 1.80 2.00
				\ /	0 4.50 5.00 5.50	
						2.68 2.67 2.65 2.65 2.65
				(U)		
			2.05	2.00 2.00 2.0	7 2.69 2.72 2.76	0 2.00

Primary OutFlow Max=11.79 cfs @ 12.20 hrs HW=100.51' (Free Discharge) ☐ 1=Broad-Crested Rectangular Weir (Weir Controls 11.79 cfs @ 1.73 fps)

Pond 75P: GUSF #9 Spillway (02/13/2023)

Summary for Pond 84P: GUSF #8 spillway (10.5.2022)


Inflow Area =	1.398 ac, 60.77% Impervious, Inflow Depth = 6.16" for 100 Year Saco event
Inflow =	9.29 cfs @ 12.09 hrs, Volume= 0.718 af
Outflow =	7.47 cfs @ 12.18 hrs, Volume= 0.497 af, Atten= 20%, Lag= 5.8 min
Primary =	7.47 cfs @ 12.18 hrs, Volume= 0.497 af

Routing by Stor-Ind method, Time Span= 0.00-200.00 hrs, dt= 0.10 hrs Peak Elev= 103.21' @ 12.18 hrs Surf.Area= 5,191 sf Storage= 11,338 cf

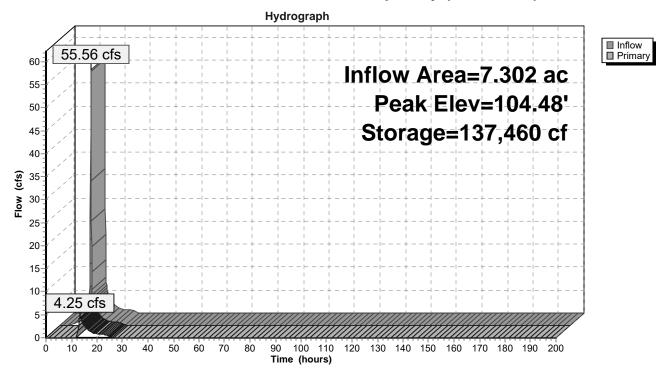
Plug-Flow detention time= 162.0 min calculated for 0.497 af (69% of inflow) Center-of-Mass det. time= 68.0 min (869.2 - 801.1)

Volume	١nv	vert Ava	il.Storage	Storage Descri	ption	
#1	98.	16'	21,975 cf	Custom Stage	Data (Prismatic) Listed below (Recalc)
- 1					0	
Elevatio		Surf.Area	Voids	Inc.Store	Cum.Store	
(fee	et)	(sq-ft)	(%)	(cubic-feet)	(cubic-feet)	
98.1	16	2,918	0.0	0	0	
100.3	35	2,918	0.0	0	0	
100.3	36	2,918	100.0	29	29	
101.0	00	3,108	100.0	1,928	1,958	
102.0	00	4,231	100.0	3,670	5,627	
103.0	00	5,012	100.0	4,622	10,249	
104.0	00	5,850	100.0	5,431	15,680	
105.0	00	6,741	100.0	6,296	21,975	
Device	Routing	lr	vert Out	let Devices		
#1	Primary	102	2.87' 15.0)' long x 6.0' bre	eadth Broad-Cre	sted Rectangular Weir
	-		Hea	d (feet) 0.20 0.4	40 0.60 0.80 1.0	00 1.20 1.40 1.60 1.80 2.00
				\ /	0 4.50 5.00 5.50	
						2.68 2.67 2.65 2.65 2.65
				(0)	7 2.69 2.72 2.76	
			2.00	2.00 2.00 2.0	1 2.09 2.12 2.10	5 2.05

Primary OutFlow Max=7.15 cfs @ 12.18 hrs HW=103.20' (Free Discharge) **1=Broad-Crested Rectangular Weir** (Weir Controls 7.15 cfs @ 1.43 fps)

Pond 84P: GUSF #8 spillway (10.5.2022)

Summary for Pond 87P: Gravel Wetland #1 Spillway (04.11.2023)


Inflow Area	a =	7.302 ac, 60.35% Impervious, Inflow Depth = 7.50" for 100 Year Saco event
Inflow	=	55.56 cfs @ 12.09 hrs, Volume= 4.561 af
Outflow	=	4.25 cfs @ 13.30 hrs, Volume= 1.568 af, Atten= 92%, Lag= 72.7 min
Primary	=	4.25 cfs @ 13.30 hrs, Volume= 1.568 af

Routing by Stor-Ind method, Time Span= 0.00-200.00 hrs, dt= 0.10 hrs Peak Elev= 104.48' @ 13.30 hrs Surf.Area= 31,371 sf Storage= 137,460 cf

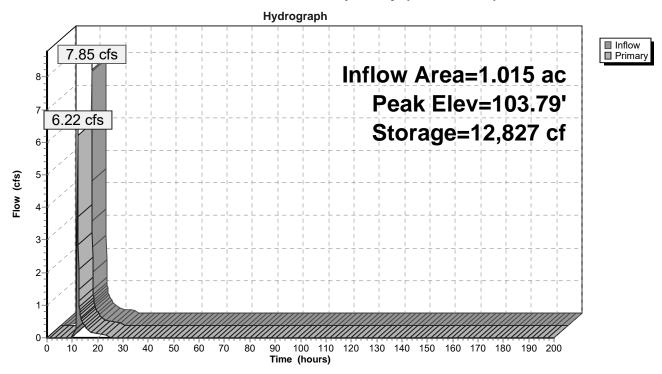
Plug-Flow detention time= 373.7 min calculated for 1.568 af (34% of inflow) Center-of-Mass det. time= 222.7 min (995.3 - 772.6)

Volume	Invert Ava	ail.Storage	Storage Descrip	Storage Description		
#1	94.76' ´	138,013 cf	Custom Stage	Data (Prismatic)Listed	below (Recalc)	
Elevation (feet)	Surf.Area	Voids (%)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)		
	(sq-ft)					
94.76	12,121	0.0	0	0		
97.60 97.92	12,121	0.0	0	0		
	12,121	0.0	101	•		
97.93	12,121	100.0	121	121		
98.00	12,239	100.0	853	974		
99.00	14,188		13,214	14,187		
100.00	18,901	100.0	16,545	30,732		
101.00	20,916	100.0	19,909	50,640		
102.00	23,050		21,983	72,623		
103.00	25,237	100.0	24,144	96,767		
104.00	27,639		26,438	123,205		
104.25	29,662		7,163	130,367		
104.50	31,500	100.0	7,645	138,013		
Device Ro	uting Ir	nvert Outl	et Devices			
#1 Pri	mary 104	Hea	d (feet) 0.20 0.4	eadth Broad-Crested 0 0.60 0.80 1.00 1.2 2.56 2.70 2.69 2.68	0 1.40 1.60	

Primary OutFlow Max=4.20 cfs @ 13.30 hrs HW=104.48' (Free Discharge) 1=Broad-Crested Rectangular Weir (Weir Controls 4.20 cfs @ 1.21 fps)

Pond 87P: Gravel Wetland #1 Spillway (04.11.2023)

Summary for Pond 90P: GUSF #4 Spillway (04.11.2023)


Inflow Area =	1.015 ac, 66.73% Impervious, Inflow De	epth = 7.74" for 100 Year Saco event
Inflow =	7.85 cfs @ 12.08 hrs, Volume=	0.655 af
Outflow =	6.22 cfs @ 12.19 hrs, Volume=	0.394 af, Atten= 21%, Lag= 6.4 min
Primary =	6.22 cfs @ 12.19 hrs, Volume=	0.394 af

Routing by Stor-Ind method, Time Span= 0.00-200.00 hrs, dt= 0.10 hrs Peak Elev= 103.79' @ 12.19 hrs Surf.Area= 4,874 sf Storage= 12,827 cf

Plug-Flow detention time= 205.0 min calculated for 0.394 af (60% of inflow) Center-of-Mass det. time= 99.6 min (865.6 - 766.0)

Volume	Inv	vert Ava	il.Storage	Storage Descrip	otion	
#1	97.	.70'	16,672 cf	Custom Stage	Data (Prismatic)L	isted below (Recalc)
Elevatio	מר	Surf.Area	Voids	Inc.Store	Cum.Store	
(fee		(sq-ft)	(%)	(cubic-feet)	(cubic-feet)	
97.7		1,869	0.0	0	0	
99.8	39	1,869	0.0	0	0	
99.9	90	1,869	100.0	19	19	
100.0		1,924	100.0	190	208	
101.0		2,446	100.0	2,185	2,393	
102.0		3,511	100.0	2,979	5,372	
103.0		4,241	100.0	3,876	9,248	
104.0		5,047	100.0	4,644	13,892	
104.5	50	6,072	100.0	2,780	16,672	
Device	Routing	ı İr	vert Out	let Devices		
#1	Primary	y 103				ed Rectangular Weir
				()		1.20 1.40 1.60 1.80 2.00
) 4.50 5.00 5.50	
				(č ,	2.51 2.70 2.68 2	2.68 2.67 2.65 2.65 2.65
			2.00	2.00 2.00 2.07	2.09 2.12 2.10	2.00

Primary OutFlow Max=6.00 cfs @ 12.19 hrs HW=103.78' (Free Discharge) ☐ 1=Broad-Crested Rectangular Weir (Weir Controls 6.00 cfs @ 1.34 fps)

Pond 90P: GUSF #4 Spillway (04.11.2023)

STAGE STORAGE TABLES

HydroCAD® 10.20-2f s/n 01265 © 2022 HydroCAD Software Solutions LLC	
Hydrograph for Pond 88P: Gravel Wetland #1	

Time	Inflow	Storage	Elevation	Outflow	Primary	Secondary	Tertiary
(hours)	(cfs)	(cubic-feet)	(feet)	(cfs)	(cfs)	(cfs)	(cfs)
0.00	0.00	0	94.76	0.00	0.00	0.00	0.00
0.20	0.00	0	94.76	0.00	0.00	0.00	0.00
0.40	0.00	0	94.76	0.00	0.00	0.00	0.00
0.60	0.00	0	94.76	0.00	0.00	0.00	0.00
0.80	0.00	0	94.76	0.00	0.00	0.00	0.00
1.00	0.00	0	94.76	0.00	0.00	0.00	0.00
1.20	0.00	0	94.76	0.00	0.00	0.00	0.00
1.40	0.00	0	94.76	0.00	0.00	0.00	0.00
1.60	0.00	0	94.76	0.00	0.00	0.00	0.00
1.80	0.00	0	94.76	0.00	0.00	0.00	0.00
2.00	0.00	0	94.76	0.00	0.00	0.00	0.00
2.20	0.00	0	94.76	0.00	0.00	0.00	0.00
2.40	0.00	0	94.76	0.00	0.00	0.00	0.00
2.60	0.00	0	94.76	0.00	0.00	0.00	0.00
2.80	0.00	0	94.76	0.00	0.00	0.00	0.00
3.00	0.00	0	94.76	0.00	0.00	0.00	0.00
3.20	0.00	0	94.76	0.00	0.00	0.00	0.00
3.40	0.00	0	94.76	0.00	0.00	0.00	0.00
3.60	0.00	0	94.76	0.00	0.00	0.00	0.00
3.80	0.00	0	94.76	0.00	0.00	0.00	0.00
4.00	0.00	0	94.76	0.00	0.00	0.00	0.00
4.20	0.00	0	94.76	0.00	0.00	0.00	0.00
4.40	0.00	0	94.76	0.00	0.00	0.00	0.00
4.60	0.00	0	94.76	0.00	0.00	0.00	0.00
4.80	0.00	0	94.76	0.00	0.00	0.00	0.00
5.00	0.00	0	94.76	0.00	0.00	0.00	0.00
5.20	0.00	0	94.76	0.00	0.00	0.00	0.00
5.40	0.00	0	94.76	0.00	0.00	0.00	0.00
5.60	0.00	0	94.76	0.00	0.00	0.00	0.00
5.80	0.00	0	97.60	0.00	0.00	0.00	0.00
6.00	0.01	0	97.61	0.01	0.01	0.00	0.00
6.20	0.02	0	97.63	0.02	0.02	0.00	0.00
6.40	0.02	0	97.65	0.02	0.02	0.00	0.00
6.60	0.03	0	97.67	0.03	0.03	0.00	0.00
6.80	0.05	0	97.69	0.05	0.05	0.00	0.00
7.00	0.06	0	97.75	0.06	0.06	0.00	0.00
7.20	0.07	0	97.83	0.07	0.07	0.00	0.00
7.40	0.09	0	97.92	0.09	0.09	0.00	0.00
7.60	0.10	7	97.92	0.09	0.09	0.00	0.00
7.80	0.12	25	97.92	0.09	0.09	0.00	0.00
8.00	0.14	55	97.92	0.09	0.09	0.00	0.00
8.20	0.16	100	97.93	0.09	0.09	0.00	0.00
8.40	0.19	164	97.93	0.09	0.09	0.00	0.00
8.60	0.22	249	97.94	0.09	0.09	0.00	0.00
8.80	0.26	358	97.95	0.09	0.09	0.00	0.00
9.00	0.30	493	97.96	0.09	0.09	0.00	0.00
9.20	0.34	654	97.97	0.09	0.09	0.00	0.00
9.40	0.38	846	97.99	0.09	0.09	0.00	0.00
9.60	0.43	1,068	98.01	0.10	0.10	0.00	0.00
9.80	0.48	1,323	98.03	0.10	0.10	0.00	0.00
10.00	0.53	1,612	98.05	0.10	0.10	0.00	0.00
10.20	0.60	1,942	98.08	0.10	0.10	0.00	0.00
10.40	0.69	2,329	98.11	0.11	0.11	0.00	0.00

Time	Inflow	Storage	Elevation	Outflow	Primary	Secondary	Tertiary
(hours)	(cfs)	(cubic-feet)	(feet)	(cfs)	(cfs)	(cfs)	(cfs)
10.60	0.78	2,778	98.15	0.11	0.11	0.00	0.00
10.80	0.88	3,295	98.19	0.12	0.12	0.00	0.00
11.00	0.99	3,882	98.23	0.12	0.12	0.00	0.00
11.20	1.22	4,577	98.29	0.13	0.13	0.00	0.00
11.40	1.55	5,481	98.36	0.13	0.13	0.00	0.00
11.60	2.33	6,707	98.45	0.14	0.14	0.00	0.00
11.80	5.38	9,333	98.65	0.15	0.15	0.00	0.00
12.00	13.18	15,156	99.07	0.18	0.18	0.00	0.00
12.20	10.44	25,639	99.72 100.01	0.46	0.46	0.00	0.00
12.40 12.60	5.81 2.67	30,844 33,196	100.01	0.79 0.89	0.79 0.89	0.00 0.00	0.00 0.00
12.80	2.07	34,238	100.13	0.89	0.89	0.00	0.00
13.00	1.73	34,946	100.18	0.95	0.95	0.00	0.00
13.20	1.52	35,405	100.22	0.98	0.95	0.00	0.00
13.40	1.42	35,753	100.24	0.99	0.98	0.01	0.00
13.60	1.32	36,018	100.28	1.01	0.99	0.02	0.00
13.80	1.22	36,203	100.29	1.02	0.99	0.02	0.00
14.00	1.11	36,309	100.29	1.02	1.00	0.02	0.00
14.20	1.05	36,348	100.29	1.02	1.00	0.02	0.00
14.40	1.00	36,346	100.29	1.02	1.00	0.02	0.00
14.60	0.95	36,310	100.29	1.02	1.00	0.02	0.00
14.80	0.90	36,241	100.29	1.02	1.00	0.02	0.00
15.00	0.85	36,139	100.28	1.01	0.99	0.02	0.00
15.20	0.80	36,005	100.27	1.01	0.99	0.02	0.00
15.40	0.75	35,840	100.27	1.00	0.98	0.02	0.00
15.60	0.70	35,645	100.26	0.99	0.98	0.01	0.00
15.80	0.65	35,421	100.24	0.98	0.97	0.01	0.00
16.00	0.60	35,169	100.23	0.97	0.96	0.01	0.00
16.20	0.56	34,895	100.22	0.95	0.95	0.00	0.00
16.40 16.60	0.54 0.52	34,611 34,320	100.20 100.19	0.94 0.93	0.94 0.93	0.00 0.00	0.00 0.00
16.80	0.52	34,021	100.19	0.93	0.93	0.00	0.00
17.00	0.48	33,715	100.17	0.91	0.92	0.00	0.00
17.20	0.46	33,401	100.14	0.90	0.90	0.00	0.00
17.40	0.43	33,080	100.12	0.88	0.88	0.00	0.00
17.60	0.41	32,752	100.11	0.87	0.87	0.00	0.00
17.80	0.39	32,418	100.09	0.86	0.86	0.00	0.00
18.00	0.37	32,078	100.07	0.84	0.84	0.00	0.00
18.20	0.35	31,735	100.05	0.83	0.83	0.00	0.00
18.40	0.35	31,396	100.04	0.81	0.81	0.00	0.00
18.60	0.34	31,063	100.02	0.80	0.80	0.00	0.00
18.80	0.33	30,735	100.00	0.79	0.79	0.00	0.00
19.00	0.33	30,413	99.98	0.77	0.77	0.00	0.00
19.20	0.32	30,098	99.97	0.75	0.75	0.00	0.00
19.40	0.31	29,789	99.95	0.74	0.74	0.00	0.00
19.60	0.31	29,485	99.93	0.72	0.72	0.00	0.00
19.80	0.30	29,188	99.92	0.71	0.71	0.00	0.00
20.00 20.20	0.29 0.29	28,898 28,616	99.90 00.80	0.69 0.68	0.69 0.68	0.00	0.00
20.20 20.40	0.29	28,616	99.89 99.87	0.68	0.68	0.00 0.00	0.00 0.00
20.40	0.28	28,343 28,077	99.87 99.86	0.66	0.66	0.00	0.00
20.80	0.20	27,819	99.80 99.84	0.63	0.63	0.00	0.00
21.00	0.27	27,568	99.83	0.61	0.61	0.00	0.00
21.00	0.21	21,000	00.00	0.01	0.01	0.00	0.00

Inflow Storage Elevation Outflow Primary Secondary Tertiary (cbu): (cfs) (cfs) (cfs) (cfs) (cfs) (cfs) 21:40 0.26 27,093 99.80 0.58 0.58 0.00 0.00 21:60 0.25 26,663 99.78 0.54 0.54 0.00 0.00 22:00 0.24 26,447 99.75 0.51 0.51 0.00 0.00 22:40 0.23 25,870 99.73 0.48 0.48 0.00 0.00 23:00 0.22 25,518 99.71 0.46 0.46 0.00 0.00 23:40 0.21 25,550 99.74 0.46 0.46 0.00 0.00 23:40 0.21 25,518 99.70 0.44 0.44 0.00 0.00 23:40 0.21 25,158 99.66 0.42 0.42 0.00 0.00 24:40 0.00 24,878								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		Inflow	Storage	Elevation	Outflow	Primary	Secondary	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					· · · ·			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		0.00		99.56			0.00	0.00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	25.80	0.00	22,664	99.55	0.27	0.27	0.00	0.00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	26.00	0.00	22,474	99.54	0.26	0.26	0.00	0.00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$,					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
28.800.0020,22299.400.200.200.000.0029.000.0020,07699.390.200.200.000.0029.200.0019,93099.380.200.200.000.0029.400.0019,78599.370.200.200.000.0029.600.0019,64199.360.200.200.000.0029.800.0019,49699.350.200.200.000.0030.000.0019,35299.340.200.200.000.0030.200.0019,06599.330.200.200.000.0030.400.0018,92299.320.200.200.000.0030.800.0018,78099.310.200.200.000.0031.000.0018,63899.300.200.200.000.0031.400.0018,35599.280.200.200.000.00								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
29.800.0019,49699.350.200.200.000.0030.000.0019,35299.340.200.200.000.0030.200.0019,20899.340.200.200.000.0030.400.0019,06599.330.200.200.000.0030.600.0018,92299.320.200.200.000.0030.800.0018,78099.310.200.200.000.0031.000.0018,63899.300.200.200.000.0031.400.0018,35599.280.200.200.000.00								
30.000.0019,35299.340.200.200.000.0030.200.0019,20899.340.200.200.000.0030.400.0019,06599.330.200.200.000.0030.600.0018,92299.320.200.200.000.0030.800.0018,78099.310.200.200.000.0031.000.0018,63899.300.200.200.000.0031.400.0018,49699.290.200.200.000.0031.400.0018,35599.280.200.200.000.00								
30.200.0019,20899.340.200.200.000.0030.400.0019,06599.330.200.200.000.0030.600.0018,92299.320.200.200.000.0030.800.0018,78099.310.200.200.000.0031.000.0018,63899.300.200.200.000.0031.200.0018,49699.290.200.200.000.0031.400.0018,35599.280.200.200.000.00								
30.400.0019,06599.330.200.200.000.0030.600.0018,92299.320.200.200.000.0030.800.0018,78099.310.200.200.000.0031.000.0018,63899.300.200.200.000.0031.200.0018,49699.290.200.200.000.0031.400.0018,35599.280.200.200.000.00								
30.800.0018,78099.310.200.200.000.0031.000.0018,63899.300.200.200.000.0031.200.0018,49699.290.200.200.000.0031.400.0018,35599.280.200.200.000.00	30.40	0.00	19,065	99.33	0.20	0.20	0.00	0.00
30.800.0018,78099.310.200.200.000.0031.000.0018,63899.300.200.200.000.0031.200.0018,49699.290.200.200.000.0031.400.0018,35599.280.200.200.000.00	30.60		18,922		0.20	0.20		0.00
31.200.0018,49699.290.200.200.000.0031.400.0018,35599.280.200.200.000.00	30.80		18,780					
31.40 0.00 18,355 99.28 0.20 0.20 0.00 0.00								
31.600.0018,21499.270.200.200.000.00								
	31.60	0.00	18,214	99.27	0.20	0.20	0.00	0.00

Time	Inflow	Storage	Floyetion	Outflow	Drimon	Secondary	Tartian
Time (hours)	Inflow (cfs)	Storage (cubic-feet)	Elevation (feet)	Outflow (cfs)	Primary (cfs)	Secondary (cfs)	Tertiary (cfs)
31.80	0.00	18,073	99.26	0.20	0.20	0.00	0.00
32.00	0.00	17,933	99.25	0.19	0.19	0.00	0.00
32.20	0.00	17,793	99.24	0.19	0.19	0.00	0.00
32.40	0.00	17,653	99.24	0.19	0.19	0.00	0.00
32.60	0.00	17,514	99.23	0.19	0.19	0.00	0.00
32.80	0.00	17,376	99.22	0.19	0.19	0.00	0.00
33.00	0.00	17,237	99.21	0.19	0.19	0.00	0.00
33.20	0.00	17,100	99.20	0.19	0.19	0.00	0.00
33.40	0.00	16,962	99.19	0.19	0.19	0.00 0.00	0.00
33.60 33.80	0.00 0.00	16,825 16,688	99.18 99.17	0.19 0.19	0.19 0.19	0.00	0.00 0.00
34.00	0.00	16,552	99.17 99.16	0.19	0.19	0.00	0.00
34.20	0.00	16,416	99.15	0.19	0.19	0.00	0.00
34.40	0.00	16,281	99.14	0.19	0.19	0.00	0.00
34.60	0.00	16,145	99.13	0.19	0.19	0.00	0.00
34.80	0.00	16,011	99.13	0.19	0.19	0.00	0.00
35.00	0.00	15,876	99.12	0.19	0.19	0.00	0.00
35.20	0.00	15,743	99.11	0.19	0.19	0.00	0.00
35.40	0.00	15,609	99.10	0.19	0.19	0.00	0.00
35.60	0.00	15,476	99.09	0.18	0.18	0.00	0.00
35.80	0.00	15,343	99.08	0.18	0.18	0.00	0.00
36.00	0.00	15,211	99.07	0.18	0.18	0.00	0.00
36.20	0.00	15,079	99.06	0.18	0.18	0.00	0.00
36.40 36.60	0.00 0.00	14,948 14,817	99.05 99.04	0.18 0.18	0.18 0.18	0.00 0.00	0.00 0.00
36.80	0.00	14,686	99.04 99.03	0.18	0.18	0.00	0.00
37.00	0.00	14,556	99.03	0.18	0.18	0.00	0.00
37.20	0.00	14,426	99.02	0.18	0.18	0.00	0.00
37.40	0.00	14,296	99.01	0.18	0.18	0.00	0.00
37.60	0.00	14,167	99.00	0.18	0.18	0.00	0.00
37.80	0.00	14,039	98.99	0.18	0.18	0.00	0.00
38.00	0.00	13,911	98.98	0.18	0.18	0.00	0.00
38.20	0.00	13,783	98.97	0.18	0.18	0.00	0.00
38.40	0.00	13,656	98.96	0.18	0.18	0.00	0.00
38.60	0.00	13,529	98.95	0.18	0.18	0.00	0.00
38.80	0.00 0.00	13,402 13,276	98.94 98.94	0.18 0.17	0.18 0.17	0.00 0.00	0.00 0.00
39.00 39.20	0.00	13,150	98.94 98.93	0.17	0.17	0.00	0.00
39.40	0.00	13,025	98.92	0.17	0.17	0.00	0.00
39.60	0.00	12,900	98.91	0.17	0.17	0.00	0.00
39.80	0.00	12,776	98.90	0.17	0.17	0.00	0.00
40.00	0.00	12,652	98.89	0.17	0.17	0.00	0.00
40.20	0.00	12,529	98.88	0.17	0.17	0.00	0.00
40.40	0.00	12,406	98.87	0.17	0.17	0.00	0.00
40.60	0.00	12,283	98.86	0.17	0.17	0.00	0.00
40.80	0.00	12,161	98.86	0.17	0.17	0.00	0.00
41.00	0.00	12,039	98.85	0.17	0.17	0.00	0.00
41.20	0.00	11,917	98.84	0.17	0.17	0.00	0.00
41.40 41.60	0.00 0.00	11,796 11,676	98.83 98.82	0.17 0.17	0.17 0.17	0.00 0.00	0.00 0.00
41.80 41.80	0.00	11,556	90.02 98.81	0.17	0.17	0.00	0.00
42.00	0.00	11,436	98.80	0.17	0.17	0.00	0.00
42.20	0.00	11,317	98.79	0.17	0.17	0.00	0.00
		,					

- .		01	-		D :	• •	- ·:
Time (hours)	Inflow (cfs)	Storage (cubic-feet)	Elevation (feet)	Outflow (cfs)	Primary (cfs)	Secondary (cfs)	Tertiary (cfs)
42.40	0.00	11,198	98.79	0.16	0.16	0.00	0.00
42.60	0.00	11,080	98.78	0.16	0.16	0.00	0.00
42.80	0.00	10,962	98.77	0.16	0.16	0.00	0.00
43.00	0.00	10,844	98.76	0.16	0.16	0.00	0.00
43.20	0.00	10,727	98.75	0.16	0.16	0.00	0.00
43.40	0.00	10,611	98.74	0.16	0.16	0.00	0.00
43.60	0.00	10,494	98.73	0.16	0.16	0.00	0.00
43.80	0.00	10,379	98.73	0.16	0.16	0.00	0.00
44.00	0.00	10,263	98.72	0.16	0.16	0.00	0.00
44.20	0.00	10,148	98.71	0.16	0.16	0.00	0.00
44.40	0.00	10,034	98.70	0.16	0.16	0.00	0.00
44.60	0.00	9,920	98.69	0.16	0.16	0.00	0.00
44.80	0.00	9,806	98.68	0.16	0.16	0.00	0.00
45.00	0.00	9,693	98.68	0.16	0.16	0.00	0.00
45.20 45.40	0.00 0.00	9,580 9,468	98.67 98.66	0.16 0.16	0.16 0.16	0.00 0.00	0.00 0.00
45.60 45.60	0.00	9,356	98.65	0.16	0.10	0.00	0.00
45.80	0.00	9,330	98.64 98.64	0.10	0.10	0.00	0.00
46.00	0.00	9,134	98.63	0.15	0.15	0.00	0.00
46.20	0.00	9,023	98.63	0.15	0.15	0.00	0.00
46.40	0.00	8,913	98.62	0.15	0.15	0.00	0.00
46.60	0.00	8,803	98.61	0.15	0.15	0.00	0.00
46.80	0.00	8,694	98.60	0.15	0.15	0.00	0.00
47.00	0.00	8,585	98.59	0.15	0.15	0.00	0.00
47.20	0.00	8,477	98.59	0.15	0.15	0.00	0.00
47.40	0.00	8,369	98.58	0.15	0.15	0.00	0.00
47.60	0.00	8,262	98.57	0.15	0.15	0.00	0.00
47.80	0.00	8,155	98.56	0.15	0.15	0.00	0.00
48.00	0.00	8,048	98.55	0.15	0.15	0.00	0.00
48.20	0.00	7,942	98.55	0.15	0.15	0.00	0.00
48.40 48.60	0.00 0.00	7,836 7,731	98.54 98.53	0.15 0.15	0.15 0.15	0.00 0.00	0.00 0.00
48.80	0.00	7,626	98.53 98.52	0.15	0.15	0.00	0.00
49.00	0.00	7,522	98.51	0.14	0.13	0.00	0.00
49.20	0.00	7,418	98.51	0.14	0.14	0.00	0.00
49.40	0.00	7,315	98.50	0.14	0.14	0.00	0.00
49.60	0.00	7,212	98.49	0.14	0.14	0.00	0.00
49.80	0.00	7,109	98.48	0.14	0.14	0.00	0.00
50.00	0.00	7,007	98.47	0.14	0.14	0.00	0.00
50.20	0.00	6,906	98.47	0.14	0.14	0.00	0.00
50.40	0.00	6,805	98.46	0.14	0.14	0.00	0.00
50.60	0.00	6,704	98.45	0.14	0.14	0.00	0.00
50.80	0.00	6,604	98.44	0.14	0.14	0.00	0.00
51.00	0.00	6,504	98.44	0.14	0.14	0.00	0.00
51.20	0.00	6,404	98.43	0.14	0.14	0.00	0.00
51.40	0.00	6,305	98.42	0.14	0.14	0.00	0.00
51.60 51.80	0.00 0.00	6,207 6,109	98.41 98.41	0.14 0.14	0.14 0.14	0.00 0.00	0.00 0.00
52.00	0.00	6,012	98.41 98.40	0.14	0.14	0.00	0.00
52.00 52.20	0.00	5,914	98.39	0.14	0.14	0.00	0.00
52.40	0.00	5,818	98.38	0.13	0.13	0.00	0.00
52.60	0.00	5,722	98.38	0.13	0.13	0.00	0.00
52.80	0.00	5,626	98.37	0.13	0.13	0.00	0.00

Time	Inflow	Storage	Elevation	Outflow	Primary	Secondary	Tertiary
(hours)	(cfs)	(cubic-feet)	(feet)	(cfs)	(cfs)	(cfs)	(cfs)
53.00	0.00	5,531	98.36	0.13	0.13	0.00	0.00
53.20	0.00	5,436	98.35 98.35	0.13 0.13	0.13 0.13	0.00	0.00
53.40 53.60	0.00 0.00	5,341 5,248	98.35 98.34	0.13	0.13	0.00 0.00	0.00 0.00
53.80	0.00	5,154	98.33	0.13	0.13	0.00	0.00
54.00	0.00	5,061	98.33	0.13	0.13	0.00	0.00
54.20	0.00	4,969	98.32	0.13	0.13	0.00	0.00
54.40	0.00	4,877	98.31	0.13	0.13	0.00	0.00
54.60	0.00	4,785	98.30	0.13	0.13	0.00	0.00
54.80	0.00	4,694	98.30	0.13	0.13	0.00	0.00
55.00	0.00	4,603	98.29	0.13	0.13	0.00	0.00
55.20	0.00	4,513	98.28	0.12	0.12	0.00	0.00
55.40	0.00	4,424	98.28	0.12	0.12	0.00	0.00
55.60	0.00	4,334	98.27	0.12	0.12	0.00	0.00
55.80	0.00	4,245	98.26	0.12	0.12	0.00	0.00
56.00	0.00	4,157	98.25	0.12	0.12	0.00	0.00
56.20	0.00	4,069	98.25	0.12	0.12	0.00	0.00
56.40	0.00	3,982	98.24	0.12	0.12	0.00	0.00
56.60	0.00	3,895	98.23	0.12	0.12	0.00	0.00
56.80	0.00	3,808	98.23	0.12	0.12	0.00	0.00
57.00	0.00 0.00	3,723 3,637	98.22 98.21	0.12 0.12	0.12 0.12	0.00 0.00	0.00 0.00
57.20 57.40	0.00	3,552	98.21 98.21	0.12	0.12	0.00	0.00
57.60	0.00	3,467	98.20	0.12	0.12	0.00	0.00
57.80	0.00	3,383	98.19	0.12	0.12	0.00	0.00
58.00	0.00	3,300	98.19	0.12	0.12	0.00	0.00
58.20	0.00	3,217	98.18	0.12	0.12	0.00	0.00
58.40	0.00	3,134	98.17	0.11	0.11	0.00	0.00
58.60	0.00	3,052	98.17	0.11	0.11	0.00	0.00
58.80	0.00	2,970	98.16	0.11	0.11	0.00	0.00
59.00	0.00	2,888	98.15	0.11	0.11	0.00	0.00
59.20	0.00	2,808	98.15	0.11	0.11	0.00	0.00
59.40	0.00	2,727	98.14	0.11	0.11	0.00	0.00
59.60	0.00	2,647	98.14	0.11	0.11	0.00	0.00
59.80	0.00	2,568	98.13	0.11	0.11	0.00	0.00
60.00	0.00	2,489	98.12	0.11	0.11	0.00	0.00
60.20 60.40	0.00	2,411 2,333	98.12	0.11	0.11	0.00	0.00
60.40 60.60	0.00 0.00	2,333	98.11 98.10	0.11 0.11	0.11 0.11	0.00 0.00	0.00 0.00
60.80	0.00	2,235	98.10 98.10	0.11	0.11	0.00	0.00
61.00	0.00	2,170	98.09	0.11	0.11	0.00	0.00
61.20	0.00	2,026	98.09	0.11	0.11	0.00	0.00
61.40	0.00	1,950	98.08	0.10	0.10	0.00	0.00
61.60	0.00	1,875	98.07	0.10	0.10	0.00	0.00
61.80	0.00	1,800	98.07	0.10	0.10	0.00	0.00
62.00	0.00	1,726	98.06	0.10	0.10	0.00	0.00
62.20	0.00	1,653	98.06	0.10	0.10	0.00	0.00
62.40	0.00	1,579	98.05	0.10	0.10	0.00	0.00
62.60	0.00	1,507	98.04	0.10	0.10	0.00	0.00
62.80	0.00	1,435	98.04	0.10	0.10	0.00	0.00
63.00	0.00	1,363	98.03	0.10	0.10	0.00	0.00
63.20	0.00	1,292	98.03	0.10	0.10	0.00	0.00
63.40	0.00	1,221	98.02	0.10	0.10	0.00	0.00

 .		01	- 1 ('	0.15	D :	o 1	- .:
Time (hours)	Inflow (cfs)	Storage (cubic-feet)	Elevation (feet)	Outflow (cfs)	Primary (cfs)	Secondary (cfs)	Tertiary (cfs)
63.60	0.00	1,150	98.01	0.10	0.10	0.00	0.00
63.80	0.00	1,081	98.01	0.10	0.10	0.00	0.00
64.00	0.00	1,011	98.00	0.10	0.10	0.00	0.00
64.20	0.00	942	98.00	0.10	0.10	0.00	0.00
64.40	0.00	874	97.99	0.09	0.09	0.00	0.00
64.60	0.00	806	97.99	0.09	0.09	0.00	0.00
64.80	0.00	739	97.98	0.09	0.09	0.00	0.00
65.00	0.00	672	97.98	0.09	0.09	0.00	0.00
65.20	0.00	605	97.97	0.09	0.09	0.00	0.00
65.40	0.00	539	97.96	0.09	0.09	0.00	0.00
65.60 65.80	0.00 0.00	474 409	97.96 97.95	0.09 0.09	0.09 0.09	0.00 0.00	0.00 0.00
66.00	0.00	344	97.95 97.95	0.09	0.09	0.00	0.00
66.20	0.00	280	97.95 97.94	0.09	0.09	0.00	0.00
66.40	0.00	217	97.94	0.09	0.09	0.00	0.00
66.60	0.00	1 <u>54</u>	97.93	0.09	0.09	0.00	0.00
66.80	0.00	91	97.93	0.09	0.09	0.00	0.00
67.00	0.00	29	97.92	0.09	0.09	0.00	0.00
67.20	0.00	0	97.60	0.00	0.00	0.00	0.00
67.40	0.00	0	97.60	0.00	0.00	0.00	0.00
67.60	0.00	0	97.60	0.00	0.00	0.00	0.00
67.80	0.00	0	97.60	0.00	0.00	0.00	0.00
68.00	0.00	0	97.60	0.00	0.00	0.00	0.00
68.20	0.00	0	97.60	0.00	0.00	0.00	0.00
68.40	0.00	0 0	97.60 97.60	0.00	0.00	0.00	0.00
68.60 68.80	0.00 0.00	0	97.60 97.60	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00
69.00	0.00	0	97.60 97.60	0.00	0.00	0.00	0.00
69.20	0.00	0	97.60	0.00	0.00	0.00	0.00
69.40	0.00	0	97.60	0.00	0.00	0.00	0.00
69.60	0.00	0 0	97.60	0.00	0.00	0.00	0.00
69.80	0.00	0	97.60	0.00	0.00	0.00	0.00
70.00	0.00	0	97.60	0.00	0.00	0.00	0.00
70.20	0.00	0	97.60	0.00	0.00	0.00	0.00
70.40	0.00	0	97.60	0.00	0.00	0.00	0.00
70.60	0.00	0	97.60	0.00	0.00	0.00	0.00
70.80	0.00	0	97.60	0.00	0.00	0.00	0.00
71.00	0.00	0	97.60	0.00	0.00	0.00	0.00
71.20 71.40	0.00 0.00	0 0	97.60 97.60	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00
71.60	0.00	0	97.60 97.60	0.00	0.00	0.00	0.00
71.80	0.00	0	97.60	0.00	0.00	0.00	0.00
72.00	0.00	0 0	97.60	0.00	0.00	0.00	0.00
72.20	0.00	0 0	97.60	0.00	0.00	0.00	0.00
72.40	0.00	0	97.60	0.00	0.00	0.00	0.00
72.60	0.00	0	97.60	0.00	0.00	0.00	0.00
72.80	0.00	0	97.60	0.00	0.00	0.00	0.00
73.00	0.00	0	97.60	0.00	0.00	0.00	0.00
73.20	0.00	0	97.60	0.00	0.00	0.00	0.00
73.40	0.00	0	97.60	0.00	0.00	0.00	0.00
73.60	0.00	0	97.60 07.60	0.00	0.00	0.00	0.00
73.80 74.00	0.00 0.00	0 0	97.60 97.60	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00
14.00	0.00	U	91.00	0.00	0.00	0.00	0.00

Time	Inflow	Storage	Elevation	Outflow	Primary	Secondary	Tertiary
(hours)	(cfs)	(cubic-feet)	(feet)	(cfs)	(cfs)	(cfs)	(cfs)
74.20	0.00	0	97.60	0.00	0.00	0.00	0.00
74.40	0.00	0	97.60	0.00	0.00	0.00	0.00
74.60	0.00	0	97.60	0.00	0.00	0.00	0.00
74.80	0.00	0	97.60	0.00	0.00	0.00	0.00
75.00	0.00	0	97.60	0.00	0.00	0.00	0.00
75.20	0.00	0	97.60	0.00	0.00	0.00	0.00
75.40	0.00	0	97.60	0.00	0.00	0.00	0.00
75.60	0.00	0	97.60	0.00	0.00	0.00	0.00
75.80	0.00	0	97.60	0.00	0.00	0.00	0.00
76.00	0.00	0	97.60	0.00	0.00	0.00	0.00
76.20	0.00	0	97.60	0.00	0.00	0.00	0.00
76.40	0.00	0	97.60	0.00	0.00	0.00	0.00
76.60	0.00	0	97.60	0.00	0.00	0.00	0.00
76.80	0.00	0	97.60	0.00	0.00	0.00	0.00
77.00	0.00	0	97.60	0.00	0.00	0.00	0.00
77.20	0.00	0	97.60	0.00	0.00	0.00	0.00
77.40	0.00	0	97.60	0.00	0.00	0.00	0.00
77.60	0.00	0	97.60	0.00	0.00	0.00	0.00
77.80	0.00	0	97.60	0.00	0.00	0.00	0.00
78.00	0.00	0	97.60	0.00	0.00	0.00	0.00
78.20	0.00	0	97.60	0.00	0.00	0.00	0.00
78.40	0.00	0	97.60	0.00	0.00	0.00	0.00
78.60	0.00	0	97.60	0.00	0.00	0.00	0.00
78.80	0.00	0	97.60	0.00	0.00	0.00	0.00
79.00	0.00	0	97.60	0.00	0.00	0.00	0.00
79.20	0.00	0	97.60	0.00	0.00	0.00	0.00
79.40	0.00	0	97.60	0.00	0.00	0.00	0.00
79.60	0.00	0	97.60	0.00	0.00	0.00	0.00
79.80	0.00	0	97.60	0.00	0.00	0.00	0.00
80.00	0.00	0	97.60	0.00	0.00	0.00	0.00

Time Inflow Outflow Storage Elevation Primary Secondary Tertiary (cfs) (cubic-feet) (feet) (cfs) (hours) (cfs) (cfs) (cfs) 0.00 0.00 95.14 0.00 0.00 0.00 0.00 0 0.20 0.00 0 95.14 0.00 0.00 0.00 0.00 0.40 0.00 0 95.14 0.00 0.00 0.00 0.00 0.60 0.00 0 95.14 0.00 0.00 0.00 0.00 0.00 0 95.14 0.00 0.00 0.00 0.00 0.80 1.00 0.00 0 95.14 0.00 0.00 0.00 0.00 1.20 0.00 0 95.14 0.00 0.00 0.00 0.00 1.40 0.00 0 95.14 0.00 0.00 0.00 0.00 1.60 0.00 0 95.14 0.00 0.00 0.00 0.00 1.80 0.00 0 95.14 0.00 0.00 0.00 0.00 0 95.14 2.00 0.00 0.00 0.00 0.00 0.00 2.20 0.00 0 95.14 0.00 0.00 0.00 0.00 2.40 0.00 0 95.14 0.00 0.00 0.00 0.00 0.00 0.00 2.60 0 95.14 0.00 0.00 0.00 2.80 0.00 0 95.14 0.00 0.00 0.00 0.00 0.00 0 0.00 0.00 0.00 0.00 3.00 95.14 3.20 0.00 0 95.14 0.00 0.00 0.00 0.00 3.40 0.00 0 95.14 0.00 0.00 0.00 0.00 0 3.60 0.00 95.14 0.00 0.00 0.00 0.00 0 0.00 0.00 3.80 0.00 95.14 0.00 0.00 0.00 0 95.14 0.00 0.00 0.00 4.00 0.00 4.20 0.00 0 95.14 0.00 0.00 0.00 0.00 0.00 0.00 4.40 0.00 0 0.00 0.00 95.14 4.60 0.00 0 95.14 0.00 0.00 0.00 0.00 4.80 0.00 0 97.98 0.00 0.00 0.00 0.00 5.00 0.00 0 98.00 0.00 0.00 0.00 0.00 5.20 0 0.01 98.01 0.01 0.01 0.00 0.00 5.40 0.01 0 0.01 0.01 0.00 98.03 0.00 5.60 0.02 0 98.04 0.02 0.02 0.00 0.00 5.80 0.02 0 98.05 0.02 0.02 0.00 0.00 6.00 0.03 0 98.06 0.03 0.03 0.00 0.00 0.00 6.20 0.03 0 98.07 0.03 0.03 0.00 0 0.04 98.08 0.04 0.04 0.00 0.00 6.40 0.00 0.04 0 0.04 0.04 6.60 98.10 0.00 0.05 0 0.05 0.05 0.00 0.00 6.80 98.14 0 0.06 98.20 0.06 0.00 0.00 7.00 0.06 0 7.20 0.07 98.27 0.07 0.07 0.00 0.00 7.40 0.08 2 98.30 0.07 0.07 0.00 0.00 7.60 0.09 9 98.30 0.07 0.07 0.00 0.00 7.80 0.10 24 98.30 0.07 0.07 0.00 0.00 47 8.00 0.11 98.31 0.07 0.07 0.00 0.00 78 8.20 0.12 98.31 0.07 0.07 0.00 0.00 0.14 121 98.32 0.07 0.00 0.00 8.40 0.07 0.16 8.60 178 98.33 0.07 0.07 0.00 0.00 8.80 0.18 248 98.34 0.08 0.08 0.00 0.00 0.00 0.00 0.21 335 98.35 0.08 0.08 9.00 9.20 0.23 437 0.08 0.08 0.00 0.00 98.37 0.00 0.26 556 0.08 0.08 0.00 9.40 98.38 0.08 9.60 0.29 693 98.40 0.08 0.00 0.00 0.31 848 0.08 0.08 0.00 0.00 9.80 98.43 10.00 0.34 1,022 98.45 0.09 0.09 0.00 0.00 10.20 0.38 1,218 98.48 0.09 0.09 0.00 0.00

10.40

0.43

1,447

98.51

0.09

0.09

0.00

0.00

Hydrograph for Pond 5P: Gravel Wetland #2

		C /	_			. .	
Time (houro)	Inflow	Storage	Elevation	Outflow	Primary	Secondary	Tertiary
<u>(hours)</u> 10.60	(cfs) 0.49	<u>(cubic-feet)</u> 1,712	(feet) 98.55	(cfs) 0.10	<u>(cfs)</u> 0.10	(cfs) 0.00	<u>(cfs)</u> 0.00
10.80	0.49	2,014	98.55 98.59	0.10	0.10	0.00	0.00
11.00	0.60	2,354	98.64	0.10	0.10	0.00	0.00
11.20	0.74	2,755	98.70	0.11	0.11	0.00	0.00
11.40	0.93	3,277	98.77	0.11	0.11	0.00	0.00
11.60	1.38	3,981	98.86	0.12	0.12	0.00	0.00
11.80	3.13	5,492	99.06	0.13	0.13	0.00	0.00
12.00	7.47	8,793	99.44	0.15	0.15	0.00	0.00
12.20	5.78	14,553	100.00	0.63	0.18	0.45	0.00
12.40	3.19	16,970	100.22	1.29	0.19	1.10	0.00
12.60	1.46	17,574	100.27	1.48	0.19	1.29	0.00
12.80	1.16	17,445	100.26	1.44	0.19	1.25	0.00
13.00	0.94	17,191	100.24	1.36	0.19	1.17	0.00
13.20	0.83	16,875	100.21	1.26	0.19	1.08	0.00
13.40 13.60	0.77 0.72	16,574 16,295	100.18 100.16	1.17 1.09	0.19 0.19	0.99 0.90	0.00 0.00
13.80	0.72	16,033	100.18	1.09	0.19	0.90	0.00
14.00	0.61	15,784	100.13	0.95	0.19	0.05	0.00
14.20	0.57	15,547	100.09	0.88	0.18	0.70	0.00
14.40	0.54	15,333	100.07	0.82	0.18	0.64	0.00
14.60	0.51	15,137	100.06	0.77	0.18	0.59	0.00
14.80	0.49	14,957	100.04	0.73	0.18	0.55	0.00
15.00	0.46	14,788	100.02	0.69	0.18	0.51	0.00
15.20	0.43	14,628	100.01	0.65	0.18	0.47	0.00
15.40	0.41	14,475	100.00	0.61	0.18	0.43	0.00
15.60	0.38	14,327	99.98	0.58	0.18	0.40	0.00
15.80	0.35	14,182	99.97	0.55	0.18	0.37	0.00
16.00	0.32	14,040	99.96	0.52	0.18	0.34	0.00
16.20	0.31	13,901	99.94	0.49	0.18	0.31	0.00
16.40 16.60	0.29 0.28	13,772 13,652	99.93 99.92	0.47 0.44	0.18 0.18	0.29 0.27	0.00 0.00
16.80	0.20	13,539	99.92 99.91	0.44	0.18	0.27	0.00
17.00	0.26	13,431	99.90	0.40	0.18	0.23	0.00
17.20	0.25	13,329	99.89	0.38	0.18	0.21	0.00
17.40	0.23	13,230	99.88	0.37	0.18	0.19	0.00
17.60	0.22	13,134	99.87	0.35	0.17	0.18	0.00
17.80	0.21	13,041	99.87	0.34	0.17	0.16	0.00
18.00	0.20	12,949	99.86	0.32	0.17	0.15	0.00
18.20	0.19	12,860	99.85	0.31	0.17	0.14	0.00
18.40	0.19	12,776	99.84	0.30	0.17	0.13	0.00
18.60	0.18	12,698	99.83	0.29	0.17	0.12	0.00
18.80	0.18	12,624	99.83	0.28	0.17	0.11	0.00
19.00	0.18	12,555	99.82	0.27 0.26	0.17 0.17	0.10	0.00
19.20 19.40	0.17 0.17	12,489 12,426	99.81 99.81	0.26	0.17	0.09 0.08	0.00 0.00
19.40	0.17	12,420	99.80	0.25	0.17	0.08	0.00
19.80	0.17	12,300	99.80	0.24	0.17	0.00	0.00
20.00	0.16	12,250	99.79	0.24	0.17	0.07	0.00
20.20	0.16	12,196	99.79	0.23	0.17	0.06	0.00
20.40	0.15	12,143	99.78	0.22	0.17	0.05	0.00
20.60	0.15	12,092	99.78	0.22	0.17	0.05	0.00
20.80	0.15	12,043	99.77	0.22	0.17	0.05	0.00
21.00	0.15	11,994	99.77	0.21	0.17	0.04	0.00

					_ .	a .	
Time	Inflow	Storage	Elevation	Outflow	Primary	Secondary	Tertiary
(hours)	(cfs)	(cubic-feet)	(feet)	(cfs)	(cfs)	(cfs)	(cfs)
21.20 21.40	0.14 0.14	11,946 11,899	99.76 99.76	0.21 0.20	0.17 0.17	0.04 0.04	0.00 0.00
21.40	0.14	11,853	99.70 99.75	0.20	0.17	0.04	0.00
21.80	0.14	11,807	99.75	0.20	0.17	0.03	0.00
22.00	0.13	11,762	99.74	0.19	0.17	0.03	0.00
22.20	0.13	11,717	99.74	0.19	0.17	0.02	0.00
22.40	0.13	11,673	99.74	0.19	0.17	0.02	0.00
22.60	0.12	11,628	99.73	0.19	0.17	0.02	0.00
22.80	0.12	11,583	99.73	0.18	0.17	0.02	0.00
23.00	0.12	11,537	99.72	0.18	0.17	0.01	0.00
23.20	0.12	11,491	99.72	0.18	0.17	0.01	0.00
23.40	0.11	11,445	99.71	0.18	0.17	0.01	0.00
23.60	0.11	11,398	99.71	0.18	0.17	0.01	0.00
23.80	0.11	11,351	99.70	0.17	0.17	0.01	0.00
24.00	0.10	11,303	99.70	0.17	0.17	0.00	0.00
24.20	0.00	11,210	99.69	0.17	0.17	0.00	0.00
24.40	0.00	11,090	99.68	0.17	0.17	0.00	0.00
<mark>24.60</mark> 24.80	0.00 0.00	<mark>10,971</mark> 10,852	<mark>99.67</mark> 99.65	<mark>0.17</mark> 0.16	<mark>0.17</mark> 0.16	<mark>0.00</mark> 0.00	<mark>0.00</mark> 0.00
24.80	0.00	10,852	99.65 99.64	0.16	0.16	0.00	0.00
25.00	0.00	10,734	99.63	0.10	0.10	0.00	0.00
25.40	0.00	10,499	99.62	0.16	0.16	0.00	0.00
25.60	0.00	10,382	99.61	0.16	0.16	0.00	0.00
25.80	0.00	10,265	99.60	0.16	0.16	0.00	0.00
26.00	0.00	10,149	99.58	0.16	0.16	0.00	0.00
26.20	0.00	10,033	99.57	0.16	0.16	0.00	0.00
26.40	0.00	9,918	99.56	0.16	0.16	0.00	0.00
26.60	0.00	9,803	99.55	0.16	0.16	0.00	0.00
26.80	0.00	9,689	99.54	0.16	0.16	0.00	0.00
27.00	0.00	9,575	99.52	0.16	0.16	0.00	0.00
27.20	0.00	9,461	99.51	0.16	0.16	0.00	0.00
27.40	0.00	9,348	99.50	0.16	0.16	0.00	0.00
27.60	0.00	9,236	99.49	0.16	0.16	0.00	0.00
27.80	0.00	9,124	99.48	0.16	0.16	0.00	0.00
28.00 28.20	0.00 0.00	9,012 8,901	99.46 99.45	0.15 0.15	0.15 0.15	0.00 0.00	0.00 0.00
28.40	0.00	8,790	99.43 99.44	0.15	0.15	0.00	0.00
28.60	0.00	8,679	99.43	0.15	0.15	0.00	0.00
28.80	0.00	8,570	99.42	0.15	0.15	0.00	0.00
29.00	0.00	8,460	99.40	0.15	0.15	0.00	0.00
29.20	0.00	8,351	99.39	0.15	0.15	0.00	0.00
29.40	0.00	8,243	99.38	0.15	0.15	0.00	0.00
29.60	0.00	8,134	99.37	0.15	0.15	0.00	0.00
29.80	0.00	8,027	99.36	0.15	0.15	0.00	0.00
30.00	0.00	7,920	99.34	0.15	0.15	0.00	0.00
30.20	0.00	7,813	99.33	0.15	0.15	0.00	0.00
30.40	0.00	7,707	99.32	0.15	0.15	0.00	0.00
30.60	0.00	7,601	99.31	0.15	0.15	0.00	0.00
30.80	0.00	7,496	99.30	0.15	0.15	0.00	0.00
31.00	0.00	7,391	99.29	0.15	0.15	0.00	0.00
31.20	0.00 0.00	7,287 7,183	99.27 09.26	0.14 0.14	0.14 0.14	0.00 0.00	0.00 0.00
31.40 31.60	0.00	7,183	99.26 99.25	0.14	0.14	0.00	0.00
51.00	0.00	7,000	39.20	0.14	0.14	0.00	0.00

Hydrograph for Pond 5P: Gravel Wetland #2 (continued)

T :	l	Oto no no	F 1	0	Duine en e	0	T
Time (hours)	Inflow (cfs)	Storage (cubic-feet)	Elevation (feet)	Outflow (cfs)	Primary (cfs)	Secondary (cfs)	Tertiary (cfs)
31.80	0.00	6,977	99.24	0.14	0.14	0.00	0.00
32.00	0.00	6,874	99.23	0.14	0.14	0.00	0.00
32.20	0.00	6,772	99.21	0.14	0.14	0.00	0.00
32.40	0.00	6,671	99.20	0.14	0.14	0.00	0.00
32.60	0.00	6,570	99.19	0.14	0.14	0.00	0.00
32.80	0.00	6,470	99.18	0.14	0.14	0.00	0.00
33.00	0.00	6,370	99.17	0.14	0.14	0.00	0.00
33.20	0.00	6,270	99.15	0.14	0.14	0.00	0.00
33.40	0.00	6,172	99.14	0.14	0.14	0.00	0.00
33.60	0.00	6,073	99.13	0.14	0.14	0.00	0.00
33.80	0.00	5,975	99.12	0.14	0.14	0.00	0.00
34.00	0.00	5,878	99.11	0.13	0.13	0.00	0.00
34.20	0.00	5,781	99.09	0.13	0.13	0.00	0.00
34.40	0.00	5,685	99.08	0.13	0.13	0.00	0.00
34.60	0.00	5,589	99.07	0.13	0.13	0.00	0.00
34.80	0.00	5,494	99.06	0.13	0.13 0.13	0.00	0.00
35.00 35.20	0.00 0.00	5,399 5,305	99.05 99.03	0.13 0.13	0.13	0.00 0.00	0.00 0.00
35.20	0.00	5,211	99.03 99.02	0.13	0.13	0.00	0.00
35.60	0.00	5,118	99.02 99.01	0.13	0.13	0.00	0.00
35.80	0.00	5,025	99.00	0.13	0.13	0.00	0.00
36.00	0.00	4,933	98.99	0.13	0.13	0.00	0.00
36.20	0.00	4,842	98.97	0.13	0.13	0.00	0.00
36.40	0.00	4,751	98.96	0.13	0.13	0.00	0.00
36.60	0.00	4,660	98.95	0.13	0.13	0.00	0.00
36.80	0.00	4,570	98.94	0.12	0.12	0.00	0.00
37.00	0.00	4,481	98.93	0.12	0.12	0.00	0.00
37.20	0.00	4,392	98.92	0.12	0.12	0.00	0.00
37.40	0.00	4,304	98.90	0.12	0.12	0.00	0.00
37.60	0.00	4,216	98.89	0.12	0.12	0.00	0.00
37.80	0.00	4,129	98.88	0.12	0.12	0.00	0.00
38.00	0.00	4,042	98.87	0.12	0.12	0.00	0.00
38.20	0.00	3,956	98.86	0.12	0.12	0.00	0.00
38.40	0.00	3,871	98.85	0.12	0.12	0.00	0.00
38.60	0.00	3,786	98.84	0.12	0.12	0.00	0.00
38.80 39.00	0.00 0.00	3,701 3,618	98.82 98.81	0.12 0.12	0.12 0.12	0.00 0.00	0.00 0.00
39.00	0.00	3,534	98.80	0.12	0.12	0.00	0.00
39.20	0.00	3,452	98.79	0.12	0.12	0.00	0.00
39.60	0.00	3,370	98.78	0.11	0.11	0.00	0.00
39.80	0.00	3,288	98.77	0.11	0.11	0.00	0.00
40.00	0.00	3,207	98.76	0.11	0.11	0.00	0.00
40.20	0.00	3,127	98.75	0.11	0.11	0.00	0.00
40.40	0.00	3,047	98.74	0.11	0.11	0.00	0.00
40.60	0.00	2,967	98.73	0.11	0.11	0.00	0.00
40.80	0.00	2,889	98.71	0.11	0.11	0.00	0.00
41.00	0.00	2,811	98.70	0.11	0.11	0.00	0.00
41.20	0.00	2,733	98.69	0.11	0.11	0.00	0.00
41.40	0.00	2,656	98.68	0.11	0.11	0.00	0.00
41.60	0.00	2,580	98.67	0.11	0.11	0.00	0.00
41.80	0.00	2,504	98.66	0.10	0.10	0.00	0.00
42.00	0.00	2,428	98.65	0.10	0.10	0.00	0.00
42.20	0.00	2,354	98.64	0.10	0.10	0.00	0.00

Hydrograph for Pond 5P: Gravel Wetland #2 (continued)

		_					
Time	Inflow	Storage	Elevation	Outflow	Primary	Secondary	Tertiary
(hours)	(cfs)	(cubic-feet)	(feet)	(cfs)	(cfs)	(cfs)	(cfs)
42.40 42.60	0.00 0.00	2,280 2,206	98.63 98.62	0.10 0.10	0.10 0.10	0.00 0.00	0.00 0.00
42.80	0.00	2,200	98.62 98.61	0.10	0.10	0.00	0.00
43.00	0.00	2,133	98.60	0.10	0.10	0.00	0.00
43.20	0.00	1,989	98.59	0.10	0.10	0.00	0.00
43.40	0.00	1,918	98.58	0.10	0.10	0.00	0.00
43.60	0.00	1,847	98.57	0.10	0.10	0.00	0.00
43.80	0.00	1,777	98.56	0.10	0.10	0.00	0.00
44.00	0.00	1,708	98.55	0.10	0.10	0.00	0.00
44.20	0.00	1,639	98.54	0.10	0.10	0.00	0.00
44.40	0.00	1,571	98.53	0.09	0.09	0.00	0.00
44.60	0.00	1,503	98.52	0.09	0.09	0.00	0.00
44.80	0.00	1,436	98.51	0.09	0.09	0.00	0.00
45.00	0.00	1,370	98.50	0.09	0.09	0.00	0.00
45.20	0.00	1,304	98.49	0.09	0.09	0.00	0.00
45.40	0.00	1,239	98.48	0.09	0.09	0.00	0.00
45.60	0.00	1,175	98.47	0.09	0.09	0.00	0.00
45.80	0.00	1,111	98.46	0.09	0.09	0.00	0.00
46.00 46.20	0.00 0.00	1,047 984	98.45 98.45	0.09 0.09	0.09 0.09	0.00 0.00	0.00 0.00
46.40	0.00	904	98.43 98.44	0.09	0.09	0.00	0.00
46.60	0.00	861	98.44 98.43	0.09	0.09	0.00	0.00
46.80	0.00	800	98.43 98.42	0.09	0.09	0.00	0.00
47.00	0.00	740	98.41	0.08	0.08	0.00	0.00
47.20	0.00	680	98.40	0.08	0.08	0.00	0.00
47.40	0.00	621	98.39	0.08	0.08	0.00	0.00
47.60	0.00	562	98.38	0.08	0.08	0.00	0.00
47.80	0.00	504	98.38	0.08	0.08	0.00	0.00
48.00	0.00	447	98.37	0.08	0.08	0.00	0.00
48.20	0.00	391	98.36	0.08	0.08	0.00	0.00
48.40	0.00	335	98.35	0.08	0.08	0.00	0.00
48.60	0.00	279	98.34	0.08	0.08	0.00	0.00
48.80	0.00	225	98.33	0.08	0.08	0.00	0.00
49.00	0.00	170	98.33	0.07	0.07	0.00	0.00
49.20	0.00	117	98.32	0.07	0.07	0.00	0.00
<mark>49.40</mark>	0.00	<mark>64</mark>	<mark>98.31</mark>	0.07	0.07	0.00	0.00
49.60 49.80	0.00 0.00	12 0	98.30 97.98	0.07 0.00	0.07 0.00	0.00 0.00	0.00 0.00
49.80 50.00	0.00	0	97.98 97.98	0.00	0.00	0.00	0.00
50.00	0.00	0	97.98	0.00	0.00	0.00	0.00
50.40	0.00	0	97.98	0.00	0.00	0.00	0.00
50.60	0.00	0	97.98	0.00	0.00	0.00	0.00
50.80	0.00	Ő	97.98	0.00	0.00	0.00	0.00
51.00	0.00	0	97.98	0.00	0.00	0.00	0.00
51.20	0.00	0	97.98	0.00	0.00	0.00	0.00
51.40	0.00	0	97.98	0.00	0.00	0.00	0.00
51.60	0.00	0	97.98	0.00	0.00	0.00	0.00
51.80	0.00	0	97.98	0.00	0.00	0.00	0.00
52.00	0.00	0	97.98	0.00	0.00	0.00	0.00
52.20	0.00	0	97.98	0.00	0.00	0.00	0.00
52.40	0.00	0	97.98	0.00	0.00	0.00	0.00
52.60	0.00	0	97.98	0.00	0.00	0.00	0.00
52.80	0.00	0	97.98	0.00	0.00	0.00	0.00

Time	Inflow	Storage	Elevation	Outflow	Primary	Secondary	Tertiary
(hours)	(cfs)	(cubic-feet)	(feet)	(cfs)	(cfs)	(cfs)	(cfs)
53.00	0.00	0	97.98	0.00	0.00	0.00	0.00

Hydrograph for Pond 5P: Gravel Wetland #2 (continued)

ATTACHMENT C

PIPE CAPACITY CALCULATIONS

Project Description

Project Options

Flow Units	CFS
Elevation Type	Elevation
Hydrology Method	Rational
Time of Concentration (TOC) Method	SCS TR-55
Link Routing Method	Hydrodynamic
Enable Overflow Ponding at Nodes	YES
Skip Steady State Analysis Time Periods	NO

Analysis Options

Start Analysis On	. Jul 27, 2017	00:00:00
End Analysis On	Jul 28, 2017	00:00:00
Start Reporting On	. Jul 27, 2017	00:00:00
Antecedent Dry Days	. 0	days
Runoff (Dry Weather) Time Step	. 0 01:00:00	days hh:mm:ss
Runoff (Wet Weather) Time Step	0 00:05:00	days hh:mm:ss
Reporting Time Step		days hh:mm:ss
Routing Time Step	. 30	seconds

Number of Elements

	0
	Qty
Rain Gages	0
Subbasins	67
Nodes	86
Junctions	5
Outfalls	14
Flow Diversions	0
Inlets	67
Storage Nodes	0
Links	72
Channels	0
Pipes	72
Pumps	0
Orifices	0
Weirs	0
Outlets	0
Pollutants	0
Land Uses	0

Rainfall Details

Return Period...... 50 year(s)

Subbasin Summary

	-						
SN Subbasin	Area	Weighted	Total	Total	Total	Peak	Time of
ID			Rainfall	Runoff		Runoff	Concentration
	(6.2)	Coefficient	<i>(</i> ,)	<i></i> .	Volume		<i>(</i>)))))))))))))))))))
1 Sub-CB1	(ft²) 12191.49	0 0000	(in)	(in) 0.49	(ac-in) 0.14	(cfs) 1.64	(days hh:mm:ss) 0 00:05:00
2 Sub-CB2	5191.66	0.8000 0.7300	0.61 0.61	0.49	0.14	0.64	0 00:05:00 0 00:05:00
3 Sub-CB8	3613.26	0.7400	0.61	0.45	0.00	0.45	0 00:05:00
4 Sub-to-47	15715.97	0.0000	0.61	0.00	0.00	0.00	0 00:05:00
5 Sub-to-CB10	6599.21	0.5900	0.61	0.36	0.05	0.65	0 00:05:00
6 Sub-to-CB11	8642.96	0.6800	0.61	0.41	0.08	0.99	0 00:05:00
7 Sub-to-CB12	9447.77	0.7700	0.61	0.47	0.10	1.22	0 00:05:00
8 Sub-to-CB13	25505.60	0.7200	0.61	0.44	0.26	3.08	0 00:05:00
9 Sub-to-CB14	24284.26	0.4200	0.61	0.26	0.14	1.71	0 00:05:00
10 Sub-to-CB15	5174.58	0.6400	0.61	0.39	0.05	0.56	0 00:05:00
11 Sub-to-CB16	7053.24	0.7100	0.61	0.43	0.07	0.84	0 00:05:00
12 Sub-to-CB17 13 Sub-to-CB18	6134.86 5327.13	0.8200 0.7300	0.61 0.61	0.50 0.45	0.07 0.05	0.84 0.65	0 00:05:00 0 00:05:00
14 Sub-to-CB19	12501.37	0.7500	0.61	0.45	0.03	1.57	0 00:05:00
15 Sub-to-CB20	19900.60	0.7100	0.61	0.43	0.10	2.37	0 00:05:00
16 Sub-to-CB21	28465.24	0.6800	0.61	0.41	0.27	3.25	0 00:05:00
17 Sub-to-CB22	9249.92	0.2700	0.61	0.16	0.03	0.42	0 00:05:00
18 Sub-to-CB23	25755.50	0.8300	0.61	0.51	0.30	3.59	0 00:05:00
19 Sub-to-CB24	12311.84	0.7700	0.61	0.47	0.13	1.59	0 00:05:00
20 Sub-to-CB26	11608.74	0.7500	0.61	0.46	0.12	1.46	0 00:05:00
21 Sub-to-CB27	8884.50	0.6200	0.61	0.38	0.08	0.92	0 00:05:00
22 Sub-to-CB28	12887.62	0.7400	0.61	0.45	0.13	1.60	0 00:05:00
23 Sub-to-CB29	18358.32	0.7500	0.61	0.46	0.19	2.31	0 00:05:00
24 Sub-to-CB3 25 Sub-to-CB30	3149.61 11256.91	0.8500 0.7300	0.61 0.61	0.52 0.45	0.04 0.11	0.45 1.38	0 00:05:00 0 00:05:00
26 Sub-to-CB30	6933.88	0.8100	0.61	0.49	0.08	0.94	0 00:05:00
27 Sub-to-CB32	14367.35	0.3400	0.61	0.43	0.00	0.82	0 00:05:00
28 Sub-to-CB33	8821.29	0.6300	0.61	0.38	0.08	0.93	0 00:05:00
29 Sub-to-CB34	36279.08	0.7300	0.61	0.45	0.37	4.44	0 00:05:00
30 Sub-to-CB35	6950.04	0.7600	0.61	0.46	0.07	0.89	0 00:05:00
31 Sub-to-CB36	25892.19	0.1900	0.61	0.12	0.07	0.83	0 00:05:00
32 Sub-to-CB37	10071.81	0.7500	0.61	0.46	0.11	1.27	0 00:05:00
33 Sub-to-CB38	13963.51	0.5000	0.61	0.31	0.10	1.17	0 00:05:00
34 Sub-to-CB39	14870.77	0.7300	0.61	0.45	0.15	1.82	0 00:05:00
35 Sub-to-CB4 36 Sub-to-CB40	6348.87	0.6900	0.61	0.42 0.46	0.06 0.18	0.74 2.18	0 00:05:00 0 00:05:00
37 Sub-to-CB40	17324.03 11122.04	0.7500 0.6500	0.61 0.61	0.40	0.10	1.21	0 00:05:00
38 Sub-to-CB42	6558.70	0.7400	0.61	0.45	0.10	0.81	0 00:05:00
39 Sub-to-CB43	8368.40	0.8500	0.61	0.52	0.10	1.19	0 00:05:00
40 Sub-to-CB44	695.39	0.8500	0.61	0.52	0.01	0.10	0 00:05:00
41 Sub-to-CB45	1142.06	0.7500	0.61	0.46	0.01	0.14	0 00:05:00
42 Sub-to-CB46	5721.61	0.7800	0.61	0.48	0.06	0.75	0 00:05:00
43 Sub-to-CB48	5728.62	0.7000	0.61	0.43	0.06	0.67	0 00:05:00
44 Sub-to-CB49	13801.90	0.7500	0.61	0.46	0.14	1.74	0 00:05:00
45 Sub-to-CB5	25877.95	0.7800	0.61	0.48	0.28	3.39	0 00:05:00
46 Sub-to-CB50	10331.17	0.7200	0.61	0.44	0.10	1.25	0 00:05:00
47 Sub-to-CB51 48 Sub-to-CB52	4247.93 3763.71	0.8200 0.7600	0.61 0.61	0.50 0.46	0.05 0.04	0.59 0.48	0 00:05:00 0 00:05:00
49 Sub-to-CB53	52051.93	0.1800	0.61	0.40	0.13	1.57	0 00:05:00
50 Sub-to-CB54	16141.29	0.7700	0.61	0.47	0.17	2.09	0 00:05:00
51 Sub-to-CB55	5060.93	0.6400	0.61	0.39	0.05	0.54	0 00:05:00
52 Sub-to-CB56	23156.71	0.7200	0.61	0.44	0.23	2.80	0 00:05:00
53 Sub-to-CB57	6404.45	0.6700	0.61	0.41	0.06	0.72	0 00:05:00
54 Sub-to-CB58	16765.76	0.7800	0.61	0.48	0.18	2.20	0 00:05:00
55 Sub-to-CB59	8285.07	0.6800	0.61	0.41	0.08	0.95	0 00:05:00
56 Sub-to-CB6	13701.28	0.8000	0.61	0.49	0.15	1.84	0 00:05:00
57 Sub-to-CB60	4703.17	0.5900	0.61	0.36	0.04	0.47	0 00:05:00
58 Sub-to-CB61	21199.87 29673.42	0.6900	0.61	0.42	0.20	2.46	0 00:05:00
59 Sub-to-CB62 60 Sub-to-CB63	12337.28	0.7300 0.7600	0.61 0.61	0.45 0.46	0.30 0.13	3.64 1.57	0 00:05:00 0 00:05:00
61 Sub-to-CB64	28285.82	0.7400	0.61	0.40	0.13	3.51	0 00:05:00
62 Sub-to-CB7	17692.29	0.7100	0.61	0.43	0.18	2.11	0 00:05:00
63 Sub-to-CB9	3066.14	0.6900	0.61	0.42	0.03	0.36	0 00:05:00
64 Sub-to-CBA	6703.93	0.6700	0.61	0.41	0.06	0.75	0 00:05:00
65 Sub-to-CBB	5543.23	0.5600	0.61	0.34	0.04	0.52	0 00:05:00
66 Sub-to-CBC	11177.67	0.6900	0.61	0.42	0.11	1.29	0 00:05:00
67 Sub-to-help-CB34	5566.45	0.7600	0.61	0.46	0.06	0.71	0 00:05:00

Node Summary

SN Element	Element		Ground/Rim		Surcharge					Min	Time of		Total Time
ID	Туре	Elevation	(Max)		Elevation	Area	Inflow		Surcharge			Flooded	Flooded
			Elevation	Elevation				Attained		Attained	Flooding	Volume	
									Attained		Occurrence		
		(ft)	(ft)	(ft)	(ft)	(ft²)	(cfs)	(ft)	(ft)	(ft)	(days hh:mm)	(ac-in)	(min)
1 DMH-1	Junction	100.66	104.50	0.00	0.00	0.00	4.03	101.74	0.00	2.76	0 00:00	0.00	0.00
2 DMH-2	Junction	100.76	106.25	0.00	0.00	0.00	6.30	102.11	0.00	4.14	0 00:00	0.00	0.00
3 DMH-7	Junction	98.46	109.90	0.00	0.00	0.00	21.21	100.43	0.00	9.47	0 00:00	0.00	0.00
4 DMH-8	Junction	99.43	103.81	0.00	0.00	0.00	2.49	100.21	0.00	3.60	0 00:00	0.00	0.00
5 DMH-9	Junction	100.80	105.17	0.00	6.00	0.00	4.92	101.84	0.00	3.33	0 00:00	0.00	0.00
6 to-GUSF1	Outfall	100.60					6.29	101.65					
7 to-GUSF2	Outfall	101.48					5.27	102.32					
8 to-GUSF3	Outfall	100.40					4.00	101.26					
9 to-GUSF4	Outfall	99.90					2.42	100.23					
10 to-GUSF-4	Outfall	99.90					1.81	100.22					
11 to-GUSF5	Outfall	101.43					3.63	102.33					
12 to-GUSF6	Outfall	99.20					1.56	99.66					
13 to-GUSF-6	Outfall	99.20					2.46	99.85					
14 to-GUSF7	Outfall	99.20					3.30	99.98					
15 to-GUSF8	Outfall	100.36					4.79	101.24					
16 to-GUSF9	Outfall	96.66					8.62	97.65					
17 to-GW#1	Outfall	97.93					21.21	99.50					
18 to-GW2	Outfall	98.31					12.93	99.38					
19 Wetland	Outfall	105.75					0.73	106.08					

Link Summary ^{SN Element}

ported ndition		Calculated	lculated	Calculated	Calculated	lculatec	lculated	Iculated	Iculated	lculatec	Iculated	lculatec	lculatec	Iculated	Inulated	Iculated	lculatec	Iculated	lculatec	Iculated	Iculated	Iculated	lculatec	lculatec	Iculated	Iculated	Iculated	Iculated	lculatec	Iculated	Iculated	Iculated	lculatec	Iculated	Iculated	lculatec	Iculated	Iculated	Iculated	lculatec	lculatec	Iculated	Iculated	lculatec	Iculated	Iculated	Iculated	lculatec	Iculated	Iculated	Iculated	Calculated	Iculated	lculatec	Iculated	Iculated	Iculated	Iculated	lculatec
me Re jed Co	(uir	.00 Ca	.00 Ca	.00 Ca	.00 Ca	.00 Ca	.00 Ca	00 Ca	00 Ca	.00 Ca	.00 Ca	.00 Ca	.00 Ca	. 00 00 00		00 Ca	.00 Ca	.00 Ca	.00 Ca	. 00 00 00		00 Ca	.00 Ca	.00 Ca	00 Ca	. 00 00 00	00 00	.00 Ca	.00 Ca	.00 Ca	00.00	.00 Ca	.00 Ca	.00 Ca	.00 Ca	.00 Ca	.00 Ca	00.00	.00 Ca	.00 Ca	.00 Ca		00 Ca	.00 Ca	.00 Ca	00 00	.00 Ca	.00 Ca	. 00 00 00	00 Ca	.00 Ca	.00 Ca	.00 Ca	.00 Ca	00 Ca	.00 Ca	.00 Ca	0.00 Ca	.00 Calcu
Total Time Reported Surcharged Condition	L)	0	0	00	00	0	00		0	0	0	0	0	0 0		00	0	0	0	0 0		0	0	0	0 0	0 0		0	0	00		00	0	00		0	0		00	0	0	00	00	0	00		0	0		00	0	00	00	0	0 0	00	00	00	0
Peak Flow Depth/ Total Depth Ratio		0.64	0.70	0.67	0.79	0.83	0.61	0.40	0.47	0.51	0:00	0.28	0.65	29.0	0.02	0.85	0.57	0.29	0.64	0.38	0.30	0.76	0.83	0.92	0.67	0.01	0.35	0.38	0.62	0.71	9C.U	0.12	0.21	0.40	0.67	0.53	0.68	9C.U 9E 0	0.27	0.33	0.59	0.60	0.08	0.55	0.82	0.88 0	0.84	0.88	0.69 0.76	0.65	0.80	0.35	0.32	0.26	0.42	0.71	0.57	0.71	0.80
Depth	(#)	1.28	1.40	1.34	0.98	0.83	0.91	0.40	0.59	0.51	1.35	0.35	0.97	0.78	00 6	1.70	1.14	0.36	0.79	0.47	0.32	1.90	1.66	1.39	0.83	0.63	0.35	0.48	0.93	0.89	0.58	0.12	0.21	0.40	1.00	0.80	0.84	90.0 745 0	0.27	0.50	0.73	0.51	0.68	1.09	1.23	00.1	1.26	1.10	0.86	0.81	0.99	0.35	0.32	0.26	0.42	1.77	0.72	1.07	1.20
eak Flow Velocity	(ft/sec)	3.54	3.62	4.29 6.56	2.35	2.42	5.81	2.21	2.77	3.99	3.78	1.41	4.37	2.35	00.4 VV C	3.30	3.57	8.26	2.68	2.28	4.00	3.02	4.52	3.49	1.79	3.58	7.47	1.80	4.24	3.23	2.04	1.90	2.62	2.50	3.54	4.01	1.62	25.20	2.73	3.02	3.34	3.67	1.46	4.92	4.35	3.00 1 08	3.68	3.07	3.44	2.21	3.47	2.21 1 58	3.38	3.04	3.94	5.72	3.38	2.74	4.15
Peak Flow/ F Design Flow Ratio		0.52	0.60	0.65	0.29	0.15	0.53	0.25	0.34	0.41	0.82	0.09	0.60	0.41	0.04	0.40	0.35	0.15	0.48	0.14	0.40	0.42	0.71	0.76	0.19	0.48	0.22	0.09	0.66	0.66	0.23	0.02	0.04	0.29	0.51	0.29	0.25	0.49	0.14	0.21	0.54	0.20	0.28	0.49	0.90	0.12	0.76	0.76	0.33	0.36	0.87	0.17	0.20	0.14	0.35	0.72	0.54	0.45	0.83
	(cfs)	14.36	14.21	14.40 23.06	5.18	3.25	12.36 4 £4	2.52	4.61	3.93	7.64	4.63	8.76	4.59	32,000	16.13	16.07	15.75	4.60	6.64 6 E 7	0.02 6 08	26.99	15.78	7.45	4.58	4.66	8.07	4.57	7.40	4.57	10.4	3.93	5.87	2.52	8.58	13.13	4.54	20.2 6 08	3.38	7.52	4.57	7.58	2.54	17.45	7.43	4.01	7.47	4.59	4.57	4.67	4.16	2.52	3.56	3.56	3.56	29.57	4.57	7.53	7.55
Peak Flow	(cfs)	7.41	8.48	9.39	1.51	0.48	6.52	0.64	1.55	1.62	6.30	0.40	5.27	1.86	7.63	6.46	5.58	2.42	2.21	0.93	0 02	11.37	11.20	5.66	0.89	2.23	1.81	0.41	4.87	3.01	1.93	0.10	0.22	0.74	4.41	3.84	1.13	100	0.47	1.56	2.49	10.01 2 3 3 0	0.70															3.41 3.41	
Manning's Roughness		0.0130	0.0130	0.0130	0.0130	0.0130	0.0130	0.0130	0.0130	0.0130	0.0130	0.0130	0.0130	0.0130	0.0130	0.0130	0.0130	0.0130	0.0130	0.0130	0.0130	0.0130	0.0130	0.0130	0.0130	0.0130	0.0130	0.0130	0.0130	0.0130	0.0130	0.0130	0.0130	0.0130	0.0130	0.0130	0.0130	0.0130	0.0130	0.0130	0.0130	0.0130	0.0130	0.0130	0.0130	0.0130	0.0130	0.0130	0.0130	0.0130	0.0130	0.0130	0.0130	0.0130	0.0130	0.0130	0.0130	0.0130	0.0130
	(ii)	24.000	24.000	24.000	15.000	12.000	18.000	12.000	15.000	12.000	18.000	15.000	18.000	15.000	20.000	24.000	24.000	15.000	15.000	15.000	12.000	30.000	24.000	18.000	15.000	15.000	12.000	15.000	18.000	15.000	15,000	12.000	12.000	12.000	18.000	18.000	15.000	15,000	12.000	18.000	15.000	12.000	12.000	24.000	18.000	15,000	18.000	15.000	15.000	15.000	15.000	15,000	12.000	12.000	15,000	30.000	15.000	18.000	18.000
Average [Slope	(%)	0.4000	0.3900	0.4100	0.6400	0.8300	1.3800	0.5000	0.5100	1.2100	0.5300	0.5100	0.7000	0.5000	0.0000	0.5100	0.5000	5.9500	0.5100	1.0600	3 8400	0.4300	0.4900	0.5000	0.5000	0.5200	5.1300	0.5000	0.5000	0.5000	0.000	1.2100	2.7200	0.5000	0.6700	1.5600	0.4900	0.000	0.9000	0.5100	0.5000	0.5300	0.5100	0.5900	0.5000	0.5000	0.5100	0.5100	0.5000	0.5200	0.4200	0.5000	1.0000	1.0000	1.0000	0.5200	0.5000	0.5100	0.5200
Outlet , Invert Elevation	(ft)	100.01	99.63	99.21 08.31	99.21	100.45	101.04	102.26	102.01	102.20	100.86	102.49	101.48	101./4	00.00	99.14	99.84	99.90	100.46	100.91	103.15	98.90	99.68	99.96	101.10	106.00	06.90	101.68	102.50	103.23	103.80	108.90	102.20	106.20	101.50	101.80	101.12	102.79	104.82	99.20	99.53	18.86	99.64	96.66	97.23	97.78	97.74	98.25	100.90	101.80	101.43	101.45	103.23	102.68	101.35	97.93	99.20	101.14	100.60
	(#)	100.57	99.91	99.53 00 11	99.75	100.60	101.40	102.35	102.79	102.37	101.04	103.07	101.64	102.39	00.00	99.74	100.36	102.10	100.81	101.46	106.80	99.58	99.86	101.00	101.80	106.61	101.90	101.83	103.13	103.70	104.30	109.07	108.80	106.27	101.70	102.69	101.58	102.88	105.00	99.40	22.001	100.27	100.01	97.13	97.64	98.11	98.15	98.69	101.09	102.26	101.70	101.54	103.90	103.20	102.41 100.66	98.46	99.43	101.91	100.76
Length	(ft)	139.00	71.00	79.00	84.00	18.00	26.00	18.00	153.00	14.00	34.00	113.00	23.00	129.00	23.00	118.00	103.00	37.00	69.00	52.00	00.00	157.00	37.00	207.00	139.00	11/.00	39.00	30.00	127.00	94.00	15.00	14.00	243.00	14.00	30.00	57.00	93.00	2 18.00	20.00	39.00	48.00	67.00	73.00	79.00	82.00	74.00	81.00	87.00	38.00	88.00	65.00	124.00	67.00	52.00	106.00 45.00	102.00	46.00	150.00	31.00
To (Outlet) Node		CB-11	CB-12	CB-13 to-GW/2	CB-13	CB-11	CB-10	CB-17 CB-17	CB-20	CB-2	DMH-2	CB-24	to-GUSF2	CB-23		CB-27	CB-28	to-GUSF4	CB-29	CB-30	CB-20	P CB-26	CB-34-HELF	CB-34	CB-35	CB-34	to-GUSF-4	CB-4	CB-35	CB-40	CB41	CB-45	CB-2	CB-47	CB-16	CB-48	CB-5	CB-49	CB-51	to-GUSF6	DMH-8	CB-54 to-GISE7	CB-56	to-GUSF9	CB-58	CB-59	CB-59	CB-61	9-HMU	CB7	to-GUSF5	CB-9	CB-10 CB-27	CB-28	CB-29 to-GUSE3	to-GW#1	to-GUSF-6	CB-21	to-GUSF1
t From (Inlet) Node		CB-10	CB-11	CB-12	CB-14 CB-14	CB-15	CB-16	CB-18	CB-19	CB-1	CB-21	CB-22	CB-23	CB-24	CB-20	CB-28 CB-28	CB-29	CB-2	CB-30	CB-31	CB-33	CB-34-HEI	CB-34	CB-35	CB-36	CB-3/	CB-39	CB-3	CB-40	CB-41	CB-42 CB-43	CB-44	CB-45	CB-46	CB-47	CB-49	CB-4	CB-50	CB-52	CB-53	CB-54	CB-55	CB-57	CB-58	CB-59	CB-60	CB-61	CB-62	CB-63	CB6	CB7	CB-8	CB-9	CB-B	CB-C	DMH-7	DMH-8	CB-20	DMH-2
Element Type		Pipe	Pipe	Pipe	Pipe	Pipe	Pipe	Pipe Bipe	Pipe	Pipe	Pipe	Pipe	Pipe	Pipe		Pipe	Pipe	Pipe	Pipe	Pipe	e d	Pipe	Pipe	Pipe	Pipe	Pipe	Pipe Pipe	Pipe	Pipe	Pipe	e di di di di	Pipe	Pipe	Pipe	Pipe Pipe	Pipe	Pipe	e di di di di	Pipe	Pipe	Pipe	Pipe Bine	Pipe	Pipe	Pipe	Pipe Bipe	Pipe	Pipe	Pipe Pipe	Pipe	Pipe	Pipe	Pipe	Pipe	Pipe Pipe	Pipe	Pipe	Pipe	Pipe
SN Element ID		1 CB10-to-CB11	2 CB11-to-CB12	3 CB12-to-CB13 4 CB13-to-CM/2	5 CB14-to-CB13	6 CB15-to-CB11	7 CB16-to-CB10	9 CB18-to-CB17	10 CB19-to-CB20	11 CB1-to-CB2	12 CB21-to-DMH2	13 CB22-to-CB24	14 CB23-to-GUSF2	15 CB24-to-CB23 16 CD26 to DMU7		18 CB28-to-CB27	19 CB29-to-CB28	20 CB2-to-GUSF4	21 CB30-to-CB29	22 CB31-to-CB30	24 CB32-10-CB20	25 CB34HELP-to-CB26	26 CB34-to-CB34HELF	27 CB35-to-CB34	28 CB36-to-CB35	29 CB3/-to-CB34	31 CB39-to-GUSF4	32 CB3-to-CB4	33 CB40-to-CB35	υu	c	ပ	O	υu	98	42 CB49-to-CB48	43 CB4-to-CB5	44 CB5U-T0-CB49 45 CB51_th_CB49	46 CB52-to-CB51	47 CB53-to-GUSF6	48 CB54-to-DMH8	49 CB55-to-CB54	51 CB57-to-CB56	52 CB58-to-GUSF9	53 CB59-to-CB58	55 CB60-to-CB59	56 CB61-to-CB59	57 CB62-to-CB61	58 CB63-to-UMH9 59 CB64_to-DMH9	60 CB6-to-CB7	61 CB7-to-GUSF5	62 CB8-to-CB9	64 CBA-to-CB27	65 CBB-to-CB28	66 CBC-to-CB29 67 DMH1_to-GUSE3	68 DMH7-to-GW1	69 DMH8-to-GUSF6	71 Link:CB20-CB21	72 Link-DMH2-GUSF1

Pipe Input

SN Element	Length	Inlet	Inlet	Outlet	Outlet	Total	Average Pipe	Pipe	Pipe	Manning's	Entrance	Exit/Bend	Additional	Initial Flap	No. of
ID			Invert		Invert	Drop	Slope Shape	Diameter or	Width	Roughness	Losses	Losses	Losses	Flow Gate	Barrels
	(ft)	Elevation (ft)	(ft)	Elevation (ft)	(ft)	(ft)	(%)	Height (in)	(in)					(cfs)	
1 CB10-to-CB11	139.00	100.57	0.00	100.01	0.10		0.4000 CIRCULAR	24.000		0.0130	0.5000	0.5000	0.0000	0.00 No	1
2 CB11-to-CB12	71.00	99.91	0.00	99.63	0.10		0.3900 CIRCULAR	24.000		0.0130	0.5000	0.5000	0.0000	0.00 No	1
3 CB12-to-CB13	79.00	99.53		99.21		0.32	0.4100 CIRCULAR	24.000		0.0130	0.5000	0.5000	0.0000	0.00 No	1
4 CB13-to-GW2 5 CB14-to-CB13	77.00 84.00	99.11 99.75		98.31 99.21	0.00 0.10		1.0400 CIRCULAR 0.6400 CIRCULAR	24.000 15.000		0.0130 0.0130	0.5000 0.5000	0.5000 0.5000	0.0000 0.0000	0.00 No 0.00 No	1 1
6 CB15-to-CB11	18.00	100.60		100.45		0.15	0.8300 CIRCULAR	12.000		0.0130	0.5000	0.5000	0.0000	0.00 No	1
7 CB16-to-CB10	26.00	101.40	0.00	101.04	0.47		1.3800 CIRCULAR	18.000		0.0130	0.5000	0.5000	0.0000	0.00 No	1
8 CB17-to-CB16	128.00	102.16		101.50	0.10		0.5200 CIRCULAR	15.000		0.0130	0.5000	0.5000	0.0000	0.00 No	1
9 CB18-to-CB17	18.00	102.35		102.26	0.10		0.5000 CIRCULAR	12.000		0.0130	0.5000	0.5000	0.0000	0.00 No	1
10 CB19-to-CB20 11 CB1-to-CB2	153.00 14.00	102.79 102.37	0.00 0.00	102.01 102.20	0.10 0.10		0.5100 CIRCULAR 1.2100 CIRCULAR	15.000 12.000		0.0130 0.0130	0.5000 0.5000	0.5000 0.5000	0.0000 0.0000	0.00 No 0.00 No	1 1
12 CB21-to-DMH2	34.00	102.07	0.00	102.20	0.10		0.5300 CIRCULAR	18.000		0.0130	0.5000	0.5000	0.0000	0.00 No	1
13 CB22-to-CB24	113.00	103.07	0.00	102.49	0.10	0.58	0.5100 CIRCULAR	15.000	15.000	0.0130	0.5000	0.5000	0.0000	0.00 No	1
14 CB23-to-GUSF2	23.00	101.64	0.00	101.48		0.16	0.7000 CIRCULAR	18.000		0.0130	0.5000	0.5000	0.0000	0.00 No	1
15 CB24-to-CB23	129.00	102.39		101.74		0.65	0.5000 CIRCULAR	15.000		0.0130	0.5000	0.5000	0.0000	0.00 No	1
16 CB26-to-DMH7 17 CB27-to-CB26	48.00 23.00	98.80 99.04	0.00 0.00	98.56 98.90	0.10 0.10		0.5000 CIRCULAR 0.6100 CIRCULAR	30.000 30.000		0.0130 0.0130	0.5000 0.5000	0.5000 0.5000	0.0000 0.0000	0.00 No 0.00 No	1 1
18 CB28-to-CB27	118.00	99.74		99.14		0.60	0.5100 CIRCULAR	24.000		0.0130	0.5000	0.5000	0.0000	0.00 No	1
19 CB29-to-CB28	103.00	100.36	0.00	99.84		0.52	0.5000 CIRCULAR	24.000		0.0130	0.5000	0.5000	0.0000	0.00 No	1
20 CB2-to-GUSF4	37.00	102.10	0.00	99.90	0.00		5.9500 CIRCULAR	15.000		0.0130	0.5000	0.5000	0.0000	0.00 No	1
21 CB30-to-CB29	69.00	100.81		100.46		0.35	0.5100 CIRCULAR	15.000		0.0130	0.5000	0.5000	0.0000 0.0000	0.00 No	1
22 CB31-to-CB30 23 CB32-to-CB26	52.00 50.00	101.46 103.05	0.00 0.00	100.91 102.54	0.10 3.74		1.0600 CIRCULAR 1.0200 CIRCULAR	15.000 15.000		0.0130 0.0130	0.5000 0.5000	0.5000 0.5000	0.0000	0.00 No 0.00 No	1
24 CB33-to-CB32	95.00	106.80		103.15		3.65	3.8400 CIRCULAR	12.000		0.0130	0.5000	0.5000	0.0000	0.00 No	1
25 CB34HELP-to-CB26	157.00	99.58	0.00	98.90	0.10		0.4300 CIRCULAR	30.000		0.0130	0.5000	0.5000	0.0000	0.00 No	1
26 CB34-to-CB34HELP	37.00	99.86		99.68	0.10		0.4900 CIRCULAR	24.000		0.0130	0.5000	0.5000	0.0000	0.00 No	1
27 CB35-to-CB34	207.00	101.00		99.96	0.10 0.10	1.04	0.5000 CIRCULAR	18.000		0.0130	0.5000	0.5000	0.0000	0.00 No	1
28 CB36-to-CB35 29 CB37-to-CB34	139.00 117.00	101.80 106.61	0.00 0.00	101.10 106.00	0.10 6.14		0.5000 CIRCULAR 0.5200 CIRCULAR	15.000 15.000		0.0130 0.0130	0.5000 0.5000	0.5000 0.5000	0.0000 0.0000	0.00 No 0.00 No	1 1
30 CB38-to-CB37	112.00	107.25		106.71	0.10		0.4800 CIRCULAR	15.000		0.0130	0.5000	0.5000	0.0000	0.00 No	1
31 CB39-to-GUSF4	39.00	101.90	0.00	99.90	0.00		5.1300 CIRCULAR	12.000		0.0130	0.5000	0.5000	0.0000	0.00 No	1
32 CB3-to-CB4	30.00	101.83	0.00	101.68		0.15	0.5000 CIRCULAR	15.000		0.0130	0.5000	0.5000	0.0000	0.00 No	1
33 CB40-to-CB35	127.00	103.13		102.50	1.50		0.5000 CIRCULAR	18.000		0.0130	0.5000	0.5000	0.0000	0.00 No	1
34 CB41-to-CB40 35 CB42-CB41	94.00 61.00	103.70 104.11	0.00 0.00	103.23 103.80	0.10 0.10		0.5000 CIRCULAR 0.5100 CIRCULAR	15.000 15.000		0.0130 0.0130	0.5000 0.5000	0.5000 0.5000	0.0000 0.0000	0.00 No 0.00 No	1 1
36 CB43-CB42	15.00	104.30		104.21	0.10		0.6000 CIRCULAR	15.000		0.0130	0.5000	0.5000	0.0000	0.00 No	1
37 CB44-to-CB45	14.00	109.07	0.00	108.90	0.10	0.17	1.2100 CIRCULAR	12.000	12.000	0.0130	0.5000	0.5000	0.0000	0.00 No	1
38 CB45-to-CB2	243.00	108.80	0.00	102.20	0.10		2.7200 CIRCULAR	12.000		0.0130	0.5000	0.5000	0.0000	0.00 No	1
39 CB46-to-CB47 40 CB47-to-Wetland	14.00 63.00	106.27 106.10		106.20 105.75	0.10 0.00	0.07	0.5000 CIRCULAR 0.5600 CIRCULAR	12.000 15.000		0.0130 0.0130	0.5000 0.5000	0.5000 0.5000	0.0000 0.0000	0.00 No 0.00 No	1 1
40 CB47-to-Wetland 41 CB48-to-CB16	30.00	100.10	0.00	103.75	0.00		0.6700 CIRCULAR	18.000		0.0130	0.5000	0.5000	0.0000	0.00 No	1
42 CB49-to-CB48	57.00	102.69		101.80	0.10		1.5600 CIRCULAR	18.000		0.0130	0.5000	0.5000	0.0000	0.00 No	1
43 CB4-to-CB5	93.00	101.58		101.12	0.10		0.4900 CIRCULAR	15.000	15.000	0.0130	0.5000	0.5000	0.0000	0.00 No	1
44 CB50-to-CB49	18.00	102.88	0.00	102.79	0.10		0.5000 CIRCULAR	12.000		0.0130	0.5000	0.5000	0.0000	0.00 No	1
45 CB51-to-CB49 46 CB52-to-CB51	218.00 20.00	104.72 105.00		102.79 104.82	0.10	1.93	0.8900 CIRCULAR 0.9000 CIRCULAR	15.000 12.000		0.0130 0.0130	0.5000 0.5000	0.5000 0.5000	0.0000	0.00 No 0.00 No	1 1
47 CB53-to-GUSF6	39.00	99.40		99.20	0.00		0.5100 CIRCULAR	18.000		0.0130	0.5000	0.5000	0.0000	0.00 No	1
48 CB54-to-DMH8	48.00	99.77	0.00	99.53	0.10	0.24	0.5000 CIRCULAR	15.000		0.0130	0.5000	0.5000	0.0000	0.00 No	1
49 CB55-to-CB54	76.00	100.27	0.00	99.87	0.10		0.5300 CIRCULAR	12.000		0.0130	0.5000	0.5000	0.0000	0.00 No	1
50 CB56-to-GUSF7	67.00	99.54	0.00	99.20		0.34	0.5100 CIRCULAR	15.000		0.0130	0.5000	0.5000		0.00 No	1
51 CB57-to-CB56 52 CB58-to-GUSF9	73.00 79.00	100.01 97.13		99.64 96.66		0.37	0.5100 CIRCULAR 0.5900 CIRCULAR	12.000 24.000		0.0130 0.0130	0.5000 0.5000	0.5000 0.5000		0.00 No 0.00 No	1
53 CB59-to-CB58	82.00	97.64	0.00	97.23	0.10		0.5000 CIRCULAR	18.000		0.0130	0.5000	0.5000		0.00 No	1
54 CB5-to-DMH1	51.00	101.02	0.00	100.76	0.10	0.26	0.5100 CIRCULAR	15.000		0.0130	0.5000	0.5000	0.0000	0.00 No	1
55 CB60-to-CB59	74.00	98.11		97.74	0.10		0.5000 CIRCULAR	15.000		0.0130	0.5000	0.5000		0.00 No	1
56 CB61-to-CB59 57 CB62-to-CB61	81.00 87.00	98.15 98.69		97.74 98.25	0.10 0.10		0.5100 CIRCULAR 0.5100 CIRCULAR	18.000 15.000		0.0130 0.0130	0.5000 0.5000	0.5000 0.5000		0.00 No 0.00 No	1 1
58 CB63-to-DMH9	38.00	101.09		100.90	0.10		0.5000 CIRCULAR	15.000		0.0130	0.5000	0.5000		0.00 No	1
59 CB64-to-DMH9	85.00	101.33		100.90		0.43	0.5100 CIRCULAR	15.000		0.0130	0.5000	0.5000		0.00 No	1
60 CB6-to-CB7	88.00	102.26		101.80		0.46	0.5200 CIRCULAR	15.000		0.0130	0.5000	0.5000		0.00 No	1
61 CB7-to-GUSF5	65.00	101.70		101.43		0.27	0.4200 CIRCULAR	15.000		0.0130	0.5000	0.5000		0.00 No	1
62 CB8-to-CB9 63 CB9-to-CB10	18.00 124.00	101.54 101.29		101.45 100.67	0.16	0.09 0.62	0.5000 CIRCULAR 0.5000 CIRCULAR	12.000 15.000		0.0130 0.0130	0.5000 0.5000	0.5000 0.5000		0.00 No 0.00 No	1 1
64 CBA-to-CB27	67.00	101.29		100.87	4.19		1.0000 CIRCULAR	12.000		0.0130	0.5000	0.5000		0.00 No	1
65 CBB-to-CB28	52.00	103.20		102.68	2.94		1.0000 CIRCULAR	12.000		0.0130	0.5000	0.5000		0.00 No	1
66 CBC-to-CB29	106.00	102.41	0.00	101.35	0.99		1.0000 CIRCULAR	12.000		0.0130	0.5000	0.5000		0.00 No	1
67 DMH1-to-GUSF3	45.00	100.66		100.40	0.00		0.5800 CIRCULAR	15.000		0.0130	0.5000	0.5000		0.00 No	1
68 DMH7-to-GW1 69 DMH8-to-GUSF6	102.00 46.00	98.46 99.43		97.93 99.20		0.53 0.23	0.5200 CIRCULAR 0.5000 CIRCULAR	30.000 15.000		0.0130 0.0130	0.5000 0.5000	0.5000 0.5000		0.00 No 0.00 No	1 1
70 DMH9-to-GUSF8	88.00	100.80		100.36	0.00		0.5000 CIRCULAR	18.000		0.0130	0.5000	0.5000		0.00 No	1
71 Link:CB20-CB21	150.00	101.91	0.00	101.14	0.10	0.77	0.5100 CIRCULAR	18.000		0.0130	0.5000	0.5000	0.0000	0.00 No	1
72 Link-DMH2-GUSF1	31.00	100.76	0.00	100.60	0.00	0.16	0.5200 CIRCULAR	18.000	18.000	0.0130	0.5000	0.5000	0.0000	0.00 No	1

Pipe Results

SN Element	Peak		Design Flow	Peak Flow/					Total Time		
ID	Flow	Peak Flow Occurrence	Capacity	Design Flow Ratio	Velocity	lime	Depth	Total Depth	Surcharged	Number	Condition
	(cfs)	(days hh:mm)	(cfs)		(ft/sec)	(min)	(ft)	Ratio	(min)		
1 CB10-to-CB11	7.41	0 00:06	14.36	0.52	3.54	0.65	1.28	0.64	0.00	(Calculated
2 CB11-to-CB12	8.48	0 00:06	14.21	0.60	3.62	0.33	1.40	0.70	0.00		Calculated
3 CB12-to-CB13	9.39	0 00:06	14.40	0.65	4.29	0.31	1.34	0.67	0.00		Calculated
4 CB13-to-GW2 5 CB14-to-CB13	12.93 1.51	0 00:06 0 00:05	23.06 5.18	0.56 0.29	6.56 2.35	0.20 0.60	1.20 0.98	0.60 0.79	0.00 0.00		Calculated Calculated
6 CB15-to-CB11	0.48	0 00:05	3.25	0.29	2.33	0.00	0.98	0.79	0.00		Calculated
7 CB16-to-CB10	6.52	0 00:05	12.36	0.53	5.81	0.07	0.91	0.61	0.00		Calculated
8 CB17-to-CB16	1.43	0 00:05	4.64	0.31	2.11	1.01	0.71	0.57	0.00	(Calculated
9 CB18-to-CB17	0.64	0 00:05	2.52	0.25	2.21	0.14	0.40	0.40	0.00		Calculated
10 CB19-to-CB20	1.55	0 00:05	4.61	0.34	2.77	0.92	0.59	0.47	0.00		Calculated
11 CB1-to-CB2	1.62	0 00:05	3.93	0.41	3.99	0.06	0.51	0.51	0.00		Calculated Calculated
12 CB21-to-DMH2 13 CB22-to-CB24	6.30 0.40	0 00:05 0 00:05	7.64 4.63	0.82 0.09	3.78 1.41	0.15 1.34	1.35 0.35	0.90 0.28	0.00 0.00		Calculated Calculated
14 CB23-to-GUSF2	5.27	0 00:05	8.76	0.60	4.37	0.09	0.97	0.20	0.00		Calculated
15 CB24-to-CB23	1.86	0 00:05	4.59	0.41	2.35	0.91	0.78	0.62	0.00		Calculated
16 CB26-to-DMH7	21.21	0 00:06	29.00	0.73	4.93	0.16	2.05	0.82	0.00	(Calculated
17 CB27-to-CB26	7.63	0 00:06	32.00	0.24	2.44	0.16	2.09	0.83	0.00	(Calculated
18 CB28-to-CB27	6.46	0 00:06	16.13	0.40	3.30	0.60	1.70	0.85	0.00		Calculated
19 CB29-to-CB28	5.58	0 00:05	16.07	0.35	3.57	0.48	1.14	0.57	0.00		Calculated
20 CB2-to-GUSF4 21 CB30-to-CB29	2.42 2.21	0 00:05	15.75 4.60	0.15 0.48	8.26 2.68	0.07 0.43	0.36 0.79	0.29 0.64	0.00 0.00		Calculated Calculated
21 CB30-10-CB29 22 CB31-to-CB30	0.93	0 00:05 0 00:05	4.60 6.64	0.46	2.00	0.43	0.79	0.64	0.00		Calculated
23 CB32-to-CB26	1.71	0 00:05	6.52	0.26	4.08	0.20	0.47	0.38	0.00		Calculated
24 CB33-to-CB32	0.92	0 00:05	6.98	0.13	4.31	0.37	0.32	0.32	0.00		Calculated
25 CB34HELP-to-CB26	11.37	0 00:06	26.99	0.42	3.02	0.87	1.90	0.76	0.00	(Calculated
26 CB34-to-CB34HELP	11.20	0 00:06	15.78	0.71	4.52	0.14	1.66	0.83	0.00		Calculated
27 CB35-to-CB34	5.66	0 00:07	7.45	0.76	3.49	0.99	1.39	0.92	0.00		Calculated
28 CB36-to-CB35	0.89	0 00:07	4.58	0.19	1.79	1.29	0.83	0.67	0.00		Calculated
29 CB37-to-CB34 30 CB38-to-CB37	2.23 1.15	0 00:05 0 00:05	4.66 4.49	0.48 0.26	3.58 2.49	0.54 0.75	0.63 0.50	0.51 0.40	0.00 0.00		Calculated Calculated
31 CB39-to-GUSF4	1.81	0 00:05	8.07	0.20	7.47	0.09	0.35	0.40	0.00		Calculated
32 CB3-to-CB4	0.41	0 00:06	4.57	0.09	1.80	0.28	0.48	0.38	0.00		Calculated
33 CB40-to-CB35	4.87	0 00:06	7.40	0.66	4.24	0.50	0.93	0.62	0.00	(Calculated
34 CB41-to-CB40	3.01	0 00:05	4.57	0.66	3.23	0.49	0.89	0.71	0.00	(Calculated
35 CB42-CB41	1.93	0 00:05	4.61	0.42	2.64	0.39	0.72	0.58	0.00		Calculated
36 CB43-CB42	1.17	0 00:05	5.00	0.23	2.26	0.11	0.58	0.46	0.00		Calculated
37 CB44-to-CB45 38 CB45-to-CB2	0.10 0.22	0 00:05 0 00:05	3.93 5.87	0.02 0.04	1.90 2.62	0.12 1.55	0.12 0.21	0.12 0.21	0.00 0.00		Calculated Calculated
39 CB46-to-CB2	0.22	0 00:05	2.52	0.04	2.02	0.09	0.21	0.21	0.00		Calculated
40 CB47-to-Wetland	0.73	0 00:05	4.81	0.15	2.68	0.39	0.34	0.28	0.00		Calculated
41 CB48-to-CB16	4.41	0 00:05	8.58	0.51	3.54	0.14	1.00	0.67	0.00		Calculated
42 CB49-to-CB48	3.84	0 00:05	13.13	0.29	4.01	0.24	0.80	0.53	0.00	(Calculated
43 CB4-to-CB5	1.13	0 00:06	4.54	0.25	1.62	0.96	0.84	0.68	0.00		Calculated
44 CB50-to-CB49	1.23	0 00:05	2.52	0.49	2.56	0.12	0.59	0.59	0.00		Calculated
45 CB51-to-CB49 46 CB52-to-CB51	1.00 0.47	0 00:05	6.08 3.38	0.16 0.14	2.55 2.73	1.42 0.12	0.45 0.27	0.36 0.27	0.00 0.00		Calculated Calculated
47 CB53-to-GUSF6	1.56	0 00:05	7.52	0.14	3.02	0.12	0.27	0.27	0.00		Calculated
48 CB54-to-DMH8	2.49	0 00:05	4.57	0.54	3.34	0.24	0.73	0.59	0.00		Calculated
49 CB55-to-CB54	0.51	0 00:06	2.58	0.20	1.39	0.91	0.51	0.51	0.00	(Calculated
50 CB56-to-GUSF7	3.30	0 00:05	4.60	0.72	3.67	0.30	0.86	0.69	0.00	(Calculated
51 CB57-to-CB56	0.70	0 00:05	2.54	0.28	1.46	0.83	0.68	0.68	0.00		Calculated
52 CB58-to-GUSF9	8.62	0 00:05	17.45	0.49	4.92	0.27	1.09	0.55	0.00		Calculated
53 CB59-to-CB58 54 CB5-to-DMH1	6.69 4.03	0 00:06 0 00:05	7.43 4.61	0.90 0.87	4.35 3.66	0.31 0.23	1.23 1.06	0.82 0.85	0.00 0.00		Calculated Calculated
55 CB60-to-CB59	4.03 0.53	0 00:05	4.61	0.87	1.08	1.14	1.00	0.85	0.00		Calculated
56 CB61-to-CB59	5.66	0 00:05	7.47	0.76	3.68	0.37	1.26	0.84	0.00		Calculated
57 CB62-to-CB61	3.47	0 00:05	4.59	0.76	3.07	0.47	1.10	0.88	0.00		Calculated
58 CB63-to-DMH9	1.50	0 00:05	4.57	0.33	2.00	0.32	0.86	0.69	0.00		Calculated
59 CB64-to-DMH9	3.42	0 00:05	4.59	0.75	3.44	0.41	0.95	0.76	0.00		Calculated
60 CB6-to-CB7	1.69	0 00:05	4.67	0.36	2.21	0.66	0.81	0.65	0.00		Calculated
61 CB7-to-GUSF5 62 CB8-to-CB9	3.63	0 00:05	4.16	0.87	3.47 2.21	0.31 0.14	0.99	0.80	0.00		Calculated Calculated
63 CB9-to-CB10	0.44 0.73	0 00:05 0 00:07	2.52 4.57	0.17 0.16	1.58	1.31	0.35 0.82	0.35 0.66	0.00 0.00		Calculated
64 CBA-to-CB27	0.73	0 00:05	3.56	0.10	3.38	0.33	0.32	0.32	0.00		Calculated
65 CBB-to-CB28	0.51	0 00:05	3.56	0.14	3.04	0.29	0.26	0.26	0.00		Calculated
66 CBC-to-CB29	1.24	0 00:05	3.56	0.35	3.94	0.45	0.42	0.42	0.00		Calculated
67 DMH1-to-GUSF3	4.00	0 00:05	4.91	0.81	3.92		0.97	0.77	0.00		Calculated
68 DMH7-to-GW1	21.21	0 00:06	29.57	0.72	5.72	0.30	1.77	0.71	0.00		Calculated
69 DMH8-to-GUSF6	2.46	0 00:05	4.57	0.54	3.38	0.23	0.72	0.57	0.00		Calculated
70 DMH9-to-GUSF8	4.79	0 00:05	7.43	0.64	4.04	0.36	0.96	0.64	0.00		Calculated
71 Link:CB20-CB21 72 Link-DMH2-GUSF1	3.41 6.29	0 00:06 0 00:05	7.53 7.55	0.45 0.83	2.74 4.15	0.91 0.12	1.07 1.20	0.71 0.80	0.00 0.00		Calculated Calculated
	2.20	2 00.00		0.00			0	0.00	0.00		

Inlet Input

SN Elen	ment	Inlet	Manufacturer	Inlet	Number of	Catchbasin	Max (Rim)	Inlet	Initial	Initial	Ponded	Grate
ID	nom	Manufacturer	Part	Location	Inlets	Invert	Elevation			Water		Clogging
			Number			Elevation			Elevation			Factor
1 CB-1	1	NEENAH FOUNDRY	R-3405-A	On Sag	1	(ft) 102.37	(ft) 106.21	(ft) 3.84	(ft) 102.37	(ft) 0.00	(ft ²) 1.00	<u>(%)</u> 0.00
2 CB-		NEENAH FOUNDRY		On Sag On Sag	1	102.37	105.55	3.04 4.98	102.37	0.00	1.00	0.00
3 CB-1		NEENAH FOUNDRY		On Sag	1	99.91	104.20	4.29	99.91	0.00	1.00	0.00
4 CB-		NEENAH FOUNDRY		On Sag	1	99.53	104.65	5.12	99.53	0.00	1.00	0.00
5 CB-		NEENAH FOUNDRY		On Sag	1	99.11	104.20	5.09	99.11	0.00	1.00	0.00
6 CB-		NEENAH FOUNDRY		On Sag	1	99.75	103.50	3.75	99.75	0.00	1.00	0.00
7 CB-1		NEENAH FOUNDRY		On Sag	1 1	100.60	104.20	3.60	100.60	0.00 0.00	1.00	0.00
8 CB- 9 CB-		NEENAH FOUNDRY NEENAH FOUNDRY		On Sag On Sag	1	101.40 102.16	105.50 105.35	4.10 3.19	101.40 102.16	0.00	1.00 1.00	0.00 0.00
10 CB-		NEENAH FOUNDRY		On Sag	1	102.10	105.35	3.00	102.10	0.00	1.00	0.00
11 CB-1		NEENAH FOUNDRY		On Sag	1	102.79	108.95	6.16	102.79	0.00	1.00	0.00
12 CB-2	2	NEENAH FOUNDRY	R-3405-A	On Sag	1	102.10	106.21	4.11	102.10	0.00	1.00	0.00
13 CB-2		NEENAH FOUNDRY		On Sag	2	101.91	106.05	4.14	101.91	0.00	1.00	0.00
14 CB-2		NEENAH FOUNDRY		On Sag	2	101.04	105.55	4.51	101.04	0.00	1.00	0.00
15 CB-2 16 CB-2		NEENAH FOUNDRY		On Sag On Sag	1 1	103.07 101.64	108.25 105.50	5.18 3.86	103.07 101.64	0.00 0.00	1.00 1.00	0.00 0.00
17 CB-2		NEENAH FOUNDRY		On Sag	1	101.04	105.50	4.37	101.04	0.00	1.00	0.00
18 CB-2		NEENAH FOUNDRY		On Sag	1	98.80	108.80	10.00	98.80	0.00	1.00	0.00
19 CB-2		NEENAH FOUNDRY		On Sag	1	99.04	108.50	9.46	99.04	0.00	1.00	0.00
20 CB-2		NEENAH FOUNDRY		On Sag	1	99.74	107.50	7.76	99.74	0.00	1.00	0.00
21 CB-2		NEENAH FOUNDRY		On Sag	1	100.36	106.50	6.14	100.36	0.00	1.00	0.00
22 CB-3		NEENAH FOUNDRY		On Sag	1	101.83	107.00	5.17	101.83	0.00	1.00	0.00
23 CB-3 24 CB-3		NEENAH FOUNDRY		On Sag On Sag	1 1	100.81 101.46	104.95 105.50	4.14 4.04	100.81 101.46	0.00 0.00	1.00 1.00	0.00 0.00
25 CB-3		NEENAH FOUNDRY		On Sag	1	101.40	106.90	3.85	103.05	0.00	1.00	0.00
26 CB-3		NEENAH FOUNDRY		On Sag	1	106.80	111.07	4.27	106.80	0.00	1.00	0.00
27 CB-3	34	NEENAH FOUNDRY	R-3405-A	On Sag	1	99.86	110.27	10.41	99.86	0.00	1.00	0.00
		NEENAH FOUNDRY		On Sag	1	99.58	110.10		99.58	0.00	1.00	0.00
29 CB-3		NEENAH FOUNDRY		On Sag	1	101.00	110.95	9.95	101.00	0.00	1.00	0.00
30 CB-3 31 CB-3		NEENAH FOUNDRY		On Sag	1 1	101.80	105.60	3.80 5.79	101.80	0.00 0.00	1.00	0.00
31 CB-3 32 CB-3		NEENAH FOUNDRY		On Sag On Sag	1	106.61 107.25	112.40 111.25	4.00	106.61 107.25	0.00	1.00 1.00	0.00 0.00
33 CB-3		NEENAH FOUNDRY		On Sag	1	101.20	110.25	8.35	101.90	0.00	1.00	0.00
34 CB-4		NEENAH FOUNDRY		On Sag	1	101.58	107.00	5.42	101.58	0.00	1.00	0.00
35 CB-4		NEENAH FOUNDRY		On Sag	1	103.13	110.45	7.32	103.13	0.00	1.00	0.00
36 CB-4		NEENAH FOUNDRY		On Sag	1	103.70	108.80	5.10	103.70	0.00	1.00	0.00
37 CB-4 38 CB-4		NEENAH FOUNDRY		On Sag	1 1	104.11	108.06 108.06	3.95 3.76	104.11	0.00 0.00	1.00	0.00 0.00
30 CB-4		NEENAH FOUNDRY		On Sag On Sag	1	104.30 109.07	112.81	3.76	104.30 109.07	0.00	1.00 1.00	0.00
40 CB-4		NEENAH FOUNDRY		On Sag	1	108.80	112.81	4.01	108.80	0.00	1.00	0.00
41 CB-4		NEENAH FOUNDRY		On Sag	1	106.27	109.52	3.25	106.27	0.00	1.00	0.00
42 CB-4	47	NEENAH FOUNDRY		On Sag	1	106.10	109.52	3.42	106.10	0.00	1.00	0.00
43 CB-4		NEENAH FOUNDRY		On Sag	1	101.70	105.80	4.10	101.70	0.00	1.00	0.00
44 CB-4		NEENAH FOUNDRY		On Sag	1	102.69	106.38 105.35	3.69	102.69	0.00	1.00	0.00
45 CB-5 46 CB-5		NEENAH FOUNDRY		On Sag On Sag	1 1	101.02 102.88	105.35	4.33 3.50	101.02 102.88	0.00 0.00	1.00 1.00	0.00 0.00
47 CB-5		NEENAH FOUNDRY		On Sag	1	104.72	108.50	3.78	104.72	0.00	1.00	0.00
48 CB-5		NEENAH FOUNDRY		On Sag	1	105.00	108.60	3.60	105.00	0.00	1.00	0.00
49 CB-5		NEENAH FOUNDRY		On Sag	1	99.40	103.40	4.00	99.40	0.00	1.00	0.00
50 CB-5		NEENAH FOUNDRY		On Sag	1	99.77	104.07	4.30	99.77	0.00	1.00	0.00
51 CB-5		NEENAH FOUNDRY		On Sag	1	100.27	104.25	3.98	100.27	0.00	1.00	0.00
52 CB-5 53 CB-5		NEENAH FOUNDRY		On Sag On Sag	1	99.54 100.01	103.73 105.03	4.19 5.02	99.54 100.01	0.00 0.00	1.00 1.00	0.00 0.00
54 CB-5		NEENAH FOUNDRY		On Sag	1	97.13	100.96	3.83	97.13	0.00	1.00	0.00
55 CB-5		NEENAH FOUNDRY		On Sag	1	97.64	101.72	4.08	97.64	0.00	1.00	0.00
56 CB6		NEENAH FOUNDRY		On Sag	1	102.26	107.14	4.88	102.26	0.00	1.00	0.00
57 CB-6		NEENAH FOUNDRY		On Sag	1	98.11	101.85	3.74	98.11	0.00	1.00	0.00
58 CB-6		NEENAH FOUNDRY		On Sag	1	98.15	101.86	3.71	98.15	0.00	1.00	0.00
59 CB-6		NEENAH FOUNDRY		On Sag	1	98.69	102.41	3.72	98.69	0.00	1.00	0.00
60 CB-6 61 CB-6		NEENAH FOUNDRY		On Sag On Sag	1 1	101.09 101.33	104.80 105.60	3.71 4.27	101.09 101.33	0.00 0.00	1.00 1.00	0.00 0.00
62 CB7		NEENAH FOUNDRY		On Sag	1	101.33	105.00	4.27	101.33	0.00	1.00	0.00
63 CB-8		NEENAH FOUNDRY		On Sag	1	101.54	104.54	3.00	101.54	0.00	1.00	0.00
64 CB-9		NEENAH FOUNDRY		On Sag	1	101.29	104.54	3.25	101.29	0.00	1.00	0.00
65 CB-A		NEENAH FOUNDRY		On Sag	1	103.90	107.90	4.00	103.90	0.00	1.00	0.00
66 CB-E		NEENAH FOUNDRY		On Sag	1	103.20	107.20	4.00	103.20	0.00	1.00	0.00
67 CB-0		NEENAH FOUNDRY	R-3409-A	On Sag	1	102.41	106.41	4.00	102.41	0.00	1.00	0.00

Roadway & Gutter Input

SN Element	Poodwov	Roadway	Roadway	Cuttor	Gutter	Cuttor	Allowable
ID	Longitudinal	Cross	Manning's	Cross		Depression	Spread
	Slope	Slope	Roughness	Slope			I
	(ft/ft)	(ft/ft)	0.0400	(ft/ft)	(ft)	(in)	(ft)
1 CB-1 2 CB-10	N/A N/A	0.0200		0.0620	2.00 2.00	0.0656 0.0656	7.00 7.00
3 CB-11	N/A	0.0200		0.0620	2.00	0.0656	7.00
4 CB-12	N/A	0.0200		0.0620	2.00	0.0656	7.00
5 CB-13	N/A	0.0200		0.0620	2.00	0.0656	7.00
6 CB-14	N/A	0.0200		0.0620	2.00	0.0656	7.00
7 CB-15 8 CB-16	N/A N/A	0.0200 0.0200		0.0620 0.0620	2.00 2.00	0.0656 0.0656	7.00 7.00
9 CB-17	N/A	0.0200		0.0620	2.00	0.0656	7.00
10 CB-18	N/A	0.0200		0.0620	2.00	0.0656	7.00
11 CB-19	N/A	0.0200	0.0160	0.0620	2.00	0.0656	7.00
12 CB-2	N/A	0.0200		0.0620	2.00	0.0656	7.00
13 CB-20	N/A	0.0200		0.0620	2.00	0.0656	7.00
14 CB-21 15 CB-22	N/A N/A	0.0200		0.0620 0.0620	2.00 2.00	0.0656 0.0656	7.00 7.00
16 CB-22	N/A	0.0200		0.0620	2.00	0.0656	7.00
17 CB-24	N/A	0.0200		0.0620	2.00	0.0657	7.00
18 CB-26	N/A	0.0200		0.0620	2.00	0.0656	7.00
19 CB-27	N/A	0.0200		0.0620	2.00	0.0656	7.00
20 CB-28	N/A	0.0200		0.0620	2.00	0.0656	7.00
21 CB-29 22 CB-3	N/A N/A	0.0200		0.0620	2.00 2.00	0.0656 0.0656	7.00 7.00
23 CB-30	N/A	0.0200		0.0620	2.00	0.0656	7.00
24 CB-31	N/A	0.0200		0.0620	2.00	0.0656	7.00
25 CB-32	N/A	0.0200	0.0160	0.0620	2.00	0.0656	7.00
26 CB-33	N/A	0.0200		0.0620	2.00	0.0656	7.00
27 CB-34	N/A	0.0200		0.0620	2.00	0.0656	7.00
28 CB-34-HELP 29 CB-35	N/A N/A	0.0200 0.0200		0.0620	2.00 2.00	0.0656 0.0656	7.00 7.00
30 CB-36	N/A	0.0200		0.0620	2.00	0.0656	7.00
31 CB-37	N/A	0.0200		0.0620	2.00	0.0656	7.00
32 CB-38	N/A	0.0200		0.0620	2.00	0.0656	7.00
33 CB-39	N/A	0.0200		0.0620	2.00	0.0656	7.00
34 CB-4 35 CB-40	N/A	0.0200		0.0620	2.00	0.0656	7.00
36 CB-41	N/A N/A	0.0200 0.0200		0.0620	2.00 2.00	0.0656 0.0656	7.00 7.00
37 CB-42	N/A	0.0200		0.0620	2.00	0.0656	7.00
38 CB-43	N/A	0.0200	0.0160	0.0620	2.00	0.0656	7.00
39 CB-44	N/A	0.0200		0.0620	2.00	0.0656	7.00
40 CB-45	N/A	0.0200		0.0620	2.00	0.0656	7.00
41 CB-46 42 CB-47	N/A N/A	0.0200 0.0200		0.0620 0.0620	2.00 2.00	0.0656 0.0656	7.00 7.00
43 CB-48	N/A	0.0200		0.0620	2.00	0.0656	7.00
44 CB-49	N/A	0.0200		0.0620	2.00	0.0656	7.00
45 CB-5	N/A	0.0200		0.0620	2.00	0.0656	7.00
46 CB-50	N/A	0.0200		0.0620	2.00	0.0656	7.00
47 CB-51 48 CB-52	N/A N/A	0.0200 0.0200		0.0620 0.0620	2.00 2.00	0.0656 0.0656	7.00 7.00
49 CB-52	N/A	0.0200		0.0620	2.00	0.0656	7.00
50 CB-54	N/A	0.0200		0.0620	2.00	0.0656	7.00
51 CB-55	N/A	0.0200		0.0620	2.00	0.0656	7.00
52 CB-56	N/A	0.0200		0.0620	2.00	0.0656	7.00
53 CB-57 54 CB-58	N/A	0.0200		0.0620	2.00	0.0657	7.00
54 CB-58 55 CB-59	N/A N/A	0.0200 0.0200		0.0620 0.0620	2.00 2.00	0.0656 0.0656	7.00 7.00
56 CB6	N/A	0.0200		0.0620	2.00	0.0656	7.00
57 CB-60	N/A	0.0200		0.0620	2.00	0.0656	7.00
58 CB-61	N/A	0.0200		0.0620	2.00	0.0656	7.00
59 CB-62	N/A	0.0200		0.0620	2.00	0.0656	7.00
60 CB-63 61 CB-64	N/A N/A	0.0200 0.0200		0.0620	2.00 2.00	0.0656	7.00 7.00
62 CB7	N/A N/A	0.0200		0.0620	2.00	0.0656 0.0656	7.00
63 CB-8	N/A	0.0200		0.0620	2.00	0.0656	7.00
64 CB-9	N/A	0.0200		0.0620	2.00	0.0656	7.00
65 CB-A	N/A	0.0200		0.0620	2.00	0.0656	7.00
66 CB-B	N/A	0.0200		0.0620	2.00	0.0656	7.00
67 CB-C	N/A	0.0200	0.0100	0.0620	2.00	0.0656	7.00

Inlet Results

SN Element ID	Peak Flow		Peak Flow Intercepted	Peak Flow Bypassing	Inlet Efficiency	Max Gutter Spread	Max Gutter Water Elev.	Max Gutter Water Depth	Time of Max Depth		Total Time Flooded
		Inflow	by Inlet	Inlet	during Peak Flow	during Peak Flow	during Peak Flow	during Peak Flow	Occurrence	Volume	
	(cfs)	(cfs)	(cfs)	(cfs)	(%)	(ft)	(ft)	(ft)	(days hh:mm)	(ac-in)	(min)
1 CB-1	1.63	1.63	N/A	N/A	N/A	5.61	106.43	0.22	0 00:05	0.00	0.00
2 CB-10	0.65	0.65	N/A	N/A	N/A	4.87	105.75	0.20	0 00:06	0.00	0.00
3 CB-11	0.98	0.98	N/A	N/A	N/A	5.15	104.41	0.21	0 00:06	0.00	0.00
4 CB-12	1.22	1.22	N/A	N/A	N/A	5.32	104.86	0.21	0 00:06	0.00	0.00
5 CB-13	3.08	3.08	N/A	N/A	N/A	15.79	104.62	0.42	0 00:06	0.00	0.00
6 CB-14 7 CB-15	1.71 0.55	1.71 0.55	N/A N/A	N/A N/A	N/A N/A	5.65 4.78	103.72 104.40	0.22 0.20	0 00:06 0 00:06	0.00 0.00	0.00 0.00
8 CB-16	0.84	0.84	N/A	N/A	N/A	5.03	104.40	0.20	0 00:05	0.00	0.00
9 CB-17	0.84	0.84	N/A	N/A	N/A	5.03	105.56	0.21	0 00:05	0.00	0.00
10 CB-18	0.65	0.65	N/A	N/A	N/A	4.87	105.55	0.20	0 00:05	0.00	0.00
11 CB-19	1.57	1.57	N/A	N/A	N/A	5.56	109.17	0.22	0 00:05	0.00	0.00
12 CB-2	0.63	0.63	N/A	N/A	N/A	4.86	106.41	0.20	0 00:05	0.00	0.00
13 CB-20	2.37	2.37	N/A	N/A	N/A	14.58	106.45	0.40	0 00:06	0.00	0.00
14 CB-21	3.24	3.24	N/A	N/A	N/A	16.07	105.98	0.43	0 00:05	0.00	0.00
15 CB-22	0.42	0.42	N/A	N/A	N/A	4.65	108.45	0.20	0 00:05	0.00	0.00
16 CB-23 17 CB-24	3.58 1.59	3.58 1.59	N/A N/A	N/A N/A	N/A N/A	16.60 5.58	105.94 106.98	0.44 0.22	0 00:05 0 00:05	0.00 0.00	0.00 0.00
18 CB-26	1.46	1.39	N/A	N/A	N/A	5.58	100.98	0.22	0 00:06	0.00	0.00
19 CB-27	0.92	0.92	N/A	N/A	N/A	5.10	108.71	0.22	0 00:06	0.00	0.00
20 CB-28	1.60	1.60	N/A	N/A	N/A	5.58	107.72	0.22	0 00:06	0.00	0.00
21 CB-29	2.31	2.31	N/A	N/A	N/A	14.47	106.89	0.39	0 00:05	0.00	0.00
22 CB-3	0.45	0.45	N/A	N/A	N/A	4.68	107.20	0.20	0 00:05	0.00	0.00
23 CB-30	1.38	1.38	N/A	N/A	N/A	5.43	105.16	0.21	0 00:05	0.00	0.00
24 CB-31	0.94	0.94	N/A	N/A	N/A	5.11	105.71	0.21	0 00:05	0.00	0.00
25 CB-32	0.82	0.82	N/A	N/A	N/A	5.01	107.11	0.21	0 00:05	0.00	0.00
26 CB-33	0.93	0.93	N/A	N/A	N/A	5.10	111.28	0.21	0 00:05	0.00	0.00
27 CB-34 28 CB-34-HELP	4.44 0.71	4.44 0.71	N/A N/A	N/A N/A	N/A N/A	17.90 4.92	110.73 110.30	0.46 0.20	0 00:06 0 00:06	0.00 0.00	0.00 0.00
29 CB-34-HELP	0.71	0.71	N/A	N/A	N/A	4.92 5.07	111.16	0.20	0 00:06	0.00	0.00
30 CB-36	0.82	0.82	N/A	N/A	N/A	5.02	105.81	0.21	0 00:07	0.00	0.00
31 CB-37	1.27	1.27	N/A	N/A	N/A	5.35	112.61	0.21	0 00:05	0.00	0.00
32 CB-38	1.17	1.17	N/A	N/A	N/A	5.29	111.46	0.21	0 00:05	0.00	0.00
33 CB-39	1.82	1.82	N/A	N/A	N/A	5.73	110.47	0.22	0 00:05	0.00	0.00
34 CB-4	0.73	0.73	N/A	N/A	N/A	4.94	107.20	0.20	0 00:05	0.00	0.00
35 CB-40	2.18	2.18	N/A	N/A	N/A	5.94	110.67	0.22	0 00:05	0.00	0.00
36 CB-41	1.21	1.21	N/A	N/A	N/A	5.32	109.01	0.21	0 00:05	0.00	0.00
37 CB-42 38 CB-43	0.81 1.19	0.81 1.19	N/A N/A	N/A N/A	N/A N/A	5.01 5.30	108.27 108.27	0.21 0.21	0 00:05 0 00:05	0.00 0.00	0.00 0.00
39 CB-43	0.10	0.10	N/A	N/A	N/A	4.25	113.00	0.21	0 00:05	0.00	0.00
40 CB-45	0.14	0.14	N/A	N/A	N/A	4.32	113.00	0.19	0 00:05	0.00	0.00
41 CB-46	0.75	0.75	N/A	N/A	N/A	4.95	109.72	0.20	0 00:05	0.00	0.00
42 CB-47	0.00	0.00	N/A	N/A	N/A	5.16	109.73	0.21	0 00:05	0.00	0.00
43 CB-48	0.67	0.67	N/A	N/A	N/A	4.89	106.00	0.20	0 00:05	0.00	0.00
44 CB-49	1.73	1.73	N/A	N/A	N/A	5.67	106.60	0.22	0 00:05	0.00	0.00
45 CB-5	3.38	3.38	N/A	N/A	N/A	16.29	105.78	0.43	0 00:05	0.00	0.00
46 CB-50	1.25	1.25	N/A	N/A	N/A	5.34	106.59	0.21	0 00:05	0.00	0.00
47 CB-51 48 CB-52	0.58 0.48	0.58 0.48	N/A N/A	N/A N/A	N/A N/A	4.81 4.71	108.70 108.80	0.20 0.20	0 00:05 0 00:05	0.00 0.00	0.00 0.00
48 CB-52 49 CB-53	1.57	1.57	N/A	N/A	N/A	5.56	103.62	0.20	0 00:05	0.00	0.00
50 CB-54	2.08	2.08	N/A	N/A	N/A	5.89	103.02	0.22	0 00:05	0.00	0.00
51 CB-55	0.54	0.54	N/A	N/A	N/A	4.77	104.45	0.20	0 00:05	0.00	0.00
52 CB-56	2.79	2.79	N/A	N/A	N/A	15.32	104.14	0.41	0 00:05	0.00	0.00
53 CB-57	0.72	0.72	N/A	N/A	N/A	4.93	105.23	0.20	0 00:05	0.00	0.00
54 CB-58	2.19	2.19	N/A	N/A	N/A	5.95	101.18	0.22	0 00:05	0.00	0.00
55 CB-59	0.94	0.94	N/A	N/A	N/A	5.11	101.93	0.21	0 00:06	0.00	0.00
56 CB6	1.84	1.84	N/A	N/A	N/A	5.74	107.36	0.22	0 00:05	0.00	0.00
57 CB-60 58 CB-61	0.46	0.46	N/A	N/A	N/A	4.69	102.05 102.26	0.20	0 00:05	0.00	0.00 0.00
59 CB-62	2.45 3.63	2.45 3.63	N/A N/A	N/A N/A	N/A N/A	14.73 16.68	102.26	0.40 0.44	0 00:05 0 00:05	0.00 0.00	0.00
60 CB-63	3.03 1.57	3.03 1.57	N/A	N/A	N/A N/A	5.56	102.85	0.44	0 00:05	0.00	0.00
61 CB-64	3.51	3.51	N/A	N/A	N/A	16.49	105.02	0.44	0 00:05	0.00	0.00
62 CB7	2.10	2.10	N/A	N/A	N/A	5.90	106.46	0.22	0 00:05	0.00	0.00
63 CB-8	0.45	0.45	N/A	N/A	N/A	4.68	104.74	0.20	0 00:05	0.00	0.00
64 CB-9	0.35	0.35	N/A	N/A	N/A	4.58	104.74	0.20	0 00:06	0.00	0.00
65 CB-A	0.75	0.75	N/A	N/A	N/A	4.96	108.10	0.20	0 00:05	0.00	0.00
66 CB-B	0.52	0.52	N/A	N/A	N/A	4.75	107.40	0.20	0 00:05	0.00	0.00
67 CB-C	1.29	1.29	N/A	N/A	N/A	5.37	106.62	0.21	0 00:05	0.00	0.00

ATTACHMENT D

ORIFICE CALCULATIONS

ORIFICE SIZING CALCULATIONS Gorrill-Palmer Consulting Engineers, Inc.

JOB DATA

Client:	321 Lincoln Street Development, LLC
Project:	Lincoln Village
Location:	Saco, ME
Calc. by:	LEL
Date:	11/4/2022

EQUATIONS:

Q = A * Cd * SQRT (2 * g * h)	where	Q = Flow Cd = Coef. of discharge h = Head A = Cross-sectional flow area g = Gravitational Acceleration
Votland 1		g - Oravitational Acceleration

Gravel Wetland 1

INPUT:

Orifice Diameter (d) =	2.40 inches	
Head (h) =	1.47 feet	(channel protection elev. to permanent pool
Coef. Discharge (C)=	0.61	

OUTPUT:

Orifice/flow Area (A) =	4.52 square inches
Velocity (V) =	5.94 feet per second
Flowrate (Q) =	83.68 gallons per minute
	0.19 cubic feet per second

Gravel Wetland 2

INPUT:

Orifice Diameter (d) =	2.20 inches	
Head (h) =	1.36 feet	(channel protection elev. to permanent pool
Coef. Discharge (C)=	0.61	

OUTPUT:

Orifice/flow Area (A) =	3.80 square inches
Velocity (V) =	5.71 feet per second
Flowrate (Q) =	67.63 gallons per minute
	0.15 cubic feet per second

ATTACHMENT E

FOCALPOINT MANUFACTURER APPROVAL LETTER

Ferguson Waterworks 94 Pleasant Ave South Portland, ME 04106

Drew Gagnon, P.E.

Project Manager Gorrill Palmer 707 Sable Oaks Drive, Suite 30 South Portland, ME 04106

May 9, 2022

SUBJECT:Lincoln Village – Saco, MEDesign Review – FocalPoint Biofiltration Systems and SWM Systems

Dear Drew,

Thank you for forwarding the Plans, HydroCAD modeling and design details for the proposed Lincoln Village development project in Saco, Maine to Ferguson Waterworks for review. Our team has reviewed the plans with most recent revision date of April 18, 2022, which shows the following FocalPoint systems:

- FocalPoint #1 64 SF footprint with
 - 24" dia. domed overflow structure with filter insert
 - o Rain Guardian Bunker Pretreatment Device
- FocalPoint #2 24 SF footprint with
 - 18" dia. domed overflow structure with filter insert
 - o Rain Guardian Foxhole Pretreatment Device
- FocalPoint #3 76 SF footprint with
 - 24" dia. domed overflow structure with filter insert
 - o Rain Guardian Bunker Pretreatment Device
- FocalPoint #4 32 SF footprint with
 - 24" dia. domed overflow structure with filter insert
 - o Rain Guardian Foxhole Pretreatment Device

System Review:

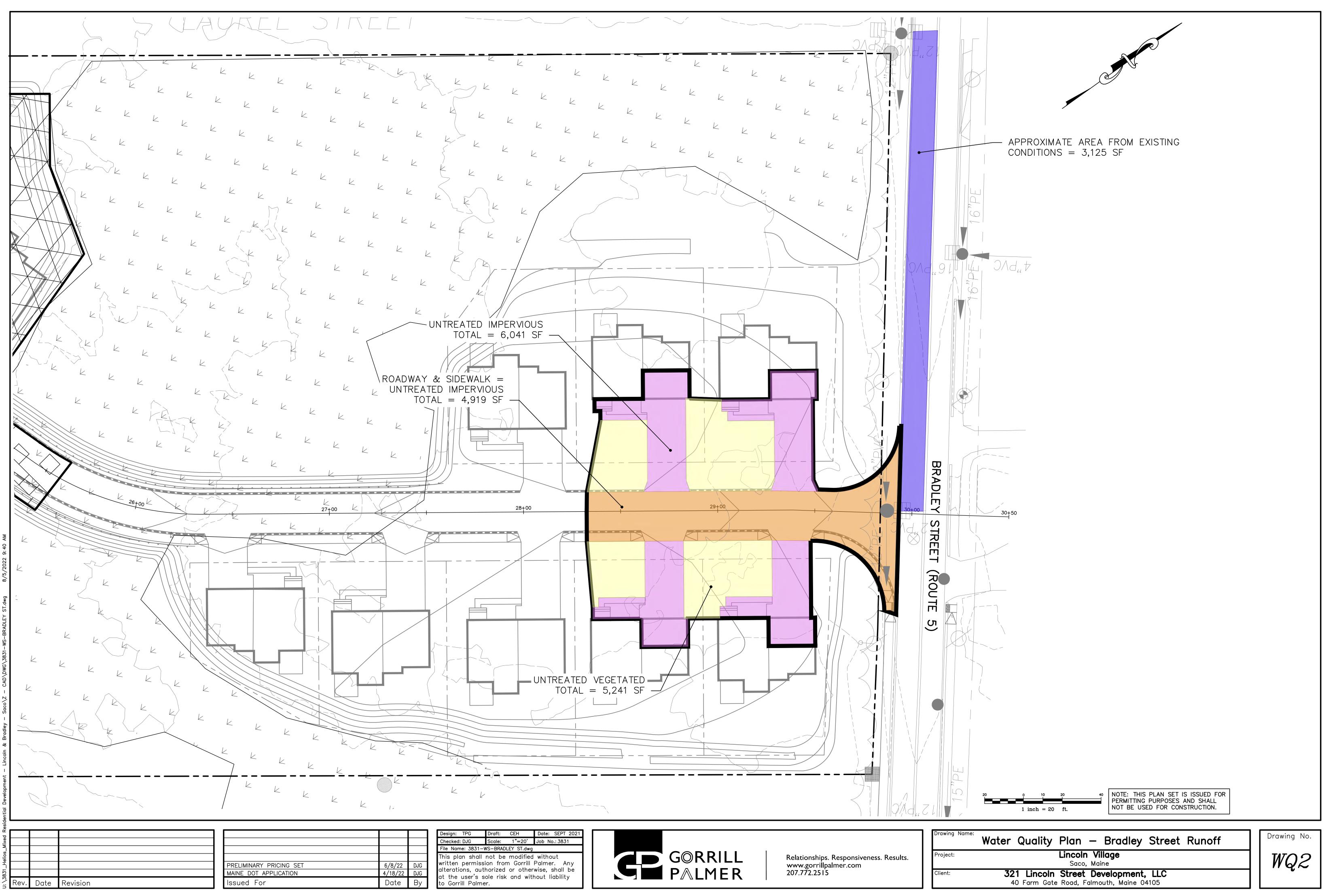
- The FocalPoint systems are set in a recessed vegetated 'bowl' areas.
- Runoff flows from the surrounding pavement and developed areas to Rain Guardian Pretreatment devices at curb openings and then enters each FocalPoint system mulch bed area.

- The typical FocalPoint section appears to consist of 3" mulch, 18" biofilter media, 6" bridging stone and 9.45" modular underdrain.
- Domed overflow risers with filter inserts are specified to convey larger storm events essentially as a bypass.
- Each FocalPoint system is placed in-line with a subsurface Cultec Treatment Isolator Row and additional downstream storage and overflow control is provided as required by MEDEP.
- A landscape plan should be prepared with the final plan set specifying approved FocalPoint plantings. Please reach out to Ferguson Waterworks for approved FocalPoint plantings list and installation guidelines.

Overall, Ferguson takes no exceptions to the location and application of the FocalPoint system for this project to provide WQ treatment and detention.

With regard to the installation, Ferguson Waterworks will host a preconstruction meeting with the site contractor and will be on-site during installation to ensure that the installation is being conducted in accordance with our standard installation procedures. Ferguson Waterworks will also provide maintenance consultation for the first year following install consisting of typical maintenance procedures and overview of system condition.

Please review and contact me with any questions from your office. We look forward to working with you on this project.


Sincerely,

Loren Joyce, Stormwater Engineer Ferguson Waterworks

Cc: Robert J Woodman, Ferguson Waterworks

ATTACHMENT F

BRADLEY STREET RUNOFF CALCULATIONS

				JOB			3831	
and the second				SHEET NO.		I	OF	1
	ORRILL			CALCULATED	BY	LEL	DATE	8/5/2022
F	MLMER			CHECKED BY		DJG	DATE	8/5/2022
ask: lote: ssumptions:			, .	the Rational Method and Mannings E vey plan dated 5/9/2022. 12" plastic s	•	1.0039 ft/ft slope		
alculations:	See Below							
onclusion:	Based on the ration Based on Mannings		w is Ilated pipe capacity is	1.7 2.7	cfs cfs			
	RAT	IONAL METHO	D Q=CiA			MANNINGS EQUA Q=(1.5/n)AR^(2/3)S		
	Area paved	14,085	SF			C (1111) 11 (217)	()	1
	Area lawn	5,241	SF		D	12	in	
	Area paved	0.323	ac		A	0.785	SF	
	Area lawn	0.120	ac		R	0.250	FT	
	Area Total	0.444	ac		n	0.011		
	C paved	0.95			s	0.0039	ft/ft	
	C lawn	0.25						
	C avg	0.760						1
	li	4.9	in/hr					
			I					

			-	
			Impervious (SF)	Vegetated (SF)
Area	Area from Proposed Project			5,241
Area	Area from Existing Conditions			0
	Slope			
	Lengths			
Inv Out	103.88	226	0.0039	
Inv In	103.00	226	0.0039	
Inv Out	104.96	- 1.5	0.52	
Inv In	104.18	1.5	0.52	

ATTACHMENT G

SEDIMENT FOREBAY STORAGE CALCULATIONS

Lincoln Village Saco, ME

Sediment Forebay Storage Calculations

Notes:

GW Sediment Forebay Storage = 10% of Channel Protection Volume

GUSF Sediment Forebay Storage = 10 Storms per Year x Sanded Area (acres) x 500 lbs/per acre-storm : 90lbs/cf

	Channel Protection Volume	Sanded Area (acres)	Storms per Year	Conversion	Required Sediment Forebay Storage Volume (cf)	Proposed Storage Volume (cf)
Gravel Wetland 1	20201			10%	2024	2811
Gravel Wetland 2	10912			10%	1101	1561
GUSF 1		0.57	10	5.56	32	228
GUSF 2		0.36	10	5.56	20	262
GUSF 3		0.43	10	5.56	24	331
GUSF 4		0.37	10	5.56	21	240
GUSF 5		0.26	10	5.56	15	246
GUSF 6		0.23	10	5.56	13	258
GUSF 7		0.23	10	5.56	13	339
GUSF 8		0.43	10	5.56	24	282
GUSF 9		0.73	10	5.56	41	415

Approximate Road &	Approximate Road & Sidewalk Areas being Salted/Sanded (SF)				
GUSF 1	25038				
GUSF 2	15665				
GUSF 3	18538				
GUSF 4	16292				
GUSF 5	11484				
GUSF 6	9851				
GUSF 7	10044				
GUSF 8	18899				
GUSF 9	31882				

SUPPLEMENTAL STORMWATER ANALYSIS – BASED ON PEER REVIEW REQUEST

JOBSHEET NO.ICALCULATED BYDJGDJGDATECHECKED BYDJGSCALENone

Task: Determine headwater and capacity of culverts downstream of Lincoln Village POIs

Note: Pipe information obtained from Owen Haskell boundary and survey, GIS, field reconnaissance or record drawings where available

Assumption I) Slyline Drive Culvert assumed to be a 36" concrete culvert at approxmaitely 4% slope. This was based on a field visit on II-4

2) Lincoln Street Culvert assumed to be a 12" CMP culvert at 1.34%. This was based on a field survey by Owen Haskell

3) Maple Ave culverts assumed to be twin 36" concrete culverts at 0.002%. This is based on record drawings by Deluca Hoffman dated August 1992 and GIS where absent.

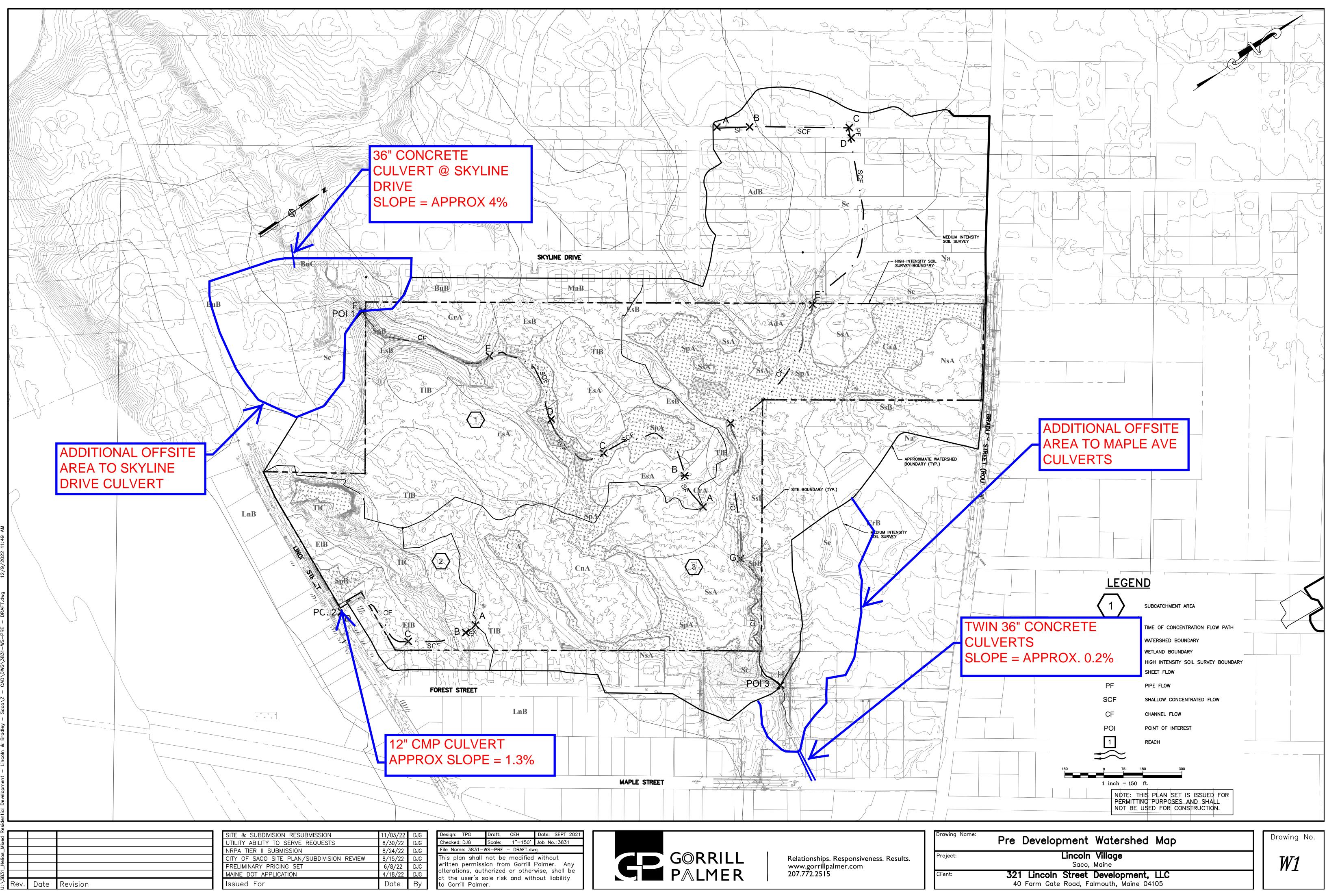
4) Analysis performed from HydroCAD. Culverts were modeled as an outlet to a pond node.

Downstream Culvert Analysis

	POI I - 36" concrete @ Skyline			POI 2 - 12" @ Lincoln			POI 3 - Twin 36" culverts @ Maple		
			Difference						
Storm Event	Pre Elevation	Post Elevation	(in)	Pre Elevation	Post Elevation	Difference (in)	Pre Elevation	Post Elevation	Difference (in)
2 year	85.49	85.14	-4.2	95.59	95.30	-3.5	85.65	85.47	-2.2
10 year	86.29	85.79	-6.0	96.60	96.42	-2.2	87.17	86.67	-6.
25 year	87.1	86.31	-9.5	97.11	96.97	-1.7	89.11	87.99	-13.
50 year	88.06	86.76	-15.6	97.47	97.37	-1.2	90.77	89.50	-15.
100 year	89.53	87.35	-26.2	97.88	97.88	0.0	92.29	91.10	-14.

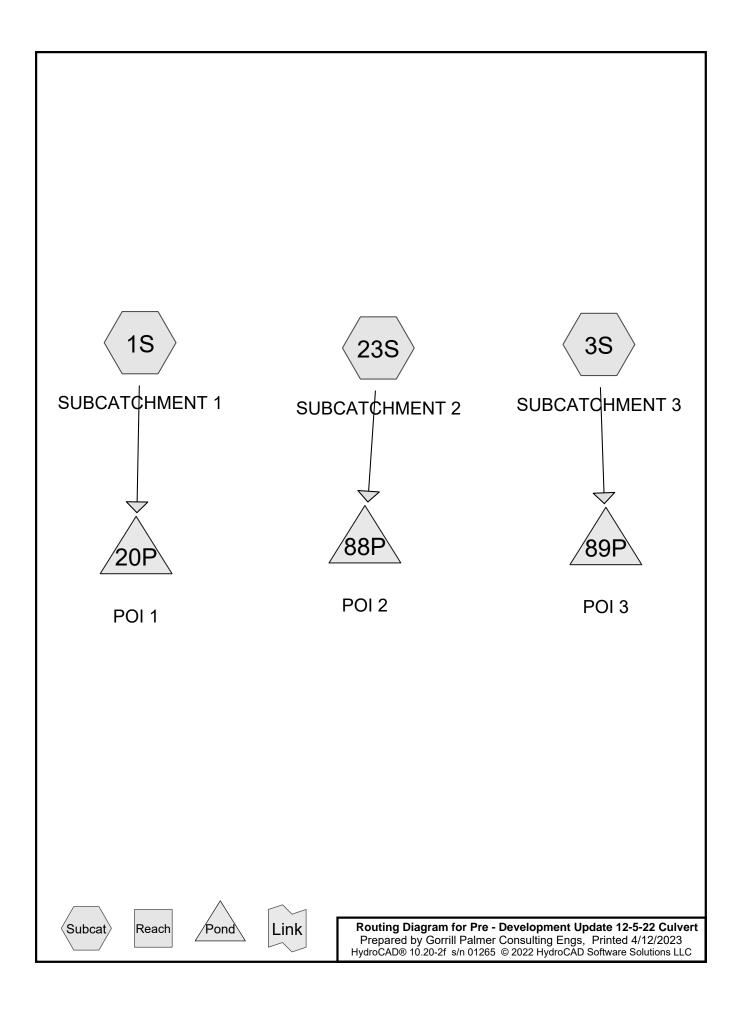
Roadway Grade/Storage

90 (GIS)


99 (GIS)

92-93 (GIS)

Culvert Info


Inv = approx 84.0 Slope = approx 4% Survey inv = 93.1 Slope = 1.34% (2) inv @ 83.45 Slope = 1% min

383 I L	incoln Village.	
		I
		4/3/2023
		4/3/2023

TR-20 CALCULATIONS

PRE DEVELOPMENT

Event#	Event Name	Storm Type	Curve	Mode	Duration (hours)	B/B	Depth (inches)	AMC
1	2 Year Saco	Type III 24-hr		Default	24.00	1	3.30	2
2	10 Year Saco	Type III 24-hr		Default	24.00	1	4.90	2
3	25 Year Saco	Type III 24-hr		Default	24.00	1	6.20	2
4	50 Year Saco	Type III 24-hr		Default	24.00	1	7.30	2
5	100 Year Saco	Type III 24-hr		Default	24.00	1	8.70	2

Rainfall Events Listing (selected events)

Prepared by Gorrill I	Update 12-5-22 CulvertType III 24-hr2 Year Saco Rainfall=3.30"almer Consulting EngsPrinted 4/12/202301265 © 2022 HydroCAD Software Solutions LLCPage 3
Reach	Time span=0.00-100.00 hrs, dt=0.01 hrs, 10001 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN uting by Stor-Ind+Trans method - Pond routing by Stor-Ind method
Subcatchment1S: S	BCATCHMENT1 Runoff Area=33.575 ac 11.40% Impervious Runoff Depth=1.28" Flow Length=1,826' Tc=92.7 min CN=77 Runoff=14.60 cfs 3.592 af
Subcatchment3S: S	BCATCHMENT3 Runoff Area=63.399 ac 10.26% Impervious Runoff Depth=1.16" Flow Length=2,998' Tc=49.9 min CN=75 Runoff=36.21 cfs 6.140 af
Subcatchment 23S: \$	JBCATCHMENT2 Runoff Area=7.661 ac 5.45% Impervious Runoff Depth=1.35" Flow Length=583' Tc=46.5 min CN=78 Runoff=5.40 cfs 0.860 af
Pond 20P: POI 1	Peak Elev=85.49' Storage=28 cf Inflow=14.60 cfs 3.592 af 36.0" Round Culvert n=0.011 L=88.0' S=0.0398 '/' Outflow=14.60 cfs 3.592 af
Pond 88P: POI 2	Peak Elev=95.59' Storage=4,281 cf Inflow=5.40 cfs 0.860 af 12.0" Round Culvert n=0.025 L=38.0' S=0.0134 '/' Outflow=3.55 cfs 0.860 af
Pond 89P: POI 3	Peak Elev=85.65' Storage=901 cf Inflow=36.21 cfs 6.140 af 36.0" Round Culvert x 2.00 n=0.011 L=126.0' S=0.0020 '/' Outflow=36.19 cfs 6.140 af

Total Runoff Area = 104.635 ac Runoff Volume = 10.592 af Average Runoff Depth = 1.21" 89.73% Pervious = 93.884 ac 10.27% Impervious = 10.751 ac

Prepared by Gorrill	At Update 12-5-22 CulvertType III 24-hr10 Year Saco Rainfall=4.90"Palmer Consulting EngsPrinted 4/12/2023s/n 01265 © 2022 HydroCAD Software Solutions LLCPage 4					
Time span=0.00-100.00 hrs, dt=0.01 hrs, 10001 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method						
Subcatchment1S: S	UBCATCHMENT1 Runoff Area=33.575 ac 11.40% Impervious Runoff Depth=2.54" Flow Length=1,826' Tc=92.7 min CN=77 Runoff=29.78 cfs 7.105 af					
Subcatchment 3S: S	UBCATCHMENT3 Runoff Area=63.399 ac 10.26% Impervious Runoff Depth=2.37" Flow Length=2,998' Tc=49.9 min CN=75 Runoff=76.79 cfs 12.513 af					
Subcatchment 23S:	SUBCATCHMENT2 Runoff Area=7.661 ac 5.45% Impervious Runoff Depth=2.63" Flow Length=583' Tc=46.5 min CN=78 Runoff=10.75 cfs 1.677 af					
Pond 20P: POI 1	Peak Elev=86.29' Storage=77 cf Inflow=29.78 cfs 7.105 af 36.0" Round Culvert n=0.011 L=88.0' S=0.0398 '/' Outflow=29.79 cfs 7.105 af					
Pond 88P: POI 2	Peak Elev=96.60' Storage=17,162 cf Inflow=10.75 cfs 1.677 af 12.0" Round Culvert n=0.025 L=38.0' S=0.0134 '/' Outflow=4.35 cfs 1.677 af					
Pond 89P: POI 3	Peak Elev=87.17' Storage=1,990 cf Inflow=76.79 cfs 12.513 af 36.0" Round Culvert x 2.00 n=0.011 L=126.0' S=0.0020 '/' Outflow=76.66 cfs 12.513 af					

Total Runoff Area = 104.635 ac Runoff Volume = 21.296 af Average Runoff Depth = 2.44" 89.73% Pervious = 93.884 ac 10.27% Impervious = 10.751 ac

Prepared by Gorril	Ent Update 12-5-22 CulvertType III 24-hr25 Year Saco Rainfall=6.20"I Palmer Consulting EngsPrinted 4/12/2023s/n 01265 © 2022 HydroCAD Software Solutions LLCPage 5						
Reac	Time span=0.00-100.00 hrs, dt=0.01 hrs, 10001 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method						
Subcatchment1S:	SUBCATCHMENT1 Runoff Area=33.575 ac 11.40% Impervious Runoff Depth=3.65" Flow Length=1,826' Tc=92.7 min CN=77 Runoff=43.02 cfs 10.224 af						
Subcatchment3S:	SUBCATCHMENT3 Runoff Area=63.399 ac 10.26% Impervious Runoff Depth=3.45" Flow Length=2,998' Tc=49.9 min CN=75 Runoff=112.61 cfs 18.244 af						
Subcatchment 23S	SUBCATCHMENT2 Runoff Area=7.661 ac 5.45% Impervious Runoff Depth=3.76" Flow Length=583' Tc=46.5 min CN=78 Runoff=15.35 cfs 2.398 af						
Pond 20P: POI 1	Peak Elev=87.10' Storage=288 cf Inflow=43.02 cfs 10.224 af 36.0" Round Culvert n=0.011 L=88.0' S=0.0398 '/' Outflow=43.01 cfs 10.224 af						
Pond 88P: POI 2	Peak Elev=97.11' Storage=31,189 cf Inflow=15.35 cfs 2.398 af 12.0" Round Culvert n=0.025 L=38.0' S=0.0134 '/' Outflow=4.71 cfs 2.398 af						
Pond 89P: POI 3	Peak Elev=89.11' Storage=7,238 cf Inflow=112.61 cfs 18.244 af 36.0" Round Culvert x 2.00 n=0.011 L=126.0' S=0.0020 '/' Outflow=109.61 cfs 18.244 af						

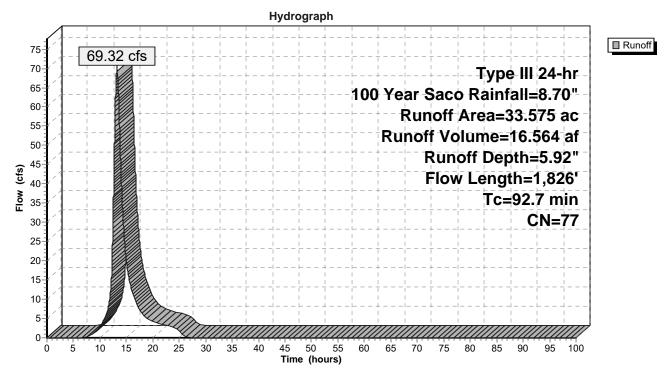
Total Runoff Area = 104.635 ac Runoff Volume = 30.866 af Average Runoff Depth = 3.54" 89.73% Pervious = 93.884 ac 10.27% Impervious = 10.751 ac

Prepared by Gorril	Ent Update 12-5-22 CulvertType III 24-hr50 Year Saco Rainfall=7.30"I Palmer Consulting EngsPrinted 4/12/2023s/n 01265 © 2022 HydroCAD Software Solutions LLCPage 6					
Time span=0.00-100.00 hrs, dt=0.01 hrs, 10001 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method						
Subcatchment1S:	SUBCATCHMENT1 Runoff Area=33.575 ac 11.40% Impervious Runoff Depth=4.64" Flow Length=1,826' Tc=92.7 min CN=77 Runoff=54.51 cfs 12.972 af					
Subcatchment3S:	SUBCATCHMENT3 Runoff Area=63.399 ac 10.26% Impervious Runoff Depth=4.41" Flow Length=2,998' Tc=49.9 min CN=75 Runoff=143.86 cfs 23.325 af					
Subcatchment 23S	SUBCATCHMENT2 Runoff Area=7.661 ac 5.45% Impervious Runoff Depth=4.75" Flow Length=583' Tc=46.5 min CN=78 Runoff=19.34 cfs 3.031 af					
Pond 20P: POI 1	Peak Elev=88.06' Storage=1,046 cf Inflow=54.51 cfs 12.972 af 36.0" Round Culvert n=0.011 L=88.0' S=0.0398 '/' Outflow=54.46 cfs 12.972 af					
Pond 88P: POI 2	Peak Elev=97.47' Storage=44,575 cf Inflow=19.34 cfs 3.031 af 12.0" Round Culvert n=0.025 L=38.0' S=0.0134 '/' Outflow=4.94 cfs 3.031 af					
Pond 89P: POI 3	Peak Elev=90.77' Storage=27,226 cf Inflow=143.86 cfs 23.325 af 36.0" Round Culvert x 2.00 n=0.011 L=126.0' S=0.0020 '/' Outflow=129.64 cfs 23.325 af					

Total Runoff Area = 104.635 ac Runoff Volume = 39.328 af Average Runoff Depth = 4.51" 89.73% Pervious = 93.884 ac 10.27% Impervious = 10.751 ac

Prepared by Gorril	Ent Update 12-5-22 CulvertType III 24-hr100 Year Saco Rainfall=8.70"I Palmer Consulting EngsPrinted 4/12/2023s/n 01265 © 2022 HydroCAD Software Solutions LLCPage 1						
Reac	Time span=0.00-100.00 hrs, dt=0.01 hrs, 10001 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Stor-Ind+Trans method . Pond routing by Stor-Ind method						
Subcatchment1S:	SUBCATCHMENT1 Runoff Area=33.575 ac 11.40% Impervious Runoff Depth=5.92" Flow Length=1,826' Tc=92.7 min CN=77 Runoff=69.32 cfs 16.564 af						
Subcatchment3S:	SUBCATCHMENT3 Runoff Area=63.399 ac 10.26% Impervious Runoff Depth=5.68" Flow Length=2,998' Tc=49.9 min CN=75 Runoff=184.33 cfs 29.996 af						
Subcatchment 23S	: SUBCATCHMENT2 Runoff Area=7.661 ac 5.45% Impervious Runoff Depth=6.04" Flow Length=583' Tc=46.5 min CN=78 Runoff=24.45 cfs 3.857 af						
Pond 20P: POI 1	Peak Elev=89.53' Storage=5,289 cf Inflow=69.32 cfs 16.564 af 36.0" Round Culvert n=0.011 L=88.0' S=0.0398 '/' Outflow=68.30 cfs 16.564 af						
Pond 88P: POI 2	Peak Elev=97.88' Storage=63,098 cf Inflow=24.45 cfs 3.857 af 12.0" Round Culvert n=0.025 L=38.0' S=0.0134 '/' Outflow=5.19 cfs 3.857 af						
Pond 89P: POI 3	Peak Elev=92.29' Storage=76,804 cf Inflow=184.33 cfs 29.996 af 36.0" Round Culvert x 2.00 n=0.011 L=126.0' S=0.0020 '/' Outflow=145.64 cfs 29.996 af						

Total Runoff Area = 104.635 ac Runoff Volume = 50.417 af Average Runoff Depth = 5.78" 89.73% Pervious = 93.884 ac 10.27% Impervious = 10.751 ac

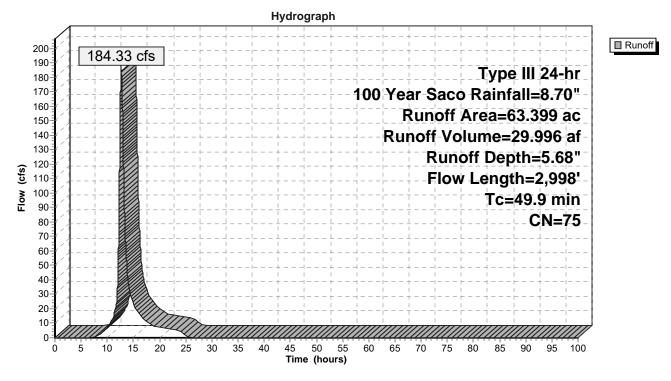

Summary for Subcatchment 1S: SUBCATCHMENT 1

Runoff = 69.32 cfs @ 13.28 hrs, Volume= Routed to Pond 20P : POI 1 16.564 af, Depth= 5.92"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-100.00 hrs, dt= 0.01 hrs Type III 24-hr 100 Year Saco Rainfall=8.70"

Area	(ac)	CN	Desc	cription					
1	.765	30	Woo	ds, Good,	HSG A				
21	.887	77	Woods, Good, HSG D						
C).113	98	Roofs, HSG D						
-	.446			ed parking,					
).841				5% imp, H				
).129				0% imp, H				
	.120				0% imp, H				
	.183				5% imp, H				
	.262					ewers, HSG D			
	.424				5% imp, H				
	.978				5% imp, H				
	.607					mp, HSG D			
	2.820			ds, Good,					
	3.575			phted Aver					
	0.747			0% Pervio					
	8.828		11.4	0% Imperv	vious Area				
Та	Longt			Valacity	Consoitu	Deparintion			
Tc	0		ope	Velocity		Description			
<u>(min)</u>	(feet	<i>i</i> .	<u>t/ft)</u>	(ft/sec)	(cfs)				
30.2	14	5 0.0	173	0.08		Sheet Flow, A - B			
20.6	40	1 0 00	247	0.24		Woods: Light underbrush n= 0.400 P2= 3.30"			
20.6	424	4 0.00	J47	0.34		Shallow Concentrated Flow, B - C			
11.6	292	2 0.00	070	0.42		Woodland Kv= 5.0 fps Shallow Concentrated Flow, C - D			
11.0	294	2 0.00	570	0.42		Woodland Kv= 5.0 fps			
28.4	408	3 0.00	าวว	0.24		Shallow Concentrated Flow, D - E			
20.4	400	5 0.00	525	0.24		Woodland Kv= 5.0 fps			
1.9	55	7 0.00	ายง	4.89	29.32				
1.5	55	0.00	000	ч.09	20.02	Area = 6.0 sf Perim = $7.0' \text{ r} = 0.86'$			
						n=0.025 Earth, clean & winding			
92.7	1.82	6 Tota	<u></u>						

92.7 1,826 Total

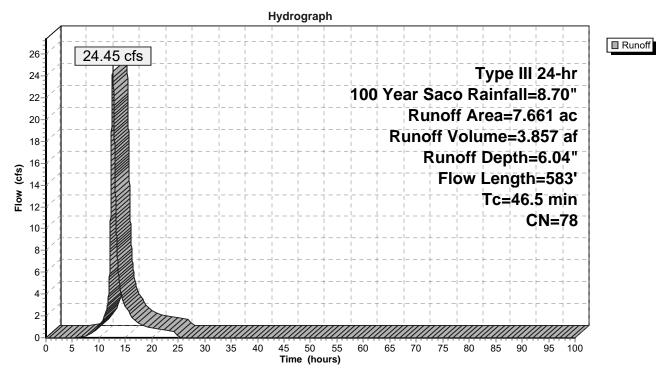

Subcatchment 1S: SUBCATCHMENT 1

Summary for Subcatchment 3S: SUBCATCHMENT 3

Runoff = 184.33 cfs @ 12.69 hrs, Volume= 29.996 af, Depth= 5.68" Routed to Pond 89P : POI 3

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-100.00 hrs, dt= 0.01 hrs Type III 24-hr 100 Year Saco Rainfall=8.70"

Area	(ac) C	N Desc	cription		
3.	238 3	30 Woo	ds, Good,	HSG A	
			ds, Good,		
				8% imp, H	
				5% imp, H	
				5% imp, H	
				5% imp, H	
					mp, HSG D
			ds, Good,		
			phted Aver		
	894		4% Pervio		
6.	505	10.2	6% Imperv	vious Area	
_					
	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
12.6	125	0.0161	0.17		Sheet Flow, A - B
					Grass: Short n= 0.150 P2= 3.30"
3.2	380	0.0172	1.97		Shallow Concentrated Flow, B - C
0.4	40	0 0070	44.40	00.00	Grassed Waterway Kv= 15.0 fps
0.1	40	0.0373	11.48	20.29	
					18.0" Round Area= 1.8 sf Perim= 4.7' r= 0.38'
24.8	721	0.0094	0.48		n= 0.013 Corrugated PE, smooth interior
24.0	121	0.0094	0.40		Shallow Concentrated Flow, D - E Woodland Kv= 5.0 fps
3.3	584	0.0062	2.93	23.40	
5.5	504	0.0002	2.95	23.40	Area= 8.0 sf Perim= 8.0' r= 1.00'
					n= 0.040 Winding stream, pools & shoals
2.5	540	0.0095	3.62	28.97	
2.0	040	0.0000	0.02	20.07	Area= 8.0 sf Perim= 8.0' r= 1.00'
					n= 0.040 Winding stream, pools & shoals
3.4	608	0.0066	3.02	24.14	Channel Flow, G - H
0.1		2.0000	0.02		Area= 8.0 sf Perim= 8.0' r= 1.00'
					n= 0.040 Winding stream, pools & shoals
49.9	2,998	Total			
	_,				


Subcatchment 3S: SUBCATCHMENT 3

Summary for Subcatchment 23S: SUBCATCHMENT 2

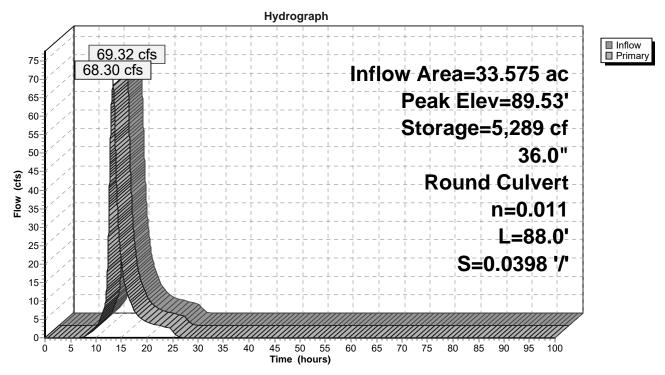
Runoff = 24.45 cfs @ 12.65 hrs, Volume= 3.857 af, Depth= 6.04" Routed to Pond 88P : POI 2

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-100.00 hrs, dt= 0.01 hrs Type III 24-hr 100 Year Saco Rainfall=8.70"

Area	(ac) C	N Desc	cription		
6.	562 7		ds, Good,		
1.	099 8	87 1/4 a	acre lots, 3	8% imp, H	SG D
7.	661 7	'8 Weig	ghted Aver	age	
7.	243	94.5	5% Pervio	us Area	
0.	418	5.45	% Impervi	ous Area	
Та	Longth	Slana	Valaaitu	Consoitu	Description
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
38.5	125	0.0280	0.05	(013)	Sheet Flow, A - B
50.5	125	0.0200	0.05		Woods: Dense underbrush n= 0.800 P2= 3.30"
1.8	126	0.0556	1.18		Shallow Concentrated Flow, B - C
1.0	120	0.0000	1.10		Woodland Kv= 5.0 fps
1.2	93	0.0645	1.27		Shallow Concentrated Flow, C - D
					Woodland Kv= 5.0 fps
3.3	157	0.0255	0.80		Shallow Concentrated Flow, D-E
					Woodland Kv= 5.0 fps
1.7	82	0.0244	0.78		Shallow Concentrated Flow, E-F
					Woodland Kv= 5.0 fps
46.5	583	Total			

Subcatchment 23S: SUBCATCHMENT 2

Summary for Pond 20P: POI 1


Inflow Area	a =	33.575 ac, 11.40% Impervious, Inflow Depth = 5.92" for 100 Year Saco event
Inflow	=	69.32 cfs @ 13.28 hrs, Volume= 16.564 af
Outflow	=	68.30 cfs @ 13.34 hrs, Volume= 16.564 af, Atten= 1%, Lag= 3.4 min
Primary	=	68.30 cfs @ 13.34 hrs, Volume= 16.564 af

Routing by Stor-Ind method, Time Span= 0.00-100.00 hrs, dt= 0.01 hrs Peak Elev= 89.53' @ 13.34 hrs Surf.Area= 4,848 sf Storage= 5,289 cf

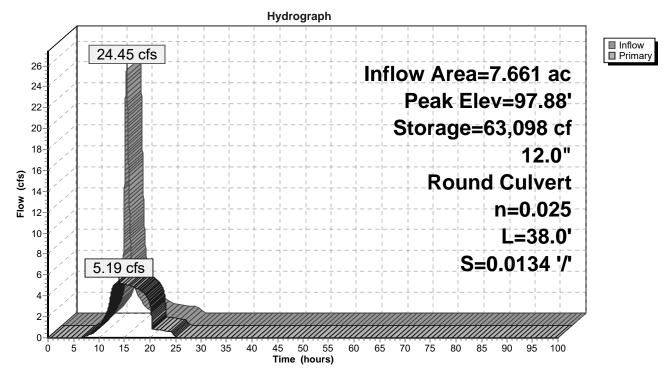
Plug-Flow detention time= 0.3 min calculated for 16.562 af (100% of inflow) Center-of-Mass det. time= 0.3 min (887.3 - 887.0)

Volume	Inv	ert Avail.Sto	orage Storage	Description	
#1	84.0	00' 7,9	22 cf Custom	Stage Data (P	rismatic)Listed below (Recalc)
Elevatio	et)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	
84.0		10	0	0	
85.0		20	15	15	
86.0		50	35	50	
87.0	00	350	200	250	
88.0	00	1,101	726	976	
89.0	00	3,257	2,179	3,155	
90.0	00	6,278	4,768	7,922	
Device #1	Routing Primary	<u>Invert</u> 84.00'	Inlet / Outlet In	Culvert P, square edge h nvert= 84.00' / 8	neadwall, Ke= 0.500 0.50' S= 0.0398 '/' Cc= 0.900 ight & clean, Flow Area= 7.07 sf

Primary OutFlow Max=68.29 cfs @ 13.34 hrs HW=89.53' (Free Discharge) ☐ 1=Culvert (Inlet Controls 68.29 cfs @ 9.66 fps)

Pond 20P: POI 1

Summary for Pond 88P: POI 2


Inflow Area	a =	7.661 ac,	5.45% Impervious, Inflow D	epth = 6.04" for 100 Year Saco event
Inflow	=	24.45 cfs @	12.65 hrs, Volume=	3.857 af
Outflow	=	5.19 cfs @	13.84 hrs, Volume=	3.857 af, Atten= 79%, Lag= 71.3 min
Primary	=	5.19 cfs @	13.84 hrs, Volume=	3.857 af

Routing by Stor-Ind method, Time Span= 0.00-100.00 hrs, dt= 0.01 hrs Peak Elev= 97.88' @ 13.84 hrs Surf.Area= 50,537 sf Storage= 63,098 cf

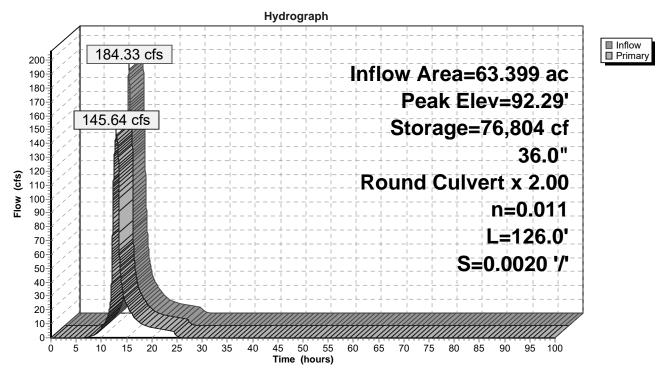
Plug-Flow detention time= 105.9 min calculated for 3.857 af (100% of inflow) Center-of-Mass det. time= 105.8 min (947.7 - 841.8)

Volume	Inv	vert Avail.Sto	orage Storage	Description	
#1	93.	00' 134,2	93 cf Custom	Stage Data (P	rismatic)Listed below (Recalc)
Elevatio	on	Surf.Area	Inc.Store	Cum.Store	
(fee	et)	(sq-ft)	(cubic-feet)	(cubic-feet)	
93.0	00	20	0	0	
94.0	00	359	190	190	
95.0	00	2,426	1,393	1,582	
96.0	00	9,638	6,032	7,614	
97.0	00	30,333	19,986	27,600	
99.0	00	76,360	106,693	134,293	
Device	Routing	Invert	Outlet Device	S	
#1	Primary	93.10'	Inlet / Outlet I	P, projecting, no nvert= 93.10' / 9	o headwall, Ke= 0.900 02.59' S= 0.0134 '/' Cc= 0.900 Flow Area= 0.79 sf
Primary OutFlow Max=5.19 cfs @ 13.84 hrs HW=97.88' (Free Discharge)					

1=Culvert (Barrel Controls 5.19 cfs @ 6.61 fps)

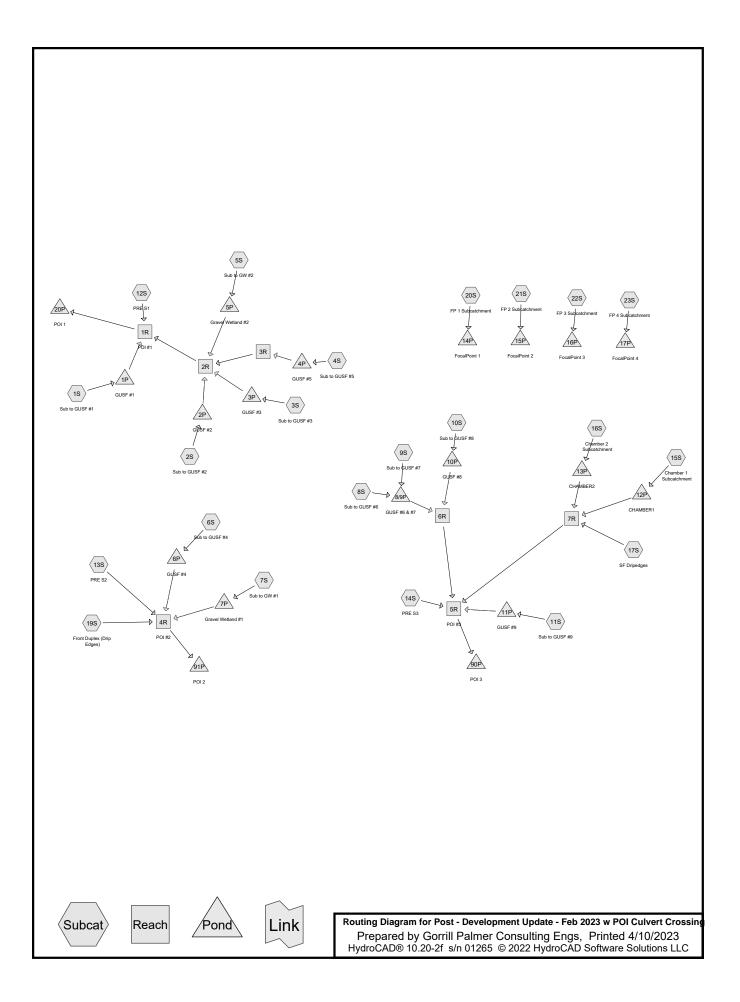
Pond 88P: POI 2

Summary for Pond 89P: POI 3


Inflow Area	a =	63.399 ac, 10.26% Impervious, Inflow Depth = 5.68" for 100 Year Saco event
Inflow	=	184.33 cfs @ 12.69 hrs, Volume= 29.996 af
Outflow	=	145.64 cfs @ 12.96 hrs, Volume= 29.996 af, Atten= 21%, Lag= 16.2 min
Primary	=	145.64 cfs @ 12.96 hrs, Volume= 29.996 af

Routing by Stor-Ind method, Time Span= 0.00-100.00 hrs, dt= 0.01 hrs Peak Elev= 92.29' @ 12.96 hrs Surf.Area= 43,409 sf Storage= 76,804 cf

Plug-Flow detention time= 2.7 min calculated for 29.993 af (100% of inflow) Center-of-Mass det. time= 2.7 min (854.2 - 851.5)


Volume	Inv	ert Avail.Sto	orage Storage	Description	
#1	83.4	45' 86,0	17 cf Custom	Stage Data (P	rismatic)Listed below (Recalc)
Elevatio	on	Surf.Area	Inc.Store	Cum.Store	
(fee	et)	(sq-ft)	(cubic-feet)	(cubic-feet)	
83.4	15	200	0	0	
85.0	00	500	542	542	
87.0	00	800	1,300	1,842	
88.0		1,325	1,063	2,905	
90.0		10,603	11,928	14,833	
92.5	50	46,344	71,184	86,017	
Device	Routing	Invert	Outlet Device	S	
#1	Primary	83.45'	36.0" Round	Culvert X 2.00	
			L= 126.0' CF	P, projecting, n	o headwall, Ke= 0.900
					3.20' S= 0.0020 '/' Cc= 0.900
			n= 0.011 Cor	ncrete pipe, stra	ight & clean, Flow Area= 7.07 sf
Primary OutFlow Max=145.64 cfs @ 12.96 hrs HW=92.29' (Free Discharge)					

1=Culvert (Inlet Controls 145.64 cfs @ 10.30 fps)

Pond 89P: POI 3

POST DEVELOPMENT

Event	#	Event	Storm Type	Curve	Mode	Duration	B/B	Depth	AMC
		Name				(hours)		(inches)	
	1	2 Year Saco	Type III 24-hr		Default	24.00	1	3.30	2
	2	10 Year Saco	Type III 24-hr		Default	24.00	1	4.90	2
	3	25 Year Saco	Type III 24-hr		Default	24.00	1	6.20	2
	4	50 Year Saco	Type III 24-hr		Default	24.00	1	7.30	2
	5	100 Year Saco	Type III 24-hr		Default	24.00	1	8.70	2

Rainfall Events Listing (selected events)

Post - Development Update - Feb 2023 w POI CulType III 24-hr 2 Year Saco Rainfall=3.30"Prepared by Gorrill Palmer Consulting EngsPrinted 4/10/2023HydroCAD® 10.20-2f s/n 01265 © 2022 HydroCAD Software Solutions LLCPage 3

Time span=0.00-100.00 hrs, dt=0.01 hrs, 10001 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment1S: Sub to GUSF #1	Runoff Area=73,933 sf 67.19% Impervious Runoff Depth=2.45" Tc=5.0 min CN=92 Runoff=4.92 cfs 0.346 af
Subcatchment 2S: Sub to GUSF #2	Runoff Area=82,545 sf 47.04% Impervious Runoff Depth=2.09" Tc=5.0 min CN=88 Runoff=4.79 cfs 0.330 af
Subcatchment 3S: Sub to GUSF #3	Runoff Area=44,837 sf 71.91% Impervious Runoff Depth=2.54" Tc=5.0 min CN=93 Runoff=3.07 cfs 0.218 af
Subcatchment 4S: Sub to GUSF #5	Runoff Area=39,620 sf 67.95% Impervious Runoff Depth=2.45" Tc=5.0 min CN=92 Runoff=2.64 cfs 0.185 af
Subcatchment 5S: Sub to GW #2	Runoff Area=167,094 sf 63.95% Impervious Runoff Depth=2.45" Tc=5.0 min CN=92 Runoff=11.11 cfs 0.782 af
Subcatchment 6S: Sub to GUSF #4	Runoff Area=44,235 sf 66.73% Impervious Runoff Depth=2.45" Tc=5.0 min CN=92 Runoff=2.94 cfs 0.207 af
Subcatchment 7S: Sub to GW #1	Runoff Area=318,070 sf 60.35% Impervious Runoff Depth=2.26" Tc=5.0 min CN=90 Runoff=19.82 cfs 1.376 af
Subcatchment 8S: Sub to GUSF #6	Runoff Area=79,636 sf 23.58% Impervious Runoff Depth=0.22" Tc=5.0 min CN=53 Runoff=0.15 cfs 0.034 af
Subcatchment9S: Sub to GUSF #7	Runoff Area=36,965 sf 63.79% Impervious Runoff Depth=1.28" Tc=5.0 min CN=77 Runoff=1.29 cfs 0.091 af
Subcatchment 10S: Sub to GUSF #8	Runoff Area=60,887 sf 60.77% Impervious Runoff Depth=1.41" Tc=5.0 min CN=79 Runoff=2.37 cfs 0.165 af
Subcatchment11S: Sub to GUSF #9	Runoff Area=91,815 sf 70.56% Impervious Runoff Depth=2.09" Tc=5.0 min CN=88 Runoff=5.32 cfs 0.367 af
Subcatchment 12S: PRE S1	Runoff Area=653,124 sf 12.20% Impervious Runoff Depth=1.16" Flow Length=2,066' Tc=91.1 min CN=75 Runoff=5.87 cfs 1.452 af
Subcatchment 13S: PRE S2	Runoff Area=172,161 sf 11.00% Impervious Runoff Depth=1.48" Flow Length=740' Tc=34.4 min CN=80 Runoff=3.60 cfs 0.487 af
Subcatchment14S: PRE S3	Runoff Area=2,111,132 sf 12.78% Impervious Runoff Depth=1.22" Flow Length=2,998' Tc=49.9 min CN=76 Runoff=29.36 cfs 4.936 af
Subcatchment15S: Chamber 1	Runoff Area=22,534 sf 84.12% Impervious Runoff Depth=2.74" Tc=5.0 min CN=95 Runoff=1.63 cfs 0.118 af
Subcatchment 16S: Chamber 2	Runoff Area=25,923 sf 86.51% Impervious Runoff Depth=2.85" Tc=5.0 min CN=96 Runoff=1.91 cfs 0.141 af

Post - Development Update - Feb 2023 w POI CulType III 24-hr 2 Year Saco Rainfall=3.30" Prepared by Gorrill Palmer Consulting Engs Printed 4/10/2023 HydroCAD® 10.20-2f s/n 01265 © 2022 HydroCAD Software Solutions LLC Page 4 Runoff Area=11,292 sf 82.15% Impervious Runoff Depth=2.74" Subcatchment 17S: SF Dripedges Tc=5.0 min CN=95 Runoff=0.82 cfs 0.059 af Subcatchment 19S: Front Duplex (Drip Runoff Area=2,612 sf 100.00% Impervious Runoff Depth=3.07" Tc=5.0 min CN=98 Runoff=0.20 cfs 0.015 af Subcatchment 20S: FP 1 Subcatchment Runoff Area=17,052 sf 80.52% Impervious Runoff Depth=2.64" Tc=5.0 min CN=94 Runoff=1.20 cfs 0.086 af Subcatchment 21S: FP 2 Subcatchment Runoff Area=5,482 sf 95.31% Impervious Runoff Depth=2.96" Tc=5.0 min CN=97 Runoff=0.41 cfs 0.031 af Runoff Area=20,003 sf 83.70% Impervious Runoff Depth=2.74" Subcatchment 22S: FP 3 Subcatchment Tc=5.0 min CN=95 Runoff=1.44 cfs 0.105 af Subcatchment 23S: FP 4 Subcatchment Runoff Area=5,920 sf 96.01% Impervious Runoff Depth=2.96" Tc=5.0 min CN=97 Runoff=0.44 cfs 0.033 af Reach 1R: POI #1 Inflow=8.90 cfs 3.313 af Outflow=8.90 cfs 3.313 af Reach 2R: Avg. Flow Depth=0.39' Max Vel=2.10 fps Inflow=2.99 cfs 1.515 af n=0.025 L=457.6' S=0.0077 '/' Capacity=232.90 cfs Outflow=2.97 cfs 1.515 af Avg. Flow Depth=0.02' Max Vel=0.29 fps Inflow=0.50 cfs 0.185 af Reach 3R: n=0.030 L=565.9' S=0.0046 '/' Capacity=997.94 cfs Outflow=0.33 cfs 0.185 af Reach 4R: POI #2 Inflow=4.91 cfs 2.086 af Outflow=4.91 cfs 2.086 af Reach 5R: POI #3 Inflow=31.26 cfs 5.918 af Outflow=31.26 cfs 5.918 af Avg. Flow Depth=0.23' Max Vel=0.05 fps Inflow=0.25 cfs 0.297 af Reach 6R: n=0.800 L=610.0' S=0.0066 '/' Capacity=13.21 cfs Outflow=0.21 cfs 0.297 af Avg. Flow Depth=0.24' Max Vel=1.81 fps Inflow=3.64 cfs 0.319 af Reach 7R: n=0.025 L=1,480.0' S=0.0083 '/' Capacity=129.49 cfs Outflow=1.75 cfs 0.319 af Peak Elev=102.44' Storage=7,253 cf Inflow=4.92 cfs 0.346 af Pond 1P: GUSF #1 Primary=0.06 cfs 0.202 af Secondary=0.81 cfs 0.144 af Tertiary=0.00 cfs 0.000 af Outflow=0.87 cfs 0.346 af Peak Elev=103.34' Storage=6,730 cf Inflow=4.79 cfs 0.330 af Pond 2P: GUSF #2 Primary=0.05 cfs 0.178 af Secondary=0.83 cfs 0.152 af Tertiary=0.00 cfs 0.000 af Outflow=0.88 cfs 0.330 af Pond 3P: GUSF #3 Peak Elev=101.94' Storage=4,496 cf Inflow=3.07 cfs 0.218 af

 Pond 4P: GUSF #5
 Peak Elev=102.94' Storage=3,764 cf
 Inflow=2.64 cfs
 0.185 af

 Primary=0.04 cfs
 0.116 af
 Secondary=0.46 cfs
 0.070 af
 Tertiary=0.00 cfs
 0.000 af
 Outflow=0.50 cfs
 0.185 af

Primary=0.04 cfs 0.129 af Secondary=0.57 cfs 0.089 af Tertiary=0.00 cfs 0.000 af Outflow=0.61 cfs 0.218 af

Pond 5P: Gravel Wetland #2 Peak Elev=100.27' Storage=17,563 cf Inflow=11.11 cfs 0.782 af Primary=0.19 cfs 0.476 af Secondary=1.29 cfs 0.306 af Tertiary=0.00 cfs 0.000 af Outflow=1.48 cfs 0.782 af

Post - Development Update - Feb 2023 w POI CulType III 24-hr 2	2 Year Saco Rainfall=3.30"
Prepared by Gorrill Palmer Consulting Engs	Printed 4/10/2023
HydroCAD® 10.20-2f s/n 01265 © 2022 HydroCAD Software Solutions LLC	Page 5

Pond 6P: GUSF #4 Primary=0.04 cfs 0.124 af	Peak Elev=101.70' Storage=4,377 cf Inflow=2.94 cfs 0.207 af Secondary=0.38 cfs 0.083 af Tertiary=0.00 cfs 0.000 af Outflow=0.42 cfs 0.207 af
Pond 7P: Gravel Wetland Primary=1.00 cfs 1.372 af	I#1 Peak Elev=100.29' Storage=36,339 cf Inflow=19.82 cfs 1.376 af Secondary=0.02 cfs 0.004 af Tertiary=0.00 cfs 0.000 af Outflow=1.02 cfs 1.376 af
Pond 8/9P: GUSF #6 & #7 Primary=0.14 cfs 0.133 af	Peak Elev=99.61' Storage=1,796 cf Inflow=1.30 cfs 0.125 af Secondary=0.00 cfs 0.000 af Tertiary=0.00 cfs 0.000 af Outflow=0.14 cfs 0.133 af
Pond 10P: GUSF #8 Primary=0.05 cfs 0.145 af	Peak Elev=101.69' Storage=4,357 cf Inflow=2.37 cfs 0.165 af Secondary=0.06 cfs 0.019 af Tertiary=0.00 cfs 0.000 af Outflow=0.11 cfs 0.165 af
Pond 11P: GUSF #9 Primary=0.07 cfs 0.241 af	Peak Elev=98.42' Storage=8,216 cf Inflow=5.32 cfs 0.367 af Secondary=0.43 cfs 0.126 af Tertiary=0.00 cfs 0.000 af Outflow=0.50 cfs 0.367 af
Pond 12P: CHAMBER1	Peak Elev=107.13' Storage=0.043 af Inflow=1.63 cfs 0.118 af Primary=0.02 cfs 0.071 af Secondary=1.31 cfs 0.048 af Outflow=1.33 cfs 0.118 af
Pond 13P: CHAMBER2	Peak Elev=106.91' Storage=0.051 af Inflow=1.91 cfs 0.141 af Primary=0.02 cfs 0.079 af Secondary=1.64 cfs 0.062 af Outflow=1.66 cfs 0.141 af
Pond 14P: FocalPoint 1	Peak Elev=108.84' Storage=75 cf Inflow=1.20 cfs 0.086 af Primary=0.15 cfs 0.060 af Secondary=1.05 cfs 0.026 af Outflow=1.20 cfs 0.086 af
Pond 15P: FocalPoint 2	Peak Elev=108.77' Storage=32 cf Inflow=0.41 cfs 0.031 af Primary=0.15 cfs 0.038 af Secondary=0.26 cfs 0.003 af Outflow=0.41 cfs 0.041 af
Pond 16P: FocalPoint 3	Peak Elev=108.86' Storage=82 cf Inflow=1.44 cfs 0.105 af Primary=0.18 cfs 0.056 af Secondary=1.26 cfs 0.031 af Outflow=1.44 cfs 0.087 af
Pond 17P: FocalPoint 4	Peak Elev=108.77' Storage=45 cf Inflow=0.44 cfs 0.033 af Primary=0.07 cfs 0.017 af Secondary=0.37 cfs 0.008 af Outflow=0.44 cfs 0.025 af
Pond 20P: POI 1	Peak Elev=85.14' Storage=18 cf Inflow=8.90 cfs 3.313 af 36.0" Round Culvert n=0.011 L=88.0' S=0.0398 '/' Outflow=8.90 cfs 3.313 af
Pond 90P: POI 3 36	Peak Elev=85.47' Storage=793 cf Inflow=31.26 cfs 5.918 af 0.0" Round Culvert x 2.00 n=0.011 L=126.0' S=0.0020 '/' Outflow=31.24 cfs 5.918 af
Pond 91P: POI 2	Peak Elev=95.30' Storage=3,593 cf Inflow=4.91 cfs 2.086 af 12.0" Round Culvert n=0.025 L=38.0' S=0.0134 '/' Outflow=3.28 cfs 2.085 af
Total Runoff	Area = 93.822 ac Runoff Volume = 11.565 af Average Runoff Depth = 1.48"

73.50% Pervious = 68.955 ac 26.50% Impervious = 24.867 ac

Post - Development Update - Feb 2023 w POI C Type III 24-hr 10 Year Saco Rainfall=4.90"Prepared by Gorrill Palmer Consulting EngsPrinted 4/10/2023HydroCAD® 10.20-2f s/n 01265 © 2022 HydroCAD Software Solutions LLCPage 6

Time span=0.00-100.00 hrs, dt=0.01 hrs, 10001 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment 1S: Sub to GUSF #1	Runoff Area=73,933 sf 67.19% Impervious Runoff Depth=3.99" Tc=5.0 min CN=92 Runoff=7.82 cfs 0.565 af
Subcatchment 2S: Sub to GUSF #2	Runoff Area=82,545 sf 47.04% Impervious Runoff Depth=3.57" Tc=5.0 min CN=88 Runoff=8.05 cfs 0.564 af
Subcatchment 3S: Sub to GUSF #3	Runoff Area=44,837 sf 71.91% Impervious Runoff Depth=4.10" Tc=5.0 min CN=93 Runoff=4.82 cfs 0.352 af
Subcatchment 4S: Sub to GUSF #5	Runoff Area=39,620 sf 67.95% Impervious Runoff Depth=3.99" Tc=5.0 min CN=92 Runoff=4.19 cfs 0.303 af
Subcatchment 5S: Sub to GW #2	Runoff Area=167,094 sf 63.95% Impervious Runoff Depth=3.99" Tc=5.0 min CN=92 Runoff=17.68 cfs 1.276 af
Subcatchment 6S: Sub to GUSF #4	Runoff Area=44,235 sf 66.73% Impervious Runoff Depth=3.99" Tc=5.0 min CN=92 Runoff=4.68 cfs 0.338 af
Subcatchment7S: Sub to GW #1	Runoff Area=318,070 sf 60.35% Impervious Runoff Depth=3.78" Tc=5.0 min CN=90 Runoff=32.39 cfs 2.300 af
Subcatchment 8S: Sub to GUSF #6	Runoff Area=79,636 sf 23.58% Impervious Runoff Depth=0.81" Tc=5.0 min CN=53 Runoff=1.32 cfs 0.124 af
Subcatchment9S: Sub to GUSF #7	Runoff Area=36,965 sf 63.79% Impervious Runoff Depth=2.54" Tc=5.0 min CN=77 Runoff=2.62 cfs 0.180 af
Subcatchment 10S: Sub to GUSF #8	Runoff Area=60,887 sf 60.77% Impervious Runoff Depth=2.72" Tc=5.0 min CN=79 Runoff=4.62 cfs 0.316 af
Subcatchment11S: Sub to GUSF #9	Runoff Area=91,815 sf 70.56% Impervious Runoff Depth=3.57" Tc=5.0 min CN=88 Runoff=8.95 cfs 0.628 af
Subcatchment 12S: PRE S1	Runoff Area=653,124 sf 12.20% Impervious Runoff Depth=2.37" Flow Length=2,066' Tc=91.1 min CN=75 Runoff=12.50 cfs 2.959 af
Subcatchment 13S: PRE S2	Runoff Area=172,161 sf 11.00% Impervious Runoff Depth=2.81" Flow Length=740' Tc=34.4 min CN=80 Runoff=6.89 cfs 0.924 af
Subcatchment 14S: PRE S3	Runoff Area=2,111,132 sf 12.78% Impervious Runoff Depth=2.45" Flow Length=2,998' Tc=49.9 min CN=76 Runoff=60.94 cfs 9.908 af
Subcatchment 15S: Chamber 1	Runoff Area=22,534 sf 84.12% Impervious Runoff Depth=4.32" Tc=5.0 min CN=95 Runoff=2.50 cfs 0.186 af
Subcatchment 16S: Chamber 2	Runoff Area=25,923 sf 86.51% Impervious Runoff Depth=4.43" Tc=5.0 min CN=96 Runoff=2.91 cfs 0.220 af

Post - Development Update - Feb 2023 w POI C Type III 24-hr10 Year Saco Rainfall=4.90"Prepared by Gorrill Palmer Consulting EngsPrinted 4/10/2023HydroCAD® 10.20-2f s/n 01265 © 2022 HydroCAD Software Solutions LLCPage 7

Subcatchment 17S: SF Dripedges	Runoff Area=11,292 sf 82.15% Impervious Runoff Depth=4.32" Tc=5.0 min CN=95 Runoff=1.25 cfs 0.093 af
Subcatchment 19S: Front Duplex (Drip	Runoff Area=2,612 sf 100.00% Impervious Runoff Depth=4.66" Tc=5.0 min CN=98 Runoff=0.30 cfs 0.023 af
Subcatchment 20S: FP 1 Subcatchment	Runoff Area=17,052 sf 80.52% Impervious Runoff Depth=4.21" Tc=5.0 min CN=94 Runoff=1.86 cfs 0.137 af
Subcatchment 21S: FP 2 Subcatchment	Runoff Area=5,482 sf 95.31% Impervious Runoff Depth=4.55" Tc=5.0 min CN=97 Runoff=0.62 cfs 0.048 af
Subcatchment 22S: FP 3 Subcatchment	Runoff Area=20,003 sf 83.70% Impervious Runoff Depth=4.32" Tc=5.0 min CN=95 Runoff=2.22 cfs 0.165 af
Subcatchment 23S: FP 4 Subcatchment	Runoff Area=5,920 sf 96.01% Impervious Runoff Depth=4.55" Tc=5.0 min CN=97 Runoff=0.67 cfs 0.052 af
Reach 1R: POI #1	Inflow=20.12 cfs 6.019 af Outflow=20.12 cfs 6.019 af
	vg. Flow Depth=0.67' Max Vel=3.01 fps Inflow=9.65 cfs 2.495 af 7.6' S=0.0077 '/' Capacity=232.90 cfs Outflow=9.64 cfs 2.495 af
	vg. Flow Depth=0.05' Max Vel=0.46 fps Inflow=1.72 cfs 0.303 af 5.9' S=0.0046 '/' Capacity=997.94 cfs Outflow=1.26 cfs 0.303 af
Reach 4R: POI #2	Inflow=9.39 cfs 3.585 af Outflow=9.39 cfs 3.585 af
Reach 5R: POI #3	Inflow=64.91 cfs 11.655 af Outflow=64.91 cfs 11.655 af
	vg. Flow Depth=0.37' Max Vel=0.07 fps Inflow=1.08 cfs 0.620 af 10.0' S=0.0066 '/' Capacity=13.21 cfs Outflow=0.48 cfs 0.620 af
	vg. Flow Depth=0.41' Max Vel=2.41 fps Inflow=6.60 cfs 0.499 af 0.0' S=0.0083 '/' Capacity=129.49 cfs Outflow=4.52 cfs 0.499 af
Pond 1P: GUSF #1 Primary=0.06 cfs 0.214 af Secondary=2.21 cf	Peak Elev=103.06' Storage=10,603 cf Inflow=7.82 cfs 0.565 af fs 0.350 af Tertiary=0.00 cfs 0.000 af Outflow=2.27 cfs 0.565 af
Pond 2P: GUSF #2 Primary=0.05 cfs 0.188 af Secondary=2.86 cf	Peak Elev=103.95' Storage=9,678 cf Inflow=8.05 cfs 0.564 af fs 0.376 af Tertiary=0.00 cfs 0.000 af Outflow=2.91 cfs 0.564 af
Pond 3P: GUSF #3 Primary=0.04 cfs 0.138 af Secondary=1.73 cf	Peak Elev=102.39' Storage=6,215 cf Inflow=4.82 cfs 0.352 af fs 0.214 af Tertiary=0.00 cfs 0.000 af Outflow=1.77 cfs 0.352 af
Pond 4P: GUSF #5 Primary=0.04 cfs 0.125 af Secondary=1.68 cf	Peak Elev=103.30' Storage=5,115 cf Inflow=4.19 cfs 0.303 af fs 0.178 af Tertiary=0.00 cfs 0.000 af Outflow=1.72 cfs 0.303 af
Pond 5P: Gravel Wetland #2	Peak Elev=100.91' Storage=25,421 cf Inflow=17.68 cfs 1.276 af

 Pond 5P: Gravel Wetland #2
 Peak Elev=100.91' Storage=25,421 cf
 Inflow=17.68 cfs
 1.276 af

 Primary=0.22 cfs
 0.515 af
 Secondary=4.72 cfs
 0.761 af
 Tertiary=0.00 cfs
 0.000 af
 Outflow=4.94 cfs
 1.276 af

Post - Development Update - Feb 2023 w POI C Type III 24-hr	10 Year Saco Rainfall=4.90"
Prepared by Gorrill Palmer Consulting Engs	Printed 4/10/2023
HydroCAD® 10.20-2f s/n 01265 © 2022 HydroCAD Software Solutions LLC	Page 8

Pond 6P: GUSF #4 Primary=0.04 cfs 0.133 af	Peak Elev=102.47' Storage=7,091 cf Inflow=4.68 cfs 0.338 af Secondary=0.75 cfs 0.205 af Tertiary=0.00 cfs 0.000 af Outflow=0.79 cfs 0.338 af
Pond 7P: Gravel Wetland Primary=1.58 cfs 2.178 af	I#1 Peak Elev=101.50' Storage=61,379 cf Inflow=32.39 cfs 2.300 af Secondary=0.18 cfs 0.122 af Tertiary=0.00 cfs 0.000 af Outflow=1.76 cfs 2.300 af
Pond 8/9P: GUSF #6 & #7 Primary=0.14 cfs 0.280 af	Peak Elev=100.58' Storage=6,943 cf Inflow=3.90 cfs 0.304 af Secondary=0.07 cfs 0.023 af Tertiary=0.00 cfs 0.000 af Outflow=0.21 cfs 0.304 af
Pond 10P: GUSF #8 Primary=0.05 cfs 0.157 af	Peak Elev=102.09' Storage=6,024 cf Inflow=4.62 cfs 0.316 af Secondary=0.89 cfs 0.160 af Tertiary=0.00 cfs 0.000 af Outflow=0.94 cfs 0.316 af
Pond 11P: GUSF #9 Primary=0.07 cfs 0.255 af	Peak Elev=99.06' Storage=12,331 cf Inflow=8.95 cfs 0.628 af Secondary=1.99 cfs 0.373 af Tertiary=0.00 cfs 0.000 af Outflow=2.06 cfs 0.628 af
Pond 12P: CHAMBER1	Peak Elev=107.23' Storage=0.044 af Inflow=2.50 cfs 0.186 af Primary=0.02 cfs 0.074 af Secondary=2.46 cfs 0.112 af Outflow=2.48 cfs 0.186 af
Pond 13P: CHAMBER2	Peak Elev=107.01' Storage=0.052 af Inflow=2.91 cfs 0.220 af Primary=0.02 cfs 0.082 af Secondary=2.85 cfs 0.138 af Outflow=2.87 cfs 0.220 af
Pond 14P: FocalPoint 1	Peak Elev=108.89' Storage=83 cf Inflow=1.86 cfs 0.137 af Primary=0.15 cfs 0.087 af Secondary=1.71 cfs 0.050 af Outflow=1.86 cfs 0.137 af
Pond 15P: FocalPoint 2	Peak Elev=108.80' Storage=35 cf Inflow=0.62 cfs 0.048 af Primary=0.15 cfs 0.026 af Secondary=0.47 cfs 0.008 af Outflow=0.62 cfs 0.034 af
Pond 16P: FocalPoint 3	Peak Elev=108.91' Storage=91 cf Inflow=2.22 cfs 0.165 af Primary=0.18 cfs 0.115 af Secondary=2.04 cfs 0.060 af Outflow=2.21 cfs 0.174 af
Pond 17P: FocalPoint 4	Peak Elev=108.79' Storage=48 cf Inflow=0.67 cfs 0.052 af Primary=0.07 cfs 0.048 af Secondary=0.59 cfs 0.015 af Outflow=0.67 cfs 0.064 af
Pond 20P: POI 1	Peak Elev=85.79' Storage=40 cf Inflow=20.12 cfs 6.019 af 36.0" Round Culvert n=0.011 L=88.0' S=0.0398 '/' Outflow=20.12 cfs 6.019 af
Pond 90P: POI 3 36.0	Peak Elev=86.67' Storage=1,588 cf Inflow=64.91 cfs 11.655 af "Round Culvert x 2.00 n=0.011 L=126.0' S=0.0020 '/' Outflow=64.88 cfs 11.655 af
Pond 91P: POI 2	Peak Elev=96.42' Storage=14,131 cf Inflow=9.39 cfs 3.585 af 12.0" Round Culvert n=0.025 L=38.0' S=0.0134 '/' Outflow=4.22 cfs 3.585 af
Total Runoff	Area = 93.822 ac Runoff Volume = 21.661 af Average Runoff Depth = 2.77 "

73.50% Pervious = 68.955 ac 26.50% Impervious = 24.867 ac

Post - Development Update - Feb 2023 w POI C Type III 24-hr 25 Year Saco Rainfall=6.20"Prepared by Gorrill Palmer Consulting EngsPrinted 4/10/2023HydroCAD® 10.20-2f s/n 01265 © 2022 HydroCAD Software Solutions LLCPage 9

Time span=0.00-100.00 hrs, dt=0.01 hrs, 10001 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment 1S: Sub to GUSF #1	Runoff Area=73,933 sf 67.19% Impervious Runoff Depth=5.27" Tc=5.0 min CN=92 Runoff=10.16 cfs 0.745 af
Subcatchment 2S: Sub to GUSF #2	Runoff Area=82,545 sf 47.04% Impervious Runoff Depth=4.82" Tc=5.0 min CN=88 Runoff=10.69 cfs 0.761 af
Subcatchment 3S: Sub to GUSF #3	Runoff Area=44,837 sf 71.91% Impervious Runoff Depth=5.38" Tc=5.0 min CN=93 Runoff=6.23 cfs 0.461 af
Subcatchment 4S: Sub to GUSF #5	Runoff Area=39,620 sf 67.95% Impervious Runoff Depth=5.27" Tc=5.0 min CN=92 Runoff=5.44 cfs 0.399 af
Subcatchment 5S: Sub to GW #2	Runoff Area=167,094 sf 63.95% Impervious Runoff Depth=5.27" Tc=5.0 min CN=92 Runoff=22.96 cfs 1.683 af
Subcatchment 6S: Sub to GUSF #4	Runoff Area=44,235 sf 66.73% Impervious Runoff Depth=5.27" Tc=5.0 min CN=92 Runoff=6.08 cfs 0.446 af
Subcatchment7S: Sub to GW #1	Runoff Area=318,070 sf 60.35% Impervious Runoff Depth=5.04" Tc=5.0 min CN=90 Runoff=42.53 cfs 3.067 af
Subcatchment 8S: Sub to GUSF #6	Runoff Area=79,636 sf 23.58% Impervious Runoff Depth=1.47" Tc=5.0 min CN=53 Runoff=2.85 cfs 0.225 af
Subcatchment9S: Sub to GUSF #7	Runoff Area=36,965 sf 63.79% Impervious Runoff Depth=3.65" Tc=5.0 min CN=77 Runoff=3.77 cfs 0.258 af
Subcatchment 10S: Sub to GUSF #8	Runoff Area=60,887 sf 60.77% Impervious Runoff Depth=3.86" Tc=5.0 min CN=79 Runoff=6.53 cfs 0.449 af
Subcatchment11S: Sub to GUSF #9	Runoff Area=91,815 sf 70.56% Impervious Runoff Depth=4.82" Tc=5.0 min CN=88 Runoff=11.90 cfs 0.846 af
Subcatchment 12S: PRE S1	Runoff Area=653,124 sf 12.20% Impervious Runoff Depth=3.45" Flow Length=2,066' Tc=91.1 min CN=75 Runoff=18.37 cfs 4.315 af
Subcatchment 13S: PRE S2	Runoff Area=172,161 sf 11.00% Impervious Runoff Depth=3.96" Flow Length=740' Tc=34.4 min CN=80 Runoff=9.70 cfs 1.305 af
Subcatchment 14S: PRE S3	Runoff Area=2,111,132 sf 12.78% Impervious Runoff Depth=3.55" Flow Length=2,998' Tc=49.9 min CN=76 Runoff=88.58 cfs 14.351 af
Subcatchment 15S: Chamber 1	Runoff Area=22,534 sf 84.12% Impervious Runoff Depth=5.61" Tc=5.0 min CN=95 Runoff=3.20 cfs 0.242 af
Subcatchment 16S: Chamber 2	Runoff Area=25,923 sf 86.51% Impervious Runoff Depth=5.73" Tc=5.0 min CN=96 Runoff=3.71 cfs 0.284 af

Post - Development Update - Feb 2023 w POI C Type III 24-hr 25 Year Saco Rainfall=6.20"Prepared by Gorrill Palmer Consulting EngsPrinted 4/10/2023HydroCAD® 10.20-2f s/n 01265 © 2022 HydroCAD Software Solutions LLCPage 10		
Subcatchment17S: SF Dripedges	Runoff Area=11,292 sf 82.15% Impervious Runoff Depth=5.61" Tc=5.0 min CN=95 Runoff=1.60 cfs 0.121 af	
Subcatchment 19S: Front Duplex (Drip	Runoff Area=2,612 sf 100.00% Impervious Runoff Depth=5.96" Tc=5.0 min CN=98 Runoff=0.38 cfs 0.030 af	
Subcatchment 20S: FP 1 Subcatchment	Runoff Area=17,052 sf 80.52% Impervious Runoff Depth=5.49" Tc=5.0 min CN=94 Runoff=2.40 cfs 0.179 af	
Subcatchment 21S: FP 2 Subcatchment	Runoff Area=5,482 sf 95.31% Impervious Runoff Depth=5.84" Tc=5.0 min CN=97 Runoff=0.79 cfs 0.061 af	
Subcatchment 22S: FP 3 Subcatchment	Runoff Area=20,003 sf 83.70% Impervious Runoff Depth=5.61" Tc=5.0 min CN=95 Runoff=2.84 cfs 0.215 af	
Subcatchment 23S: FP 4 Subcatchment	Runoff Area=5,920 sf 96.01% Impervious Runoff Depth=5.84" Tc=5.0 min CN=97 Runoff=0.85 cfs 0.066 af	
Reach 1R: POI #1	Inflow=30.16 cfs 8.364 af Outflow=30.16 cfs 8.364 af	
	rg. Flow Depth=0.82' Max Vel=3.41 fps Inflow=14.52 cfs 3.305 af .6' S=0.0077 '/' Capacity=232.90 cfs Outflow=14.51 cfs 3.305 af	
	Avg. Flow Depth=0.07' Max Vel=0.57 fps Inflow=2.62 cfs 0.399 af 5.9' S=0.0046 '/' Capacity=997.94 cfs Outflow=2.14 cfs 0.399 af	
Reach 4R: POI #2	Inflow=12.79 cfs 4.848 af Outflow=12.79 cfs 4.848 af	
Reach 5R: POI #3	Inflow=93.82 cfs 16.776 af Outflow=93.82 cfs 16.776 af	
	Avg. Flow Depth=0.58' Max Vel=0.09 fps Inflow=2.34 cfs 0.932 af 10.0' S=0.0066 '/' Capacity=13.21 cfs Outflow=1.11 cfs 0.932 af	
	Avg. Flow Depth=0.48' Max Vel=2.63 fps Inflow=8.45 cfs 0.647 af 0.0' S=0.0083 '/' Capacity=129.49 cfs Outflow=6.15 cfs 0.647 af	
Pond 1P: GUSF #1 Primary=0.06 cfs 0.221 af Secondary=2.88 c	Peak Elev=103.56' Storage=13,603 cf Inflow=10.16 cfs 0.745 af fs 0.524 af Tertiary=0.00 cfs 0.000 af Outflow=2.94 cfs 0.745 af	
Pond 2P: GUSF #2 Primary=0.05 cfs 0.194 af Secondary=3.93 c	Peak Elev=104.46' Storage=12,391 cf Inflow=10.69 cfs 0.761 af fs 0.567 af Tertiary=0.00 cfs 0.000 af Outflow=3.98 cfs 0.761 af	
Pond 3P: GUSF #3 Primary=0.04 cfs 0.142 af Secondary=2.33 c	Peak Elev=102.75' Storage=7,694 cf Inflow=6.23 cfs 0.461 af fs 0.319 af Tertiary=0.00 cfs 0.000 af Outflow=2.37 cfs 0.461 af	
Pond 4P: GUSF #5 Primary=0.04 cfs 0.129 af Secondary=2.58 c	Peak Elev=103.56' Storage=6,154 cf Inflow=5.44 cfs 0.399 af fs 0.270 af Tertiary=0.00 cfs 0.000 af Outflow=2.62 cfs 0.399 af	
Pond 5P: Gravel Wetland #2 Primary=0.23 cfs 0.539 af Secondary=7.12 c	Peak Elev=101.38' Storage=31,516 cf Inflow=22.96 cfs 1.683 af fs 1.145 af Tertiary=0.00 cfs 0.000 af Outflow=7.35 cfs 1.683 af	

Post - Development Update - Feb 2023 w POI C Type III 24-hr 25	Year Saco Rainfall=6.20"
Prepared by Gorrill Palmer Consulting Engs	Printed 4/10/2023
HydroCAD® 10.20-2f s/n 01265 © 2022 HydroCAD Software Solutions LLC	Page 11

Pond 6P: GUSF #4	Peak Elev=103.05' Storage=9,449 cf Inflow=6.08 cfs 0.446 af Secondary=0.93 cfs 0.308 af Tertiary=0.00 cfs 0.000 af Outflow=0.97 cfs 0.446 af
Philliary=0.04 CIS 0.137 at	
Pond 7P: Gravel Wetland Primary=1.92 cfs 2.850 af	#1 Peak Elev=102.48' Storage=83,837 cf Inflow=42.53 cfs 3.067 af Secondary=0.24 cfs 0.217 af Tertiary=0.00 cfs 0.000 af Outflow=2.16 cfs 3.067 af
Pond 8/9P: GUSF #6 & #7 Primary=0.14 cfs 0.307 af	Peak Elev=100.91' Storage=9,191 cf Inflow=6.59 cfs 0.483 af Secondary=0.46 cfs 0.176 af Tertiary=0.00 cfs 0.000 af Outflow=0.60 cfs 0.483 af
Pond 10P: GUSF #8 Primary=0.05 cfs 0.163 af	Peak Elev=102.49' Storage=7,790 cf Inflow=6.53 cfs 0.449 af Secondary=1.86 cfs 0.287 af Tertiary=0.00 cfs 0.000 af Outflow=1.91 cfs 0.449 af
Pond 11P: GUSF #9 Primary=0.07 cfs 0.263 af	Peak Elev=99.62' Storage=16,394 cf Inflow=11.90 cfs 0.846 af Secondary=2.80 cfs 0.583 af Tertiary=0.00 cfs 0.000 af Outflow=2.87 cfs 0.846 af
Pond 12P: CHAMBER1	Peak Elev=107.28' Storage=0.044 af Inflow=3.20 cfs 0.242 af Primary=0.02 cfs 0.076 af Secondary=3.16 cfs 0.166 af Outflow=3.18 cfs 0.242 af
Pond 13P: CHAMBER2	Peak Elev=107.06' Storage=0.053 af Inflow=3.71 cfs 0.284 af Primary=0.02 cfs 0.083 af Secondary=3.65 cfs 0.201 af Outflow=3.67 cfs 0.284 af
Pond 14P: FocalPoint 1	Peak Elev=108.93' Storage=89 cf Inflow=2.40 cfs 0.179 af Primary=0.15 cfs 0.107 af Secondary=2.25 cfs 0.072 af Outflow=2.39 cfs 0.179 af
Pond 15P: FocalPoint 2	Peak Elev=108.82' Storage=37 cf Inflow=0.79 cfs 0.061 af Primary=0.15 cfs 0.041 af Secondary=0.64 cfs 0.013 af Outflow=0.79 cfs 0.055 af
Pond 16P: FocalPoint 3	Peak Elev=108.96' Storage=97 cf Inflow=2.84 cfs 0.215 af Primary=0.18 cfs 0.143 af Secondary=2.69 cfs 0.086 af Outflow=2.86 cfs 0.228 af
Pond 17P: FocalPoint 4	Peak Elev=108.81' Storage=50 cf Inflow=0.85 cfs 0.066 af Primary=0.07 cfs 0.053 af Secondary=0.78 cfs 0.022 af Outflow=0.85 cfs 0.075 af
Pond 20P: POI 1	Peak Elev=86.31' Storage=80 cf Inflow=30.16 cfs 8.364 af 36.0" Round Culvert n=0.011 L=88.0' S=0.0398 '/' Outflow=30.16 cfs 8.364 af
Pond 90P: POI 3 36.0	Peak Elev=87.99' Storage=2,890 cf Inflow=93.82 cfs 16.776 af "Round Culvert x 2.00 n=0.011 L=126.0' S=0.0020 '/' Outflow=93.68 cfs 16.776 af
Pond 91P: POI 2	Peak Elev=96.97' Storage=24,720 cf Inflow=12.79 cfs 4.848 af 12.0" Round Culvert n=0.025 L=38.0' S=0.0134 '/' Outflow=4.61 cfs 4.848 af
Total Runoff	Area = 93.822 ac Runoff Volume = 30.510 af Average Runoff Depth = 3.90"

73.50% Pervious = 68.955 ac 26.50% Impervious = 24.867 ac

Post - Development Update - Feb 2023 w POI C Type III 24-hr 50 Year Saco Rainfall=7.30"Prepared by Gorrill Palmer Consulting EngsPrinted 4/10/2023HydroCAD® 10.20-2f s/n 01265 © 2022 HydroCAD Software Solutions LLCPage 12

Time span=0.00-100.00 hrs, dt=0.01 hrs, 10001 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment 1S: Sub to GUSF #1	Runoff Area=73,933 sf 67.19% Impervious Runoff Depth=6.35" Tc=5.0 min CN=92 Runoff=12.12 cfs 0.898 af
Subcatchment 2S: Sub to GUSF #2	Runoff Area=82,545 sf 47.04% Impervious Runoff Depth=5.89" Tc=5.0 min CN=88 Runoff=12.92 cfs 0.929 af
Subcatchment 3S: Sub to GUSF #3	Runoff Area=44,837 sf 71.91% Impervious Runoff Depth=6.47" Tc=5.0 min CN=93 Runoff=7.42 cfs 0.555 af
Subcatchment 4S: Sub to GUSF #5	Runoff Area=39,620 sf 67.95% Impervious Runoff Depth=6.35" Tc=5.0 min CN=92 Runoff=6.49 cfs 0.481 af
Subcatchment 5S: Sub to GW #2	Runoff Area=167,094 sf 63.95% Impervious Runoff Depth=6.35" Tc=5.0 min CN=92 Runoff=27.39 cfs 2.030 af
Subcatchment 6S: Sub to GUSF #4	Runoff Area=44,235 sf 66.73% Impervious Runoff Depth=6.35" Tc=5.0 min CN=92 Runoff=7.25 cfs 0.537 af
Subcatchment7S: Sub to GW #1	Runoff Area=318,070 sf 60.35% Impervious Runoff Depth=6.12" Tc=5.0 min CN=90 Runoff=51.04 cfs 3.722 af
Subcatchment 8S: Sub to GUSF #6	Runoff Area=79,636 sf 23.58% Impervious Runoff Depth=2.12" Tc=5.0 min CN=53 Runoff=4.36 cfs 0.323 af
Subcatchment9S: Sub to GUSF #7	Runoff Area=36,965 sf 63.79% Impervious Runoff Depth=4.64" Tc=5.0 min CN=77 Runoff=4.76 cfs 0.328 af
Subcatchment 10S: Sub to GUSF #8	Runoff Area=60,887 sf 60.77% Impervious Runoff Depth=4.86" Tc=5.0 min CN=79 Runoff=8.18 cfs 0.566 af
Subcatchment 11S: Sub to GUSF #9	Runoff Area=91,815 sf 70.56% Impervious Runoff Depth=5.89" Tc=5.0 min CN=88 Runoff=14.37 cfs 1.034 af
Subcatchment 12S: PRE S1	Runoff Area=653,124 sf 12.20% Impervious Runoff Depth=4.41" Flow Length=2,066' Tc=91.1 min CN=75 Runoff=23.50 cfs 5.516 af
Subcatchment13S: PRE S2	Runoff Area=172,161 sf 11.00% Impervious Runoff Depth=4.97" Flow Length=740' Tc=34.4 min CN=80 Runoff=12.12 cfs 1.638 af
Subcatchment14S: PRE S3	Runoff Area=2,111,132 sf 12.78% Impervious Runoff Depth=4.53" Flow Length=2,998' Tc=49.9 min CN=76 Runoff=112.64 cfs 18.277 af
Subcatchment 15S: Chamber 1	Runoff Area=22,534 sf 84.12% Impervious Runoff Depth=6.70" Tc=5.0 min CN=95 Runoff=3.78 cfs 0.289 af
Subcatchment 16S: Chamber 2	Runoff Area=25,923 sf 86.51% Impervious Runoff Depth=6.82" Tc=5.0 min CN=96 Runoff=4.38 cfs 0.338 af

Post - Development Update - Feb 2023 w POI C Type III 24-hr 50 Year Saco Rainfall=7.30" Prepared by Gorrill Palmer Consulting Engs Printed 4/10/2023 HydroCAD® 10.20-2f s/n 01265 © 2022 HydroCAD Software Solutions LLC Page 13 Runoff Area=11,292 sf 82.15% Impervious Runoff Depth=6.70" Subcatchment 17S: SF Dripedges Tc=5.0 min CN=95 Runoff=1.90 cfs 0.145 af Subcatchment 19S: Front Duplex (Drip Runoff Area=2,612 sf 100.00% Impervious Runoff Depth=7.06" Tc=5.0 min CN=98 Runoff=0.44 cfs 0.035 af Runoff Area=17,052 sf 80.52% Impervious Runoff Depth=6.59" Subcatchment 20S: FP 1 Subcatchment Tc=5.0 min CN=94 Runoff=2.84 cfs 0.215 af Subcatchment 21S: FP 2 Subcatchment Runoff Area=5,482 sf 95.31% Impervious Runoff Depth=6.94" Tc=5.0 min CN=97 Runoff=0.93 cfs 0.073 af Runoff Area=20,003 sf 83.70% Impervious Runoff Depth=6.70" Subcatchment 22S: FP 3 Subcatchment Tc=5.0 min CN=95 Runoff=3.36 cfs 0.257 af Subcatchment 23S: FP 4 Subcatchment Runoff Area=5,920 sf 96.01% Impervious Runoff Depth=6.94" Tc=5.0 min CN=97 Runoff=1.01 cfs 0.079 af Reach 1R: POI #1 Inflow=38.52 cfs 10.410 af Outflow=38.52 cfs 10.410 af Reach 2R: Avg. Flow Depth=0.90' Max Vel=3.62 fps Inflow=17.81 cfs 3.996 af n=0.025 L=457.6' S=0.0077 '/' Capacity=232.90 cfs Outflow=17.79 cfs 3.996 af Avg. Flow Depth=0.08' Max Vel=0.62 fps Inflow=3.13 cfs 0.481 af Reach 3R: n=0.030 L=565.9' S=0.0046 '/' Capacity=997.94 cfs Outflow=2.71 cfs 0.481 af Reach 4R: POI #2 Inflow=15.60 cfs 5.933 af Outflow=15.60 cfs 5.933 af Reach 5R: POI #3 Inflow=118.77 cfs 21.300 af Outflow=118.77 cfs 21.300 af Avg. Flow Depth=0.73' Max Vel=0.10 fps Inflow=3.33 cfs 1.217 af Reach 6R: n=0.800 L=610.0' S=0.0066 '/' Capacity=13.21 cfs Outflow=1.71 cfs 1.217 af Avg. Flow Depth=0.52' Max Vel=2.77 fps Inflow=10.00 cfs 0.772 af Reach 7R: n=0.025 L=1,480.0' S=0.0083 '/' Capacity=129.49 cfs Outflow=7.41 cfs 0.772 af Peak Elev=103.94' Storage=16,034 cf Inflow=12.12 cfs 0.898 af Pond 1P: GUSF #1 Primary=0.06 cfs 0.225 af Secondary=3.30 cfs 0.673 af Tertiary=0.04 cfs 0.000 af Outflow=3.41 cfs 0.898 af Peak Elev=104.85' Storage=14,594 cf Inflow=12.92 cfs 0.929 af Pond 2P: GUSF #2 Primary=0.05 cfs 0.197 af Secondary=4.58 cfs 0.732 af Tertiary=0.03 cfs 0.000 af Outflow=4.66 cfs 0.929 af Pond 3P: GUSF #3 Peak Elev=103.01' Storage=8.851 cf Inflow=7.42 cfs 0.555 af Primary=0.04 cfs 0.145 af Secondary=2.70 cfs 0.409 af Tertiary=0.05 cfs 0.000 af Outflow=2.78 cfs 0.555 af Peak Elev=103.75' Storage=6,968 cf Inflow=6.49 cfs 0.481 af Pond 4P: GUSF #5 Primary=0.04 cfs 0.132 af Secondary=3.04 cfs 0.349 af Tertiary=0.05 cfs 0.000 af Outflow=3.13 cfs 0.481 af Peak Elev=101.75' Storage=36,622 cf Inflow=27.39 cfs 2.030 af Pond 5P: Gravel Wetland #2 Primary=0.25 cfs 0.555 af Secondary=8.50 cfs 1.474 af Tertiary=0.15 cfs 0.001 af Outflow=8.90 cfs 2.030 af

Post - Development Update - Feb 2023 w POI C Type III 24-hr 50 Year Saco Rainfall=7.30"		
Prepared by Gorrill Palmer Consulting Engs	Printed 4/10/2023	
HvdroCAD® 10.20-2f s/n 01265 © 2022 HvdroCAD Software Solutions LLC	Page 14	

Pond 6P: GUSF #4 Primary=0.04 cfs 0.140 af	Peak Elev=103.49' Storage=11,406 cf Inflow=7.25 cfs 0.537 af Secondary=1.06 cfs 0.397 af Tertiary=0.00 cfs 0.000 af Outflow=1.10 cfs 0.537 af
Pond 7P: Gravel Wetland Primary=2.15 cfs 3.427 af	I#1 Peak Elev=103.26' Storage=103,371 cf Inflow=51.04 cfs 3.722 af Secondary=0.28 cfs 0.295 af Tertiary=0.00 cfs 0.000 af Outflow=2.44 cfs 3.722 af
Pond 8/9P: GUSF #6 & #7 Primary=0.14 cfs 0.321 af	Peak Elev=101.32' Storage=12,304 cf Inflow=9.10 cfs 0.651 af Secondary=0.76 cfs 0.330 af Tertiary=0.00 cfs 0.000 af Outflow=0.90 cfs 0.651 af
Pond 10P: GUSF #8 Primary=0.05 cfs 0.166 af	Peak Elev=102.87' Storage=9,607 cf Inflow=8.18 cfs 0.566 af Secondary=2.47 cfs 0.400 af Tertiary=0.00 cfs 0.000 af Outflow=2.52 cfs 0.566 af
Pond 11P: GUSF #9 Primary=0.07 cfs 0.269 af	Peak Elev=100.07' Storage=19,896 cf Inflow=14.37 cfs 1.034 af Secondary=3.30 cfs 0.765 af Tertiary=0.04 cfs 0.000 af Outflow=3.41 cfs 1.034 af
Pond 12P: CHAMBER1	Peak Elev=107.32' Storage=0.044 af Inflow=3.78 cfs 0.289 af Primary=0.02 cfs 0.077 af Secondary=3.74 cfs 0.212 af Outflow=3.76 cfs 0.289 af
Pond 13P: CHAMBER2	Peak Elev=107.10' Storage=0.053 af Inflow=4.38 cfs 0.338 af Primary=0.02 cfs 0.084 af Secondary=4.33 cfs 0.254 af Outflow=4.35 cfs 0.338 af
Pond 14P: FocalPoint 1	Peak Elev=108.96' Storage=93 cf Inflow=2.84 cfs 0.215 af Primary=0.15 cfs 0.122 af Secondary=2.69 cfs 0.093 af Outflow=2.84 cfs 0.215 af
Pond 15P: FocalPoint 2	Peak Elev=108.84' Storage=38 cf Inflow=0.93 cfs 0.073 af Primary=0.15 cfs 0.057 af Secondary=0.78 cfs 0.018 af Outflow=0.93 cfs 0.075 af
Pond 16P: FocalPoint 3	Peak Elev=108.99' Storage=97 cf Inflow=3.36 cfs 0.257 af Primary=0.18 cfs 0.164 af Secondary=3.22 cfs 0.111 af Outflow=3.40 cfs 0.275 af
Pond 17P: FocalPoint 4	Peak Elev=108.83' Storage=51 cf Inflow=1.01 cfs 0.079 af Primary=0.07 cfs 0.063 af Secondary=0.93 cfs 0.028 af Outflow=1.00 cfs 0.091 af
Pond 20P: POI 1	Peak Elev=86.76' Storage=175 cf Inflow=38.52 cfs 10.410 af 36.0" Round Culvert n=0.011 L=88.0' S=0.0398 '/' Outflow=38.51 cfs 10.410 af
Pond 90P: POI 3 36.0'	Peak Elev=89.50' Storage=10,115 cf Inflow=118.77 cfs 21.300 af Round Culvert x 2.00 n=0.011 L=126.0' S=0.0020 '/' Outflow=114.63 cfs 21.300 af
Pond 91P: POI 2	Peak Elev=97.37' Storage=34,760 cf Inflow=15.60 cfs 5.933 af 12.0" Round Culvert n=0.025 L=38.0' S=0.0134 '/' Outflow=4.88 cfs 5.933 af
Total Runoff	Area = 93.822 ac Runoff Volume = 38.266 af Average Runoff Depth = 4.89"

73.50% Pervious = 68.955 ac 26.50% Impervious = 24.867 ac

Post - Development Update - Feb 2023 w POI CType III 24-hr 100 Year Saco Rainfall=8.70"Prepared by Gorrill Palmer Consulting EngsPrinted 4/10/2023HydroCAD® 10.20-2f s/n 01265 © 2022 HydroCAD Software Solutions LLCPage 1

Time span=0.00-100.00 hrs, dt=0.01 hrs, 10001 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment 1S: Sub to GUSF #1	Runoff Area=73,933 sf 67.19% Impervious Runoff Depth=7.74" Tc=5.0 min CN=92 Runoff=14.60 cfs 1.094 af
Subcatchment 2S: Sub to GUSF #2	Runoff Area=82,545 sf 47.04% Impervious Runoff Depth=7.25" Tc=5.0 min CN=88 Runoff=15.74 cfs 1.145 af
Subcatchment 3S: Sub to GUSF #3	Runoff Area=44,837 sf 71.91% Impervious Runoff Depth=7.86" Tc=5.0 min CN=93 Runoff=8.92 cfs 0.674 af
Subcatchment 4S: Sub to GUSF #5	Runoff Area=39,620 sf 67.95% Impervious Runoff Depth=7.74" Tc=5.0 min CN=92 Runoff=7.82 cfs 0.586 af
Subcatchment 5S: Sub to GW #2	Runoff Area=167,094 sf 63.95% Impervious Runoff Depth=7.74" Tc=5.0 min CN=92 Runoff=33.00 cfs 2.473 af
Subcatchment 6S: Sub to GUSF #4	Runoff Area=44,235 sf 66.73% Impervious Runoff Depth=7.74" Tc=5.0 min CN=92 Runoff=8.74 cfs 0.655 af
Subcatchment7S: Sub to GW #1	Runoff Area=318,070 sf 60.35% Impervious Runoff Depth=7.50" Tc=5.0 min CN=90 Runoff=61.81 cfs 4.561 af
Subcatchment 8S: Sub to GUSF #6	Runoff Area=79,636 sf 23.58% Impervious Runoff Depth=3.04" Tc=5.0 min CN=53 Runoff=6.49 cfs 0.463 af
Subcatchment9S: Sub to GUSF #7	Runoff Area=36,965 sf 63.79% Impervious Runoff Depth=5.92" Tc=5.0 min CN=77 Runoff=6.04 cfs 0.419 af
Subcatchment 10S: Sub to GUSF #8	Runoff Area=60,887 sf 60.77% Impervious Runoff Depth=6.16" Tc=5.0 min CN=79 Runoff=10.29 cfs 0.718 af
Subcatchment 11S: Sub to GUSF #9	Runoff Area=91,815 sf 70.56% Impervious Runoff Depth=7.25" Tc=5.0 min CN=88 Runoff=17.50 cfs 1.274 af
Subcatchment 12S: PRE S1	Runoff Area=653,124 sf 12.20% Impervious Runoff Depth=5.68" Flow Length=2,066' Tc=91.1 min CN=75 Runoff=30.14 cfs 7.094 af
Subcatchment13S: PRE S2	Runoff Area=172,161 sf 11.00% Impervious Runoff Depth=6.28" Flow Length=740' Tc=34.4 min CN=80 Runoff=15.20 cfs 2.070 af
Subcatchment14S: PRE S3	Runoff Area=2,111,132 sf 12.78% Impervious Runoff Depth=5.80" Flow Length=2,998' Tc=49.9 min CN=76 Runoff=143.68 cfs 23.420 af
Subcatchment 15S: Chamber 1	Runoff Area=22,534 sf 84.12% Impervious Runoff Depth=8.10" Tc=5.0 min CN=95 Runoff=4.53 cfs 0.349 af
Subcatchment 16S: Chamber 2	Runoff Area=25,923 sf 86.51% Impervious Runoff Depth=8.22" Tc=5.0 min CN=96 Runoff=5.24 cfs 0.408 af

Post - Development Update - Feb 2023 w POI CType III 24-hr 100 Year Saco Rainfall=8.70"Prepared by Gorrill Palmer Consulting EngsPrinted 4/10/2023HydroCAD® 10.20-2f s/n 01265 © 2022 HydroCAD Software Solutions LLCPage 2

Subcatchment17S: SF Dripedges	Runoff Area=11,292 sf 82.15% Impervious Runoff Depth=8.10" Tc=5.0 min CN=95 Runoff=2.27 cfs 0.175 af
Subcatchment 19S: Front Duplex (I	Drip Runoff Area=2,612 sf 100.00% Impervious Runoff Depth=8.46" Tc=5.0 min CN=98 Runoff=0.53 cfs 0.042 af
Subcatchment 20S: FP 1 Subcatch	ment Runoff Area=17,052 sf 80.52% Impervious Runoff Depth=7.98" Tc=5.0 min CN=94 Runoff=3.41 cfs 0.260 af
Subcatchment 21S: FP 2 Subcatch	ment Runoff Area=5,482 sf 95.31% Impervious Runoff Depth=8.34" Tc=5.0 min CN=97 Runoff=1.11 cfs 0.087 af
Subcatchment 22S: FP 3 Subcatch	ment Runoff Area=20,003 sf 83.70% Impervious Runoff Depth=8.10" Tc=5.0 min CN=95 Runoff=4.02 cfs 0.310 af
Subcatchment 23S: FP 4 Subcatch	ment Runoff Area=5,920 sf 96.01% Impervious Runoff Depth=8.34" Tc=5.0 min CN=97 Runoff=1.20 cfs 0.094 af
Reach 1R: POI #1	Inflow=46.32 cfs 13.067 af Outflow=46.32 cfs 13.067 af
Reach 2R: n=0.025	Avg. Flow Depth=1.16' Max Vel=4.27 fps Inflow=31.39 cfs 4.879 af L=457.6' S=0.0077 '/' Capacity=232.90 cfs Outflow=30.76 cfs 4.879 af
Reach 3R: n=0.030	Avg. Flow Depth=0.09' Max Vel=0.70 fps Inflow=5.07 cfs 0.586 af 0 L=565.9' S=0.0046 '/' Capacity=997.94 cfs Outflow=3.64 cfs 0.586 af
Reach 4R: POI #2	Inflow=20.14 cfs 7.328 af Outflow=20.14 cfs 7.328 af
Reach 5R: POI #3	Inflow=150.41 cfs 27.225 af Outflow=150.41 cfs 27.225 af
Reach 6R: n=0.80	Avg. Flow Depth=0.98' Max Vel=0.12 fps Inflow=8.82 cfs 1.599 af 00 L=610.0' S=0.0066 '/' Capacity=13.21 cfs Outflow=2.99 cfs 1.599 af
Reach 7R: n=0.025	Avg. Flow Depth=0.58' Max Vel=2.93 fps Inflow=11.98 cfs 0.932 af L=1,480.0' S=0.0083 '/' Capacity=129.49 cfs Outflow=9.01 cfs 0.932 af
Pond 1P: GUSF #1 Primary=0.06 cfs 0.229 af Secondary	Peak Elev=104.12' Storage=17,272 cf Inflow=14.60 cfs 1.094 af y=3.49 cfs 0.801 af Tertiary=3.05 cfs 0.065 af Outflow=6.60 cfs 1.094 af
Pond 2P: GUSF #2 Primary=0.05 cfs 0.201 af Secondary	Peak Elev=105.06' Storage=15,857 cf Inflow=15.74 cfs 1.145 af y=4.90 cfs 0.884 af Tertiary=3.68 cfs 0.061 af Outflow=8.63 cfs 1.145 af
Pond 3P: GUSF #3 Primary=0.04 cfs 0.148 af Secondary	Peak Elev=103.15' Storage=9,497 cf Inflow=8.92 cfs 0.674 af y=2.87 cfs 0.494 af Tertiary=2.16 cfs 0.033 af Outflow=5.07 cfs 0.674 af
Pond 4P: GUSF #5 Primary=0.04 cfs 0.135 af Secondary	Peak Elev=103.87' Storage=7,523 cf Inflow=7.82 cfs 0.586 af y=3.32 cfs 0.431 af Tertiary=1.71 cfs 0.020 af Outflow=5.07 cfs 0.586 af
Pond 5P: Gravel Wetland #2	Peak Elev=101.96' Storage=39,563 cf Inflow=33.00 cfs 2.473 af

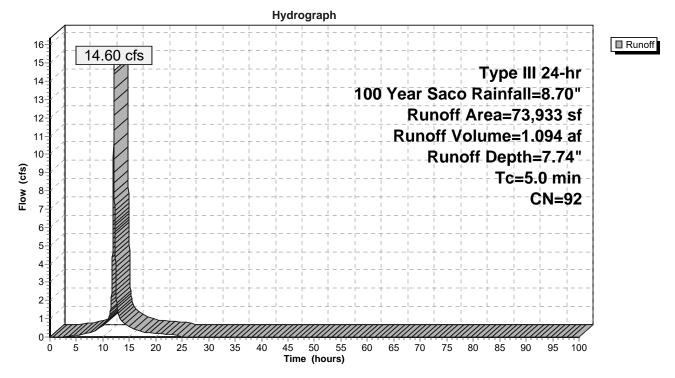
 Pond 5P: Gravel Wetland #2
 Peak Elev=101.96' Storage=39,563 cf
 Inflow=33.00 cfs
 2.473 af

 Primary=0.25 cfs
 0.572 af
 Secondary=9.18 cfs
 1.763 af
 Tertiary=7.31 cfs
 0.138 af
 Outflow=16.75 cfs
 2.473 af

Post - Development Update - Feb 2023 w POI CType III 24-hr	100 Year Saco Rainfall=8.70"
Prepared by Gorrill Palmer Consulting Engs	Printed 4/10/2023
HvdroCAD® 10.20-2f s/n 01265 © 2022 HvdroCAD Software Solutions LLC	Page 3

Pond 6P: GUSF #4 Primary=0.04 cfs 0.143 af	Peak Elev=103.85' Storage=13,136 cf Inflow=8.74 cfs 0.655 af Secondary=1.14 cfs 0.488 af Tertiary=1.14 cfs 0.024 af Outflow=2.32 cfs 0.655 af
Pond 7P: Gravel Wetland Primary=2.40 cfs 4.166 af	#1 Peak Elev=104.19' Storage=128,676 cf Inflow=61.81 cfs 4.561 af Secondary=0.32 cfs 0.395 af Tertiary=0.00 cfs 0.000 af Outflow=2.73 cfs 4.561 af
Pond 8/9P: GUSF #6 & #7 Primary=0.14 cfs 0.335 af	Peak Elev=101.49' Storage=13,692 cf Inflow=12.51 cfs 0.881 af Secondary=0.86 cfs 0.411 af Tertiary=3.57 cfs 0.136 af Outflow=4.57 cfs 0.881 af
Pond 10P: GUSF #8 Primary=0.05 cfs 0.170 af	Peak Elev=103.07' Storage=10,577 cf Inflow=10.29 cfs 0.718 af Secondary=2.73 cfs 0.489 af Tertiary=3.11 cfs 0.058 af Outflow=5.88 cfs 0.718 af
Pond 11P: GUSF #9 Primary=0.07 cfs 0.274 af	Peak Elev=100.28' Storage=21,691 cf Inflow=17.50 cfs 1.274 af Secondary=3.52 cfs 0.906 af Tertiary=3.80 cfs 0.093 af Outflow=7.39 cfs 1.274 af
Pond 12P: CHAMBER1	Peak Elev=107.36' Storage=0.045 af Inflow=4.53 cfs 0.349 af Primary=0.02 cfs 0.077 af Secondary=4.49 cfs 0.272 af Outflow=4.51 cfs 0.349 af
Pond 13P: CHAMBER2	Peak Elev=107.15' Storage=0.054 af Inflow=5.24 cfs 0.408 af Primary=0.02 cfs 0.085 af Secondary=5.19 cfs 0.323 af Outflow=5.21 cfs 0.408 af
Pond 14P: FocalPoint 1	Peak Elev=108.99' Storage=99 cf Inflow=3.41 cfs 0.260 af Primary=0.15 cfs 0.138 af Secondary=3.26 cfs 0.122 af Outflow=3.41 cfs 0.260 af
Pond 15P: FocalPoint 2	Peak Elev=108.86' Storage=40 cf Inflow=1.11 cfs 0.087 af Primary=0.15 cfs 0.085 af Secondary=0.96 cfs 0.024 af Outflow=1.11 cfs 0.108 af
Pond 16P: FocalPoint 3	Peak Elev=109.03' Storage=97 cf Inflow=4.02 cfs 0.310 af Primary=0.18 cfs 0.185 af Secondary=3.90 cfs 0.145 af Outflow=4.08 cfs 0.330 af
Pond 17P: FocalPoint 4	Peak Elev=108.84' Storage=53 cf Inflow=1.20 cfs 0.094 af Primary=0.07 cfs 0.060 af Secondary=1.12 cfs 0.036 af Outflow=1.20 cfs 0.096 af
Pond 20P: POI 1	Peak Elev=87.35' Storage=419 cf Inflow=46.32 cfs 13.067 af 36.0" Round Culvert n=0.011 L=88.0' S=0.0398 '/' Outflow=46.30 cfs 13.067 af
Pond 90P: POI 3 36.0'	Peak Elev=91.10' Storage=35,099 cf Inflow=150.41 cfs 27.225 af Round Culvert x 2.00 n=0.011 L=126.0' S=0.0020 '/' Outflow=133.25 cfs 27.225 af
Pond 91P: POI 2	Peak Elev=97.88' Storage=49,191 cf Inflow=20.14 cfs 7.328 af 12.0" Round Culvert n=0.025 L=38.0' S=0.0134 '/' Outflow=5.20 cfs 7.328 af
Total Runoff	Area = 93.822 ac Runoff Volume = 48.372 af Average Runoff Depth = 6.19"

73.50% Pervious = 68.955 ac 26.50% Impervious = 24.867 ac

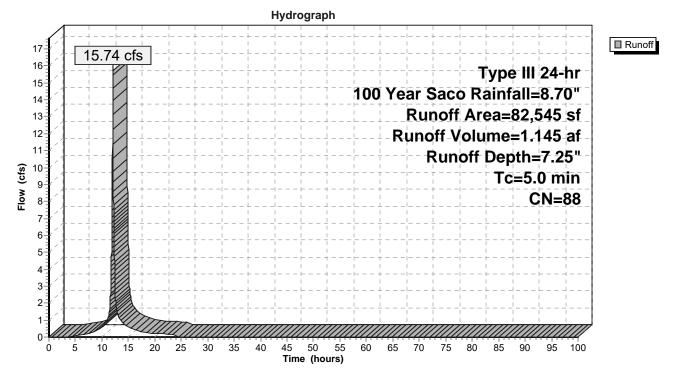

Summary for Subcatchment 1S: Sub to GUSF #1

Runoff = 14.60 cfs @ 12.07 hrs, Volume= 1.094 af, Depth= 7.74" Routed to Pond 1P : GUSF #1

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-100.00 hrs, dt= 0.01 hrs Type III 24-hr 100 Year Saco Rainfall=8.70"

A	rea (sf)	CN I	Description					
	49,677	98	Paved park	ing, HSG D				
	24,256	80 3	>75% Ġras	s cover, Go	bod, HSG D			
	73,933	92	Weighted Average					
	24,256		32.81% Pervious Area					
	49,677	(67.19% Impervious Area					
Тс	Length	Slope	Velocity	Capacity	Description			
	(feet)	(ft/ft)		(cfs)	Description			
<u>(min)</u>	(ieel)	(11/11)	(11/500)	(015)				
5.0					Direct Entry,			

Subcatchment 1S: Sub to GUSF #1

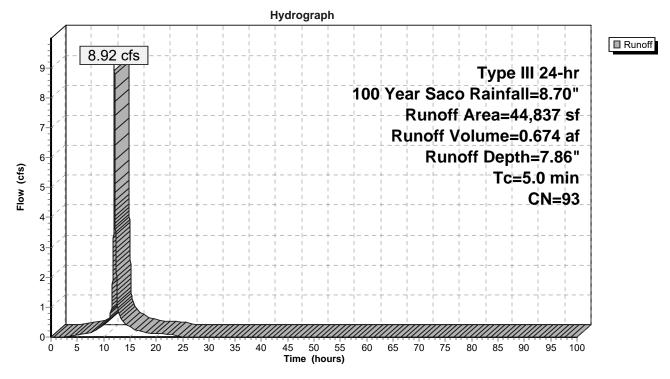

Summary for Subcatchment 2S: Sub to GUSF #2

Runoff = 15.74 cfs @ 12.07 hrs, Volume= 1.145 af, Depth= 7.25" Routed to Pond 2P : GUSF #2

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-100.00 hrs, dt= 0.01 hrs Type III 24-hr 100 Year Saco Rainfall=8.70"

A	rea (sf)	CN I	Description				
	38,830	98	Paved park	ing, HSG D)		
	43,715	80 3	>75% Ġras	s cover, Go	bod, HSG D		
	82,545	88	Neighted A	verage			
	43,715	!	52.96% Pervious Area				
	38,830	4	47.04% Impervious Area				
-		~		• •			
Tc	Length	Slope		Capacity	Description		
<u>(min)</u>	(feet)	(ft/ft)	(ft/sec)	(cfs)			
5.0					Direct Entry,		
					-		

Subcatchment 2S: Sub to GUSF #2


Summary for Subcatchment 3S: Sub to GUSF #3

Runoff = 8.92 cfs @ 12.07 hrs, Volume= 0.674 af, Depth= 7.86" Routed to Pond 3P : GUSF #3

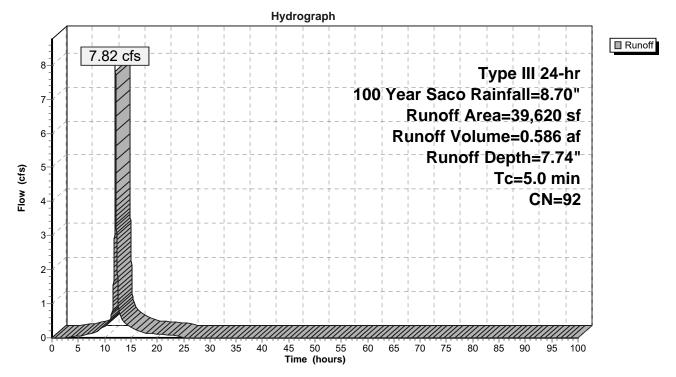
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-100.00 hrs, dt= 0.01 hrs Type III 24-hr 100 Year Saco Rainfall=8.70"

A	rea (sf)	CN	Description			
	32,243	98	Paved park	ing, HSG D)	
	12,594	80	>75% Gras	s cover, Go	bod, HSG D	
	44,837	93	Weighted A	verage		
	12,594		28.09% Pervious Area			
	32,243		71.91% Impervious Area			
τ.	1		\/.l	0	Description	
Tc	Length	Slope		Capacity	Description	
<u>(min)</u>	(feet)	(ft/ft)	(ft/sec)	(cfs)		
5.0					Direct Entry,	

Subcatchment 3S: Sub to GUSF #3

Summary for Subcatchment 4S: Sub to GUSF #5

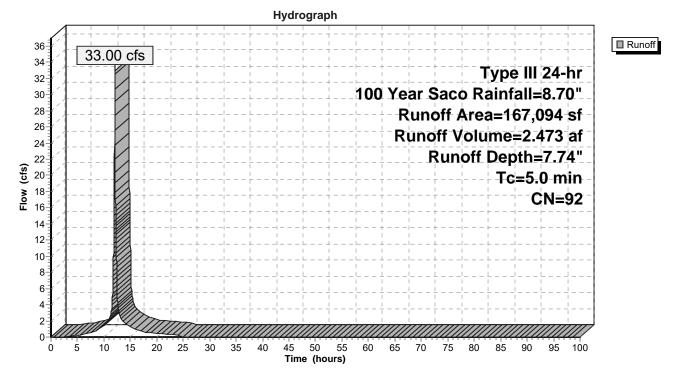
7.82 cfs @ 12.07 hrs, Volume= 0.586 af, Depth= 7.74" Runoff = Routed to Pond 4P : GUSF #5


Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-100.00 hrs, dt= 0.01 hrs Type III 24-hr 100 Year Saco Rainfall=8.70"

Area (st	f) CN	Description	Description					
26,92	1 98	Paved parkir	ng, HSG D	D				
43	9 39	>75% Ġrass	cover, Go	lood, HSG A				
12,26	0 80	>75% Grass	cover, Go	lood, HSG D				
39,62	0 92	Weighted Av	Weighted Average					
12,69	9	32.05% Perv	32.05% Pervious Area					
26,92	1	67.95% Impervious Area						
Tc Leng	th Slo	pe Velocity	Capacity	/ Description				
(min) (fee	et) (ft/	ft) (ft/sec)	(cfs)					
5.0				Direct Entry.				

Direct Entry,

Subcatchment 4S: Sub to GUSF #5

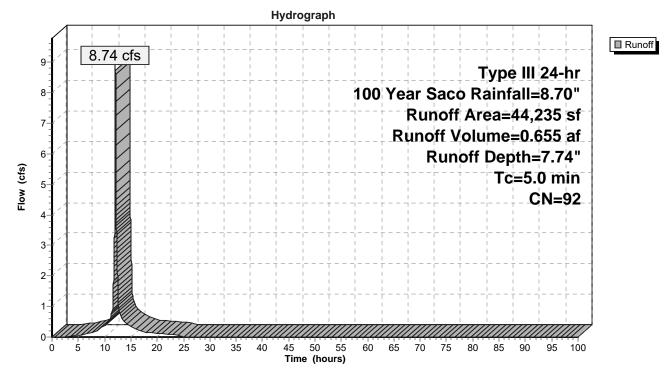

Summary for Subcatchment 5S: Sub to GW #2

Runoff = 33.00 cfs @ 12.07 hrs, Volume= 2.473 af, Depth= 7.74" Routed to Pond 5P : Gravel Wetland #2

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-100.00 hrs, dt= 0.01 hrs Type III 24-hr 100 Year Saco Rainfall=8.70"

Α	vrea (sf)	CN I	Description				
	106,853	98 I	Paved park	ing, HSG D)		
	60,241	80 >	>75% Gras	s cover, Go	bod, HSG D		
-	167,094	92 \	Weighted Average				
	60,241	3	36.05% Pervious Area				
	106,853	6	63.95% Impervious Area				
-		0		0			
TC	Length	Slope	,	Capacity	Description		
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)			
5.0					Direct Entry,		

Subcatchment 5S: Sub to GW #2

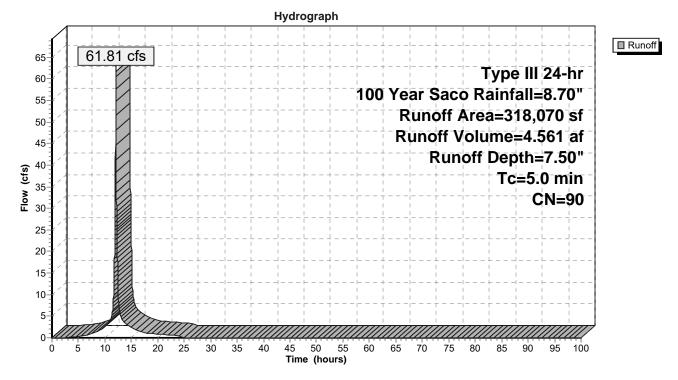

Summary for Subcatchment 6S: Sub to GUSF #4

Runoff = 8.74 cfs @ 12.07 hrs, Volume= 0.655 af, Depth= 7.74" Routed to Pond 6P : GUSF #4

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-100.00 hrs, dt= 0.01 hrs Type III 24-hr 100 Year Saco Rainfall=8.70"

A	rea (sf)	CN	Description				
	29,518	98	Paved park	ing, HSG D)		
	14,717	80	>75% Gras	s cover, Go	bod, HSG D		
	44,235	92	Neighted A	verage			
	14,717	:	33.27% Pervious Area				
	29,518		66.73% Impervious Area				
Tc	Length	Slope	Velocity	Capacity	Description		
<u>(min)</u>	(feet)	(ft/ft)	(ft/sec)	(cfs)			
5.0					Direct Entry,		

Subcatchment 6S: Sub to GUSF #4

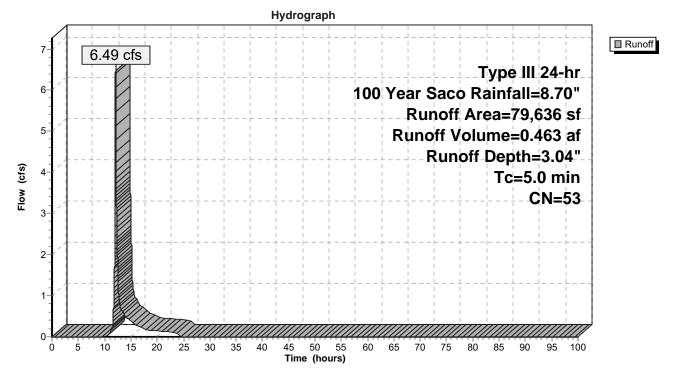

Summary for Subcatchment 7S: Sub to GW #1

Runoff = 61.81 cfs @ 12.07 hrs, Volume= 4.561 af, Depth= 7.50" Routed to Pond 7P : Gravel Wetland #1

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-100.00 hrs, dt= 0.01 hrs Type III 24-hr 100 Year Saco Rainfall=8.70"

Area (sf)	CN	Description						
191,968	98	Paved park	ng, HSG D	D				
7,411	39	>75% Grass	s cover, Go	ood, HSG A				
118,691	80	>75% Grass	s cover, Go	ood, HSG D				
318,070	90	Weighted A	Weighted Average					
126,102		39.65% Per	39.65% Pervious Area					
191,968		60.35% Imp	60.35% Impervious Area					
Tc Length	Slop	be Velocity	Capacity	Description				
(min) (feet)	(ft/	ft) (ft/sec)	(cfs)					
5.0				Direct Entry,				

Subcatchment 7S: Sub to GW #1

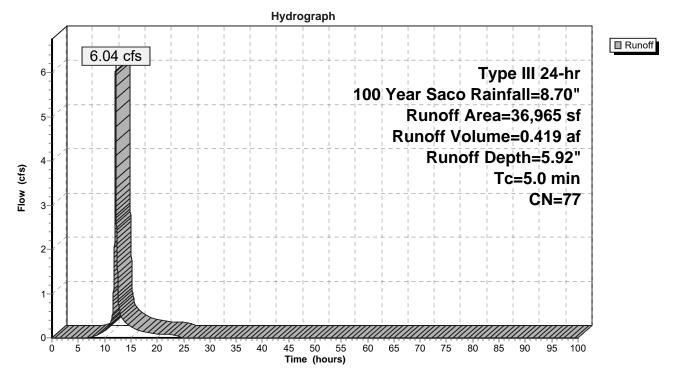

Summary for Subcatchment 8S: Sub to GUSF #6

Runoff = 6.49 cfs @ 12.08 hrs, Volume= 0.463 af, Depth= 3.04" Routed to Pond 8/9P : GUSF #6 & #7

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-100.00 hrs, dt= 0.01 hrs Type III 24-hr 100 Year Saco Rainfall=8.70"

Ar	rea (sf)	CN I	Description									
	18,778	98 I	Paved parking, HSG D									
(60,443	39 :	>75% Gras	s cover, Go	lood, HSG A							
	415	80 ;	>75% Gras	s cover, Go	lood, HSG D							
-	79,636	53 V	Weighted Average									
(60,858	-	76.42% Pervious Area									
	18,778	2	23.58% Imp	pervious Ar	rea							
Tc (min)	Length (feet)	Slope (ft/ft)		Capacity (cfs)								
5.0					Direct Entry,							

Subcatchment 8S: Sub to GUSF #6

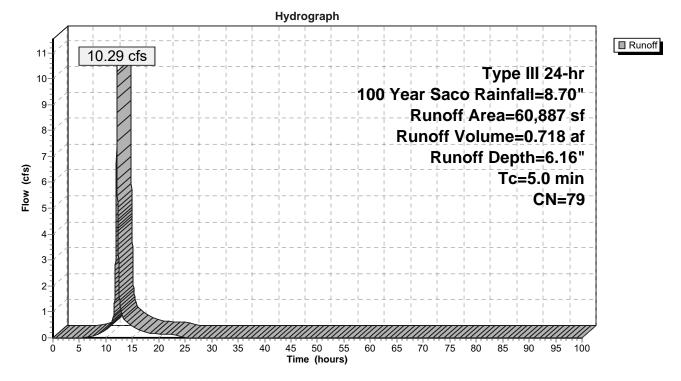

Summary for Subcatchment 9S: Sub to GUSF #7

Runoff = 6.04 cfs @ 12.07 hrs, Volume= 0.419 af, Depth= 5.92" Routed to Pond 8/9P : GUSF #6 & #7

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-100.00 hrs, dt= 0.01 hrs Type III 24-hr 100 Year Saco Rainfall=8.70"

A	rea (sf)	CN [Description								
	23,580	98 F	Paved parking, HSG D								
	405	80 >	>75% Gras	s cover, Go	ood, HSG D						
	12,980	39 >	>75% Gras	s cover, Go	ood, HSG A						
	36,965	77 \	Veighted A	verage							
	13,385	3	36.21% Pervious Area								
	23,580	6	63.79% Imp	pervious Ar	rea						
τ.	1	01	M. L	0	Description						
Tc	Length	Slope	Velocity	Capacity	1						
(min)	(feet)	(ft/ft)	t) (ft/sec) (cfs)								
5.0					Direct Entry,						

Subcatchment 9S: Sub to GUSF #7

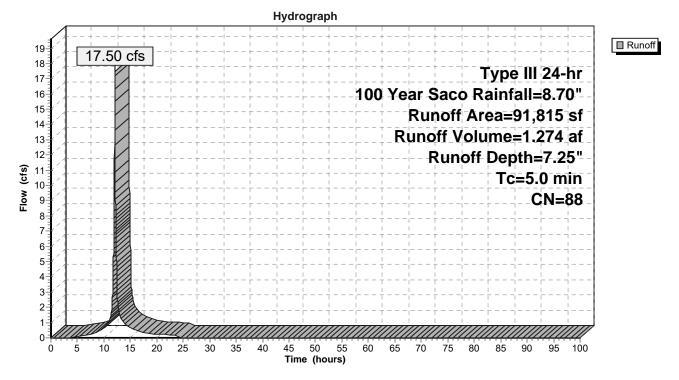

Summary for Subcatchment 10S: Sub to GUSF #8

Runoff = 10.29 cfs @ 12.07 hrs, Volume= 0.718 af, Depth= 6.16" Routed to Pond 10P : GUSF #8

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-100.00 hrs, dt= 0.01 hrs Type III 24-hr 100 Year Saco Rainfall=8.70"

Α	rea (sf)	CN	Description										
	36,998	98	Paved park	Paved parking, HSG D									
	6,024	80	>75% Gras	s cover, Go	ood, HSG D								
	17,865	39	>75% Gras	s cover, Go	ood, HSG A								
	60,887	79	Weighted A	verage									
	23,889		39.23% Per	vious Area	а								
	36,998		60.77% Imp	pervious Are	rea								
Tc	Length	Slope	,	Capacity	1								
<u>(min)</u>	(feet)	(ft/ft	(ft/sec)	(cfs)									
5.0					Direct Entry,								

Subcatchment 10S: Sub to GUSF #8

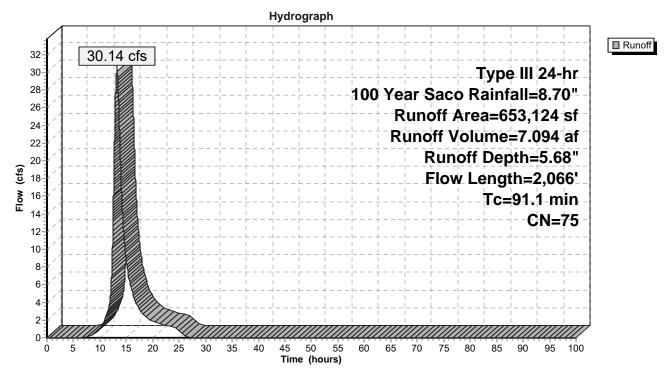

Summary for Subcatchment 11S: Sub to GUSF #9

Runoff = 17.50 cfs @ 12.07 hrs, Volume= 1.274 af, Depth= 7.25" Routed to Pond 11P : GUSF #9

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-100.00 hrs, dt= 0.01 hrs Type III 24-hr 100 Year Saco Rainfall=8.70"

Α	rea (sf)	CN	Description									
	64,781	98	Paved park	Paved parking, HSG D								
	17,188	80	>75% Gras	s cover, Go	ood, HSG D							
	9,846	39	>75% Gras	s cover, Go	ood, HSG A							
	91,815	88	Weighted A	verage								
	27,034		29.44% Per	vious Area	a							
	64,781		70.56% Imp	ervious Ar	rea							
Tc	Length	Slope	,	Capacity	Description							
(min)	(feet)	(ft/ft	(ft/sec)	(cfs)								
5.0					Direct Entry,							

Subcatchment 11S: Sub to GUSF #9


Summary for Subcatchment 12S: PRE S1

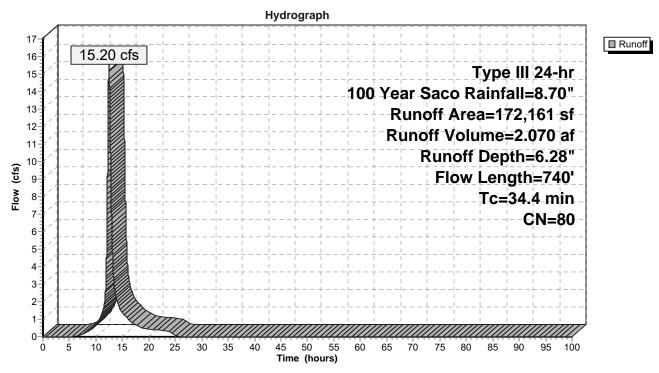
Runoff = 30.14 cfs @ 13.25 hrs, Volume= Routed to Reach 1R : POI #1 7.094 af, Depth= 5.68"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-100.00 hrs, dt= 0.01 hrs Type III 24-hr 100 Year Saco Rainfall=8.70"

A	rea (sf)	CN D	Description									
	64,275	30 V	Voods, Go	od, HSG A								
4	39,956		Woods, Good, HSG D									
	36,631	85 1	1/8 acre lots, 65% imp, HSG B									
	4,922	98 F	Roofs, HSG	6 D								
	29,435	98 F	aved park	ing, HSG D)							
	48,787			s, 30% imp								
	5,619			s, 30% imp								
	7,971			s, 65% imp								
	15,528		75% Gras	s cover, Go	bod, HSG D							
6	53,124	75 V	Veighted A	verage								
	73,454	-		vious Area	-							
	79,670	1	12.20% Impervious Area									
-		<u></u>		A B								
Tc	Length	Slope	Velocity	• • •	Description							
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)								
22.0	105	0.0200	0.08		Sheet Flow, A - B							
					Woods: Light underbrush n= 0.400 P2= 3.30"							
29.1	731	0.0070	0.42		Shallow Concentrated Flow, B - C							
0.7	005	0 0000	0.40		Woodland Kv= 5.0 fps							
9.7	265	0.0083	0.46		Shallow Concentrated Flow, C - D							
00.4	400	0 0000	0.04		Woodland Kv= 5.0 fps							
28.4	408	0.0023	,									
1.0		0 0000	Woodland Kv= 5.0 fps									
1.9	557	0.0083	4.89	29.32								
					Area = 6.0 sf Perim = 7.0' r = 0.86'							
01.1	2.066	Tatal			n= 0.025 Earth, clean & winding							

91.1 2,066 Total

Subcatchment 12S: PRE S1

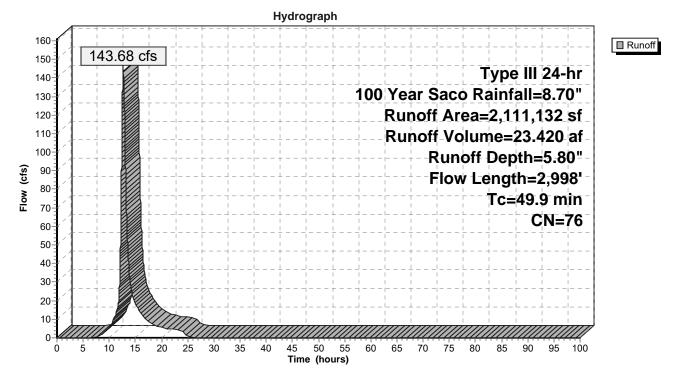

Summary for Subcatchment 13S: PRE S2

Runoff = 15.20 cfs @ 12.46 hrs, Volume= 2.070 af, Depth= 6.28" Routed to Reach 4R : POI #2

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-100.00 hrs, dt= 0.01 hrs Type III 24-hr 100 Year Saco Rainfall=8.70"

	A	rea (sf)	CN [Description										
	1	12,222	77 V	Woods, Good, HSG D										
		47,872	87 1	1/4 acre lots, 38% imp, HSG D										
		11,315	80 >	>75% Grass cover, Good, HSG D										
		752	98 F	Paved park	<u>ing, HSG D</u>									
	1	72,161		Veighted A										
	1	53,218	-		vious Area									
		18,943	1	1.00% Imp	pervious Ar	ea								
	-		~		o "									
	Tc	Length	Slope	Velocity	Capacity	Description								
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)									
	13.5	84	0.0436	0.10		Sheet Flow, A - B								
						Woods: Light underbrush n= 0.400 P2= 3.30"								
	3.4	220	0.0454	1.07		Shallow Concentrated Flow, B - C								
				Woodland Kv= 5.0 fps										
	17.5	436	0.0069	0.42		Shallow Concentrated Flow, C - D								
_						Woodland Kv= 5.0 fps								
	34.4	740	Total											

Subcatchment 13S: PRE S2



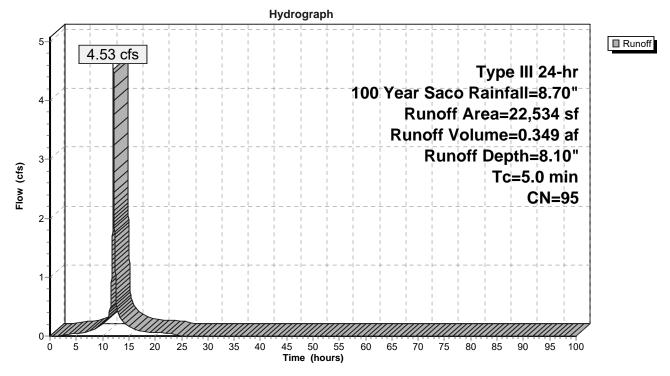
Summary for Subcatchment 14S: PRE S3

Runoff = 143.68 cfs @ 12.69 hrs, Volume= 23.420 af, Depth= 5.80" Routed to Reach 5R : POI #3

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-100.00 hrs, dt= 0.01 hrs Type III 24-hr 100 Year Saco Rainfall=8.70"

A	rea (sf)	CN D	escription										
	62,552	30 V	Voods, Go	od, HSG A									
,	67,368		,	od, HSG D									
	09,654			s, 25% imp									
	19,137		1/4 acre lots, 38% imp, HSG D										
	80,960		1/2 acre lots, 25% imp, HSG D										
	26,858		Paved parking, HSG D										
	44,603		>75% Grass cover, Good, HSG D										
	11,132		Veighted A										
1,8	41,348	8	7.22% Per	vious Area									
2	69,784	1	2.78% Imp	pervious Ar	ea								
т.	1 11.		M. L	0	Description								
Tc	Length	Slope	Velocity	Capacity	Description								
<u>(min)</u>	(feet)	(ft/ft)	(ft/sec)	(cfs)									
12.6	125	0.0161	0.17		Sheet Flow, A - B								
	000	0.0470	4.07		Grass: Short n= 0.150 P2= 3.30"								
3.2	380	0.0172	1.97		Shallow Concentrated Flow, B - C								
0.4	10	0 0070	44.40	00.00	Grassed Waterway Kv= 15.0 fps								
0.1	40	0.0373	11.48	20.29									
					18.0" Round Area= 1.8 sf Perim= 4.7' r= 0.38'								
04.0	704	0.0004	0.40		n= 0.013 Corrugated PE, smooth interior								
24.8	721	0.0094	0.48		Shallow Concentrated Flow, D - E								
3.3	584	0.0062	2.93	23.40	Woodland Kv= 5.0 fps Channel Flow, E - F								
3.3	304	0.0062	2.93	23.40	Area= 8.0 sf Perim= 8.0' r= 1.00'								
2.5	540	0.0095	3.62	28.97	n= 0.040 Winding stream, pools & shoals Channel Flow, F - G								
2.0	540	0.0095	3.02	20.97	Area= 8.0 sf Perim= 8.0' r= 1.00'								
					n= 0.040 Winding stream, pools & shoals								
3.4	608	0.0066	3.02	24.14									
5.4	000	0.0000	J.UZ	24.14	Area= 8.0 sf Perim= 8.0' r= 1.00'								
					n= 0.040 Winding stream, pools & shoals								
49.9	2 000	Total											
49.9	2,998	rotar											

Subcatchment 14S: PRE S3

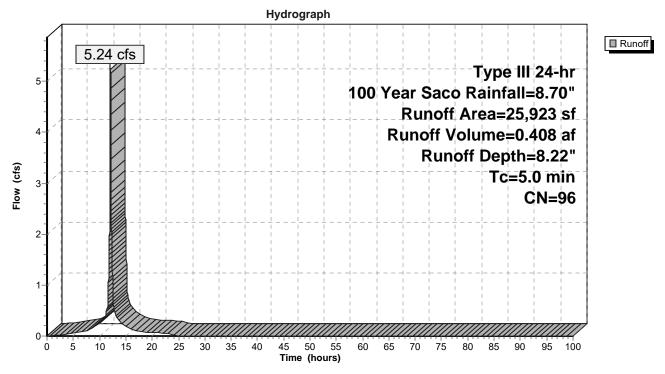

Summary for Subcatchment 15S: Chamber 1 Subcatchment

Runoff = 4.53 cfs @ 12.07 hrs, Volume= 0.349 af, Depth= 8.10" Routed to Pond 12P : CHAMBER1

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-100.00 hrs, dt= 0.01 hrs Type III 24-hr 100 Year Saco Rainfall=8.70"

A	rea (sf)	CN	Description								
	18,955	98	Paved parking, HSG D								
	3,579	80	>75% Gras	s cover, Go	bod, HSG D						
	22,534	95	Weighted A	verage							
	3,579		15.88% Pervious Area								
	18,955	i	34.12% Imp	pervious Are	ea						
Tc (min)	Length (feet)	Slope (ft/ft)	,	Capacity (cfs)	Description						
5.0	()	(14,11)	((0.0)	Direct Entry,						

Subcatchment 15S: Chamber 1 Subcatchment

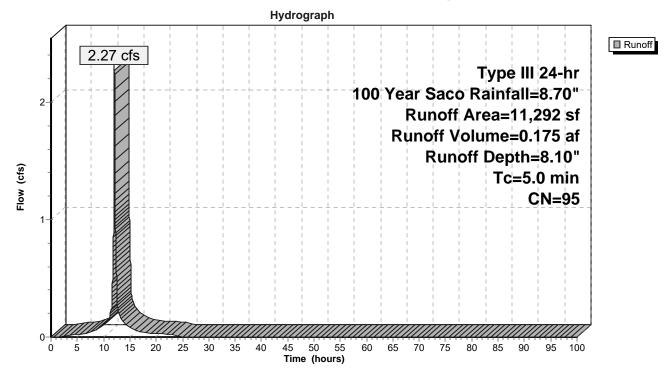

Summary for Subcatchment 16S: Chamber 2 Subcatchment

Runoff = 5.24 cfs @ 12.07 hrs, Volume= Routed to Pond 13P : CHAMBER2 0.408 af, Depth= 8.22"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-100.00 hrs, dt= 0.01 hrs Type III 24-hr 100 Year Saco Rainfall=8.70"

A	rea (sf)	CN I	Description								
	22,426	98	Paved parking, HSG D								
	3,497	80 ;	>75% Gras	s cover, Go	ood, HSG D						
	25,923	96	Neighted A	verage							
	3,497		13.49% Pervious Area								
	22,426	ł	36.51% Imp	pervious Are	rea						
Tc	Length	Slope	Velocity	Capacity	Description						
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)							
5.0					Direct Entry,						
					-						

Subcatchment 16S: Chamber 2 Subcatchment


Summary for Subcatchment 17S: SF Dripedges

Runoff = 2.27 cfs @ 12.07 hrs, Volume= 0.175 af, Depth= 8.10" Routed to Reach 7R :

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-100.00 hrs, dt= 0.01 hrs Type III 24-hr 100 Year Saco Rainfall=8.70"

Α	rea (sf)	CN	Description								
	9,276	98	Paved parking, HSG D								
	2,016	80	>75% Gras	s cover, Go	bod, HSG D						
	11,292	95	Weighted A	verage							
	2,016		17.85% Pervious Area								
	9,276	1	32.15% Imp	pervious Are	ea						
Tc	Length	Slope	Velocity	Capacity	Description						
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)							
5.0					Direct Entry,						

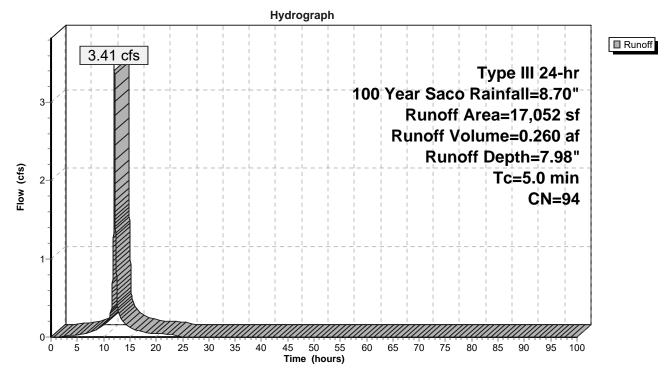
Subcatchment 17S: SF Dripedges

Summary for Subcatchment 19S: Front Duplex (Drip Edges)

Runoff = 0.53 cfs @ 12.07 hrs, Volume= Routed to Reach 4R : POI #2 0.042 af, Depth= 8.46"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-100.00 hrs, dt= 0.01 hrs Type III 24-hr 100 Year Saco Rainfall=8.70"

	Are	<u>ea (s</u> 2,61		<u>CN</u> 98			iptior , HS															
		2,61					0% lı		rviou	ıs A	rea											
T (mir		Leng (fee			ope t/ft)		locity /sec)	С	apao (c	city sfs)	Des	crip	otion)								
5.	0										Dire	ect	Ent	ry,								
					S	ubc	atch	me	nt 1	195	: Fre	ont	Du	iple	ex (l	Drip	o Ec	dge	s)			
									Ну	/drog	graph											
	ŧ	1_						 	 						 							Runot
0.	.55		0.5	3 cfs				 	+	 	-	+			 	 +	7	Гуре	- - 111-	24-	hr_	
0	0.5	1			; ; +	; ; 		 	i i			1	00	Yea	ar S	aco		ainf				
0.	45		1		1	 	 								1	1	1	rea	1	1	1	
(0.4	1				 		I I I	I I		 	T 		Rι				me				
⊙ ^{0.}	.35	1	1			 						T 			F	lun	off	Dep	1			
Flow (cfs)	0.3	1	+		+	 			+		-	+			 	+		TC	1	0 m	1	
음 _{0.}	.25	1				-' 		'	<u>-</u> 		' 	 			L 	 	' 		C	N=	98 -	
C	0.2 <u>-</u>	1			 	 		i I I	i i i		i- 				i I I	 	 	 	-i 	 	 	
0.	.15 _	1	+ 		+ 	 		 	+ 		- 	+			 	+ 	 	+ 	 	 	+ 	
(0.1	1	+		+	- !		 	+ 		- 	+			⊢	+	 	+	- !		+	
0.	.05	/			± 	 		'	L 	لے ۔ ۔ ۔ ۔ ا	_ 			'	L 	 	! 	1 		· • • • •	1 	
	0																					
	0	5	10	15	20	25	30	35	40	45 Time	50 • (hou	55 rs)	60	65	70	75	80	85	90	95	100	

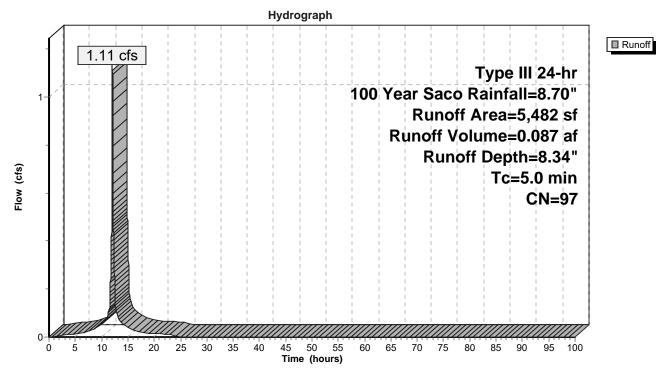

Summary for Subcatchment 20S: FP 1 Subcatchment

Runoff = 3.41 cfs @ 12.07 hrs, Volume= 0.260 af, Depth= 7.98" Routed to Pond 14P : FocalPoint 1

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-100.00 hrs, dt= 0.01 hrs Type III 24-hr 100 Year Saco Rainfall=8.70"

Α	rea (sf)	CN I	Description								
	13,730	98	Paved parking, HSG D								
	3,322	80 ;	>75% Ġras	s cover, Go	bod, HSG D						
	17,052	94	Weighted Average								
	3,322		19.48% Pervious Area								
	13,730	ł	30.52% Imp	pervious Are	ea						
Tc	Length	Slope	,	Capacity	Description						
(min)	(feet)	(ft/ft)	(ft) (ft/sec) (cfs)								
5.0					Direct Entry,						
					•						

Subcatchment 20S: FP 1 Subcatchment

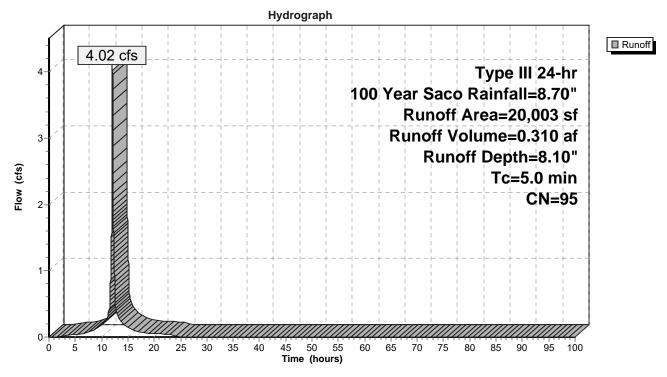

Summary for Subcatchment 21S: FP 2 Subcatchment

Runoff = 1.11 cfs @ 12.07 hrs, Volume= 0.087 af, Depth= 8.34" Routed to Pond 15P : FocalPoint 2

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-100.00 hrs, dt= 0.01 hrs Type III 24-hr 100 Year Saco Rainfall=8.70"

Α	rea (sf)	CN	Description					
	5,225	98	Paved park	ing, HSG D)			
	257	80	>75% Gras	s cover, Go	ood, HSG D			
	5,482	97	Weighted A	verage				
	257		4.69% Perv	ious Area				
	5,225		95.31% Impervious Area					
Тс	Length	Slope	e Velocity	Capacity	Description			
(min)	(feet)	(ft/ft)) (ft/sec)	(cfs)				
5.0					Direct Entry,			
					•			

Subcatchment 21S: FP 2 Subcatchment

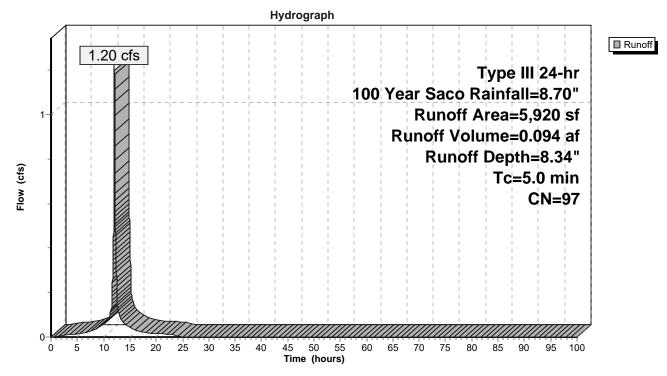

Summary for Subcatchment 22S: FP 3 Subcatchment

Runoff = 4.02 cfs @ 12.07 hrs, Volume= 0.310 af, Depth= 8.10" Routed to Pond 16P : FocalPoint 3

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-100.00 hrs, dt= 0.01 hrs Type III 24-hr 100 Year Saco Rainfall=8.70"

A	rea (sf)	CN [CN Description						
	16,742	98 F	Paved park	ing, HSG D)				
	3,261	80 >	>75% Gras	s cover, Go	bod, HSG D				
	20,003	95 \	95 Weighted Average						
	3,261		16.30% Pervious Area						
	16,742	8	83.70% Impervious Area						
_				•	_				
	Length	Slope	Velocity	Capacity	Description				
<u>(min)</u>	(feet)	(ft/ft)	(ft/sec)	(cfs)					
5.0					Direct Entry,				

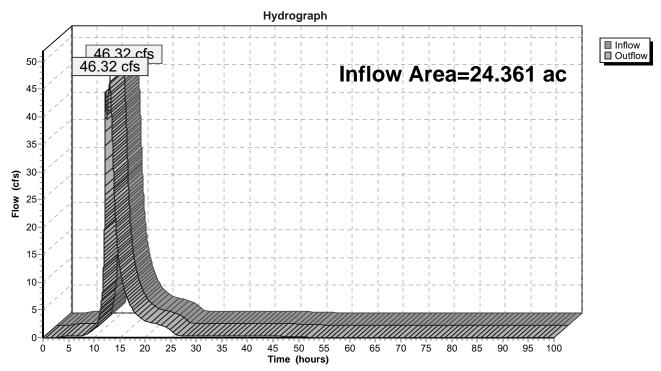
Subcatchment 22S: FP 3 Subcatchment


Summary for Subcatchment 23S: FP 4 Subcatchment

Runoff = 1.20 cfs @ 12.07 hrs, Volume= 0.094 af, Depth= 8.34" Routed to Pond 17P : FocalPoint 4

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-100.00 hrs, dt= 0.01 hrs Type III 24-hr 100 Year Saco Rainfall=8.70"

A	rea (sf)	CN I	Description					
	5,684	98 I	Paved park	ing, HSG D)			
	236	80 ;	>75% Gras	s cover, Go	ood, HSG D			
	5,920	97 \	7 Weighted Average					
	236		3.99% Pervious Area					
	5,684	ę	96.01% Impervious Area					
Тс	Length	Slope	,	Capacity	Description			
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
5.0					Direct Entry,			
					•			


Subcatchment 23S: FP 4 Subcatchment

Summary for Reach 1R: POI #1

Inflow Area = 24.361 ac, 31.49% Impervious, Inflow Depth = 6.44" for 100 Year Saco event Inflow = 46.32 cfs @ 13.05 hrs, Volume= 13.067 af Outflow = 46.32 cfs @ 13.05 hrs, Volume= 13.067 af, Atten= 0%, Lag= 0.0 min Routed to Pond 20P : POI 1

Routing by Stor-Ind+Trans method, Time Span= 0.00-100.00 hrs, dt= 0.01 hrs

Reach 1R: POI #1

Post - Development Update - Feb 2023 w POI CType III 24-hr 100 Year Saco Rainfall=8.70"Prepared by Gorrill Palmer Consulting EngsPrinted 4/10/2023HydroCAD® 10.20-2f s/n 01265 © 2022 HydroCAD Software Solutions LLCPage 29

Summary for Reach 2R:

7.670 ac, 61.31% Impervious, Inflow Depth = 7.63" for 100 Year Saco event

Inflow Area =

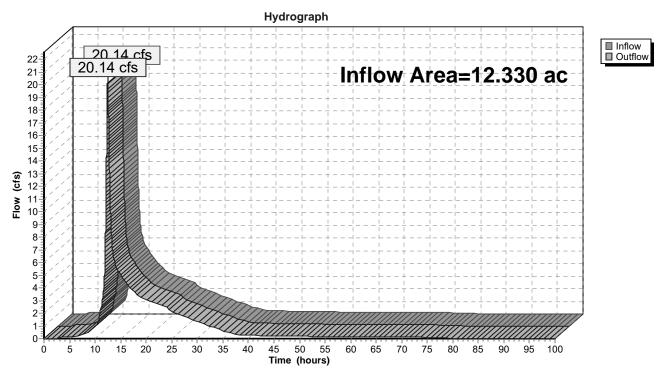
Inflow 31.39 cfs @ 12.19 hrs, Volume= 4.879 af = 30.76 cfs @ 12.25 hrs, Volume= Outflow = 4.879 af, Atten= 2%, Lag= 3.5 min Routed to Reach 1R : POI #1 Routing by Stor-Ind+Trans method, Time Span= 0.00-100.00 hrs, dt= 0.01 hrs Max. Velocity= 4.27 fps, Min. Travel Time= 1.8 min Avg. Velocity = 1.19 fps, Avg. Travel Time= 6.4 min Peak Storage= 3,296 cf @ 12.22 hrs Average Depth at Peak Storage= 1.16', Surface Width= 9.32' Bank-Full Depth= 3.00' Flow Area= 30.0 sf, Capacity= 232.90 cfs 15.00' x 3.00' deep Parabolic Channel, n= 0.025 Earth, clean & winding Length= 457.6' Slope= 0.0077 '/' Inlet Invert= 95.91', Outlet Invert= 92.40' Reach 2R: Hydrograph Inflow 31.39 cfs Outflow 34 30.76 cfs Inflow Area=7.670 ac 32 30 Avg. Flow Depth=1.16' 28 26 Max Vel=4.27 fps 24 n=0.025 22 20 ⁼low (cfs) L=457.6' 18 16 S=0.0077 '/' 14 Capacity=232.90 cfs 12 10 8-6 4 2 0-5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 0 Time (hours)

Post - Development Update - Feb 2023 w POI CType III 24-hr 100 Year Saco Rainfall=8.70"Prepared by Gorrill Palmer Consulting EngsPrinted 4/10/2023HydroCAD® 10.20-2f s/n 01265 © 2022 HydroCAD Software Solutions LLCPage 30

Summary for Reach 3R:

Inflow Area = 0.910 ac, 67.95% Impervious, Inflow Depth = 7.74" for 100 Year Saco event Inflow 5.07 cfs @ 12.15 hrs. Volume= 0.586 af = 3.64 cfs @ 12.52 hrs, Volume= Outflow = 0.586 af, Atten= 28%, Lag= 21.7 min Routed to Reach 2R : Routing by Stor-Ind+Trans method, Time Span= 0.00-100.00 hrs, dt= 0.01 hrs Max. Velocity= 0.70 fps, Min. Travel Time= 13.5 min Avg. Velocity = 0.30 fps, Avg. Travel Time= 31.6 min Peak Storage= 2,949 cf @ 12.29 hrs Average Depth at Peak Storage= 0.09', Surface Width= 55.71' Bank-Full Depth= 2.50' Flow Area= 191.3 sf, Capacity= 997.94 cfs 54.00' x 2.50' deep channel, n= 0.030 Earth, grassed & winding Side Slope Z-value= 10.0 8.0 '/' Top Width= 99.00' Length= 565.9' Slope= 0.0046 '/' Inlet Invert= 98.53', Outlet Invert= 95.91' ‡ Reach 3R: Hydrograph Inflow 5.07 cfs Outflow Inflow Area=0.910 ac 5 Avg. Flow Depth=0.09' Max Vel=0.70 fps 4 3.64 cfs n=0.030 Flow (cfs) L=565.9' 3 S=0.0046 '/' Capacity=997.94 cfs 2 1 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 Time (hours)

Summary for Reach 4R: POI #2

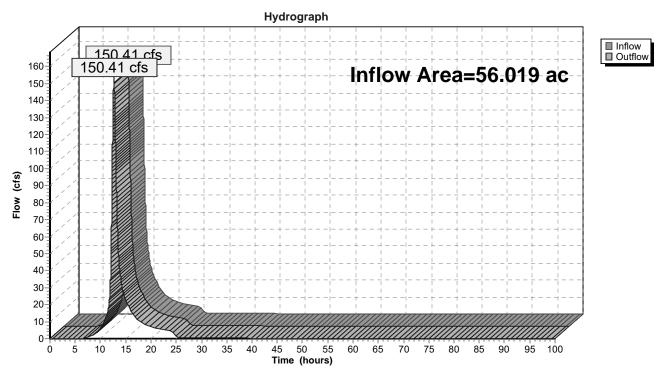

 Inflow Area =
 12.330 ac, 45.25% Impervious, Inflow Depth =
 7.13" for 100 Year Saco event

 Inflow =
 20.14 cfs @
 12.44 hrs, Volume=
 7.328 af

 Outflow =
 20.14 cfs @
 12.44 hrs, Volume=
 7.328 af, Atten= 0%, Lag= 0.0 min

 Routed to Pond 91P : POI 2
 2

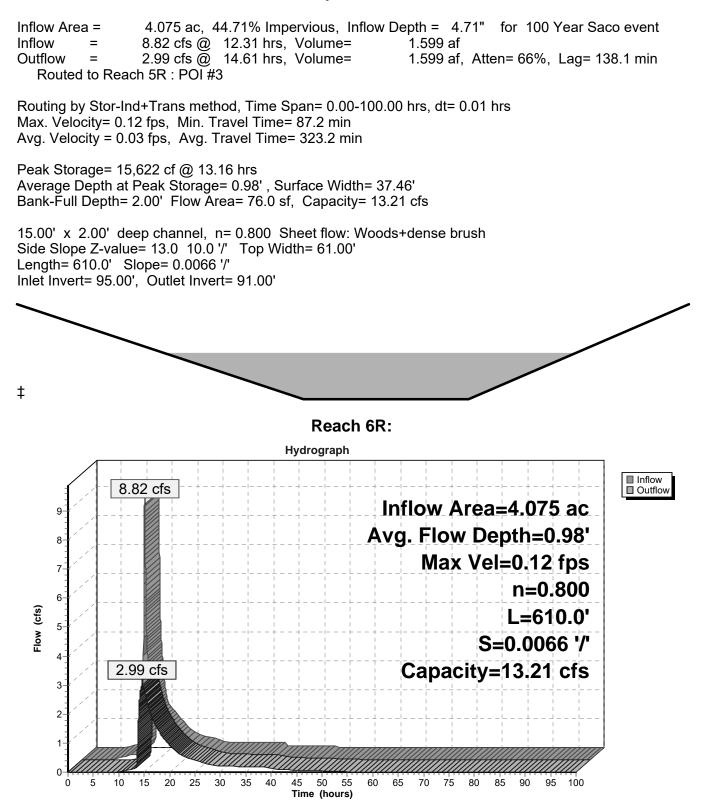
Routing by Stor-Ind+Trans method, Time Span= 0.00-100.00 hrs, dt= 0.01 hrs



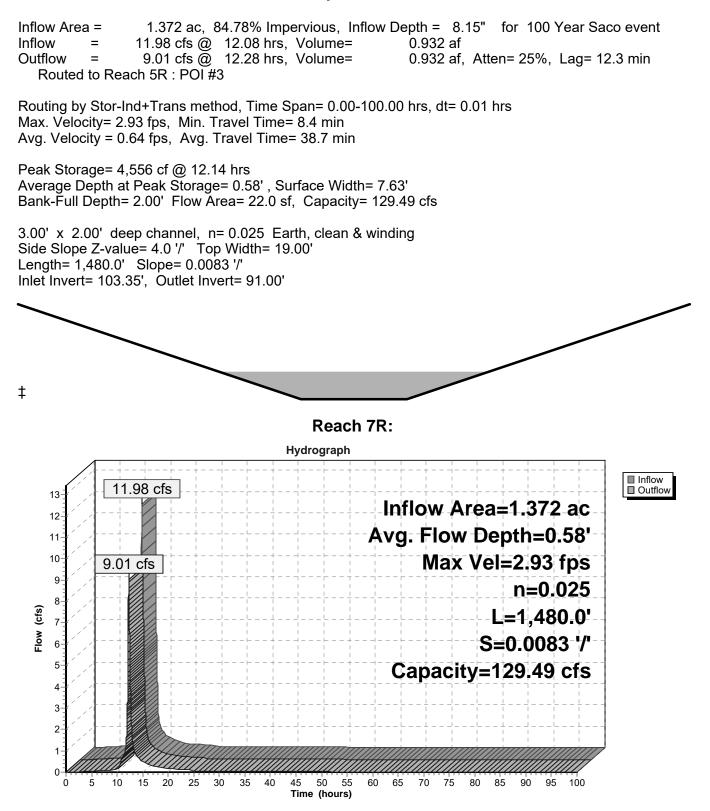
Reach 4R: POI #2

Summary for Reach 5R: POI #3

Inflow Area = 56.019 ac, 19.04% Impervious, Inflow Depth = 5.83" for 100 Year Saco event Inflow = 150.41 cfs @ 12.65 hrs, Volume= 27.225 af Outflow = 150.41 cfs @ 12.65 hrs, Volume= 27.225 af, Atten= 0%, Lag= 0.0 min Routed to Pond 90P : POI 3


Routing by Stor-Ind+Trans method, Time Span= 0.00-100.00 hrs, dt= 0.01 hrs

Reach 5R: POI #3


Post - Development Update - Feb 2023 w POI CType III 24-hr 100 Year Saco Rainfall=8.70"Prepared by Gorrill Palmer Consulting EngsPrinted 4/10/2023HydroCAD® 10.20-2f s/n 01265 © 2022 HydroCAD Software Solutions LLCPage 33

Summary for Reach 6R:

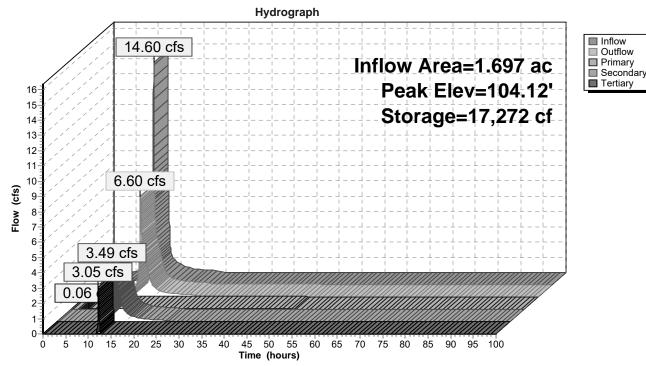
Post - Development Update - Feb 2023 w POI CType III 24-hr 100 Year Saco Rainfall=8.70"Prepared by Gorrill Palmer Consulting EngsPrinted 4/10/2023HydroCAD® 10.20-2f s/n 01265 © 2022 HydroCAD Software Solutions LLCPage 34

Summary for Reach 7R:

Summary for Pond 1P: GUSF #1

Inflow Area =	1.697 ac, 67.19% Impervious, Inflow	Depth = 7.74" for 100 Year Saco event					
Inflow =	14.60 cfs @ 12.07 hrs, Volume=	1.094 af					
Outflow =	6.60 cfs @ 12.22 hrs, Volume=	1.094 af, Atten= 55%, Lag= 9.1 min					
Primary =	0.06 cfs @ 3.92 hrs, Volume=	0.229 af					
Routed to Rea	ach 1R : POI #1						
Secondary =	3.49 cfs @ 12.22 hrs, Volume=	0.801 af					
Routed to Reach 1R : POI #1							
Tertiary =	3.05 cfs @ 12.22 hrs, Volume=	0.065 af					
Routed to Rea	ach 1R : POI #1						

Routing by Stor-Ind method, Time Span= 0.00-100.00 hrs, dt= 0.01 hrs Peak Elev= 104.12' @ 12.22 hrs Surf.Area= 6,847 sf Storage= 17,272 cf


Plug-Flow detention time= 221.9 min calculated for 1.094 af (100% of inflow) Center-of-Mass det. time= 222.0 min (988.0 - 766.0)

Volume	Invert	Ava	il.Stoi	age	Storage Descript	tion	
#1	98.40'		23,68	89 cf	f Custom Stage Data (Prismatic)Listed below (Recalc)		
Elevatio	on Su	ırf.Area	Voic	ls	Inc.Store	Cum.Store	
(fee		(sq-ft)	(%		(cubic-feet)	(cubic-feet)	
98.4	1	3,110	0		0		
100.5	-	3,110	0	-	0	0	
100.6		3,110	100		31	31	
101.0		3,450	100		1,312	1,343	
102.0	00	4,334	100	.0	3,892	5,235	
103.0	00	5,677	100	.0	5,006	10,241	
104.0	00	6,715	100	.0	6,196	16,437	
105.0	00	7,789	100	.0	7,252	23,689	
Device	Routing	In	vert	Outl	et Devices		
<u>#1</u>	Primary		3.40'	-	cfs Exfiltration a	at all alayations	
#2	Secondary		3.30'		" Round Culvert		
π ∠	occondary					ting, no headwall,	Ke= 0.900
							0.0050 '/' Cc= 0.900
							or, Flow Area= 1.77 sf
#3	Device 2	101	.94'		Vert. Orifice/Gr	-	,
		-	-	Limi	ted to weir flow at	low heads	
#4	Tertiary	103	8.93'	15.0	long x 6.0' brea	dth Broad-Creste	ed Rectangular Weir
	-			Hea	d (feet) 0.20 0.40	0.60 0.80 1.00	1.20 1.40 1.60 1.80 2.00
				2.50	3.00 3.50 4.00	4.50 5.00 5.50	
							.68 2.67 2.65 2.65 2.65
				2.65	2.66 2.66 2.67	2.69 2.72 2.76 2	2.83

Primary OutFlow Max=0.06 cfs @ 3.92 hrs HW=100.59' (Free Discharge)

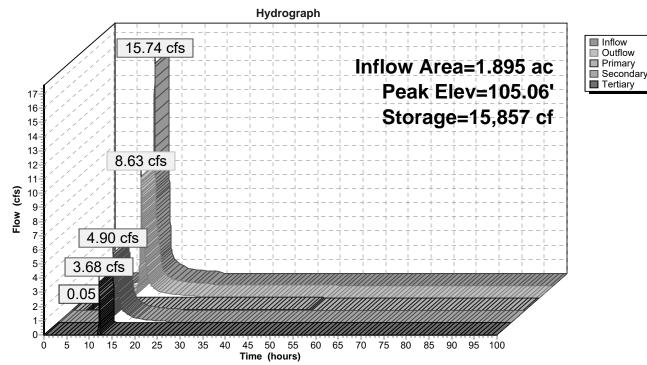
Secondary OutFlow Max=3.49 cfs @ 12.22 hrs HW=104.12' (Free Discharge) 2=Culvert (Passes 3.49 cfs of 15.13 cfs potential flow) -3=Orifice/Grate (Orifice Controls 3.49 cfs @ 6.40 fps)

Tertiary OutFlow Max=3.01 cfs @ 12.22 hrs HW=104.12' (Free Discharge) **4=Broad-Crested Rectangular Weir** (Weir Controls 3.01 cfs @ 1.04 fps)

Summary for Pond 2P: GUSF #2

Inflow Area	a =	1.895 ac, 4	17.04% Imp	ervious, Inflow De	epth = 7.25"	for 100 Year Saco event	
Inflow	=	15.74 cfs @	12.07 hrs,	Volume=	1.145 af		
Outflow	=	8.63 cfs @	12.18 hrs,	Volume=	1.145 af, Atte	en= 45%, Lag= 6.6 min	
Primary	=	0.05 cfs @	4.72 hrs,	Volume=	0.201 af		
Routed							
Secondary	=	4.90 cfs @	12.18 hrs,	Volume=	0.884 af		
Routed	to Rea	ch 2R :					
Tertiary	=	3.68 cfs @	12.18 hrs,	Volume=	0.061 af		
Routed to Reach 2R :							

Routing by Stor-Ind method, Time Span= 0.00-100.00 hrs, dt= 0.01 hrs Peak Elev= 105.06' @ 12.18 hrs Surf.Area= 6,099 sf Storage= 15,857 cf


Plug-Flow detention time= 204.5 min calculated for 1.145 af (100% of inflow) Center-of-Mass det. time= 204.6 min (983.2 - 778.6)

Volume	Invert	Ava	il.Stora	ge Storage Descri	iption	
#1	99.30'		22,037	cf Custom Stage	e Data (Prismatic)L	isted below (Recalc)
Elevatio	an Su	rf.Area	Voids	Inc.Store	Cum.Store	
(fee		(sq-ft)	(%)		(cubic-feet)	
99.3	1	2,848	0.0		0	
99.3 101.4		2,848	0.0		0	
101.5		2,848	100.0		28	
101.0		2,848	100.0		1,512	
102.0		4,294	100.0		5,203	
103.0		5,146	100.0	,	9,923	
104.0		6,046	100.0	,	15,519	
105.0		6,991	100.0		22,037	
100.0		0,001	100.0	0,010	22,001	
Device	Routing	In	vert (Outlet Devices		
#1	Secondary	99).20' <i>'</i>	18.0" Round Culve	ert	
			I	L= 45.0' CPP, proje	ecting, no headwall,	Ke= 0.900
			I	nlet / Outlet Invert=	99.20'/99.00' S=	0.0044 '/' Cc= 0.900
			1	n= 0.013 Corrugate	d PE, smooth interio	or, Flow Area= 1.77 sf
#2	Primary	99	.30'	0.05 cfs Exfiltration	at all elevations	
#3	Device 1	102	2.88' ′	12.0" Vert. Orifice/0	Grate C= 0.600	
			l	Limited to weir flow a	at low heads	
#4	Tertiary	104				ed Rectangular Weir
						1.20 1.40 1.60 1.80 2.00
				2.50 3.00 3.50 4.0		
				()		2.68 2.68 2.66 2.64 2.64
			2	2.64 2.65 2.65 2.6	6 2.66 2.68 2.70	2.74

Primary OutFlow Max=0.05 cfs @ 4.72 hrs HW=101.49' (Free Discharge) **2=Exfiltration** (Exfiltration Controls 0.05 cfs)

Secondary OutFlow Max=4.90 cfs @ 12.18 hrs HW=105.06' (Free Discharge) 1=Culvert (Passes 4.90 cfs of 15.18 cfs potential flow) -3=Orifice/Grate (Orifice Controls 4.90 cfs @ 6.23 fps)

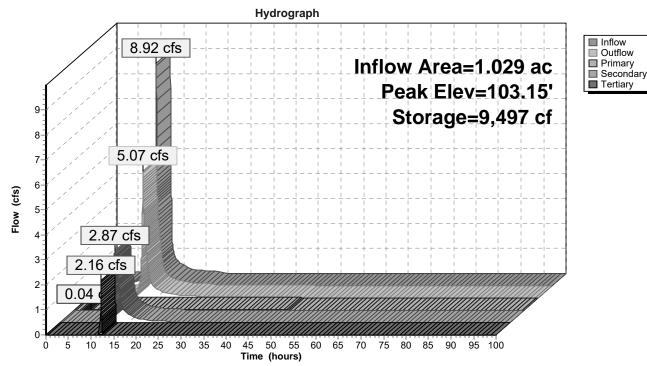
Tertiary OutFlow Max=3.67 cfs @ 12.18 hrs HW=105.06' (Free Discharge) **4=Broad-Crested Rectangular Weir** (Weir Controls 3.67 cfs @ 1.13 fps)

Pond 2P: GUSF #2

Summary for Pond 3P: GUSF #3

Inflow Area =	1.029 ac, 7	1.91% Impervious, In	nflow Depth = 7.86" for 100 Year Saco event			
Inflow =	8.92 cfs @	12.07 hrs, Volume=	0.674 af			
Outflow =	5.07 cfs @	12.17 hrs, Volume=	0.674 af, Atten= 43%, Lag= 6.1 min			
Primary =	0.04 cfs @	3.73 hrs, Volume=	0.148 af			
Routed to	Reach 2R :					
Secondary =	2.87 cfs @	12.17 hrs, Volume=	0.494 af			
Routed to Reach 2R:						
Tertiary =	2.16 cfs @	12.17 hrs, Volume=	0.033 af			
Routed to	Reach 2R :					

Routing by Stor-Ind method, Time Span= 0.00-100.00 hrs, dt= 0.01 hrs Peak Elev= 103.15' @ 12.17 hrs Surf.Area= 4,602 sf Storage= 9,497 cf


Plug-Flow detention time= 209.8 min calculated for 0.674 af (100% of inflow) Center-of-Mass det. time= 209.9 min (972.3 - 762.4)

Volume	Invert	Ava	il.Storage	Storage Descrip	otion	
#1	98.20'		13,683 cf	Custom Stage	Data (Prismatic)List	ted below (Recalc)
Elevatio	on Su	rf.Area	Voids	Inc.Store	Cum.Store	
(fee		(sq-ft)	(%)	(cubic-feet)	(cubic-feet)	
98.2		2,466	0.0	0	0	
100.3		2,466	0.0	0	0	
100.4	10	2,466	100.0	25	25	
101.0	00	2,593	100.0	1,518	1,542	
102.0	00	3,724	100.0	3,159	4,701	
103.0		4,479		4,102	8,802	
104.0	00	5,282	100.0	4,881	13,683	
Device	Deutina					
Device	Routing			et Devices		
#1	Primary			cfs Exfiltration		
#2	Secondary	98		" Round Culver	-	(0.000
					cting, no headwall, k	
					98.10' / 98.00' S= 0.	
#3	Davias 2	101)" Vert. Orifice/G		, Flow Area= 1.77 sf
#3	Device 2	101		ited to weir flow a		
#4	Tertiary	103				d Rectangular Weir
#4	rentiary	100				1.20 1.40 1.60 1.80 2.00
				· · ·	4.50 5.00 5.50	1.20 1.40 1.00 1.00 2.00
						8 2.67 2.65 2.65 2.65
					2.69 2.72 2.76 2.	
			2.00	2.00 2.00 2.01	2.00 2.12 2.10 Z.	~~

Primary OutFlow Max=0.04 cfs @ 3.73 hrs HW=100.39' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.04 cfs)

Secondary OutFlow Max=2.87 cfs @ 12.17 hrs HW=103.15' (Free Discharge) 2=Culvert (Passes 2.87 cfs of 13.93 cfs potential flow) -3=Orifice/Grate (Orifice Controls 2.87 cfs @ 5.27 fps)

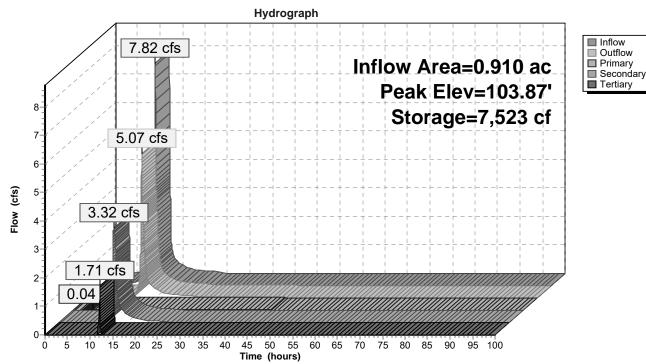
Tertiary OutFlow Max=2.12 cfs @ 12.17 hrs HW=103.15' (Free Discharge) 4=Broad-Crested Rectangular Weir (Weir Controls 2.12 cfs @ 0.93 fps)

Pond 3P: GUSF #3

Summary for Pond 4P: GUSF #5

Inflow Area	=	0.910 ac, 6	67.95% Imp	ervious, Inflow D	epth = 7.74" for <i>'</i>	100 Year Saco event	
Inflow	=	7.82 cfs @	12.07 hrs,	Volume=	0.586 af		
Outflow	=	5.07 cfs @	12.15 hrs,	Volume=	0.586 af, Atten= 3	5%, Lag= 5.0 min	
Primary	=	0.04 cfs @	4.34 hrs,	Volume=	0.135 af		
Routed t	o Read	ch 3R :					
Secondary	=	3.32 cfs @	12.15 hrs,	Volume=	0.431 af		
Routed to Reach 3R :							
Tertiary	=	1.71 cfs @	12.15 hrs,	Volume=	0.020 af		
Routed to Reach 3R :							

Routing by Stor-Ind method, Time Span= 0.00-100.00 hrs, dt= 0.01 hrs Peak Elev= 103.87' @ 12.15 hrs Surf.Area= 4,536 sf Storage= 7,523 cf


Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= 189.7 min (955.7 - 766.0)

Volume	Invert	Ava	il.Storaç	je Storage Descr	iption	
#1	99.23'		13,370	cf Custom Stage	e Data (Prismatic)	Listed below (Recalc)
Elevatio	יוא מר	rf.Area	Voids	Inc.Store	Cum.Store	
(fee		(sq-ft)	(%)	(cubic-feet)	(cubic-feet)	
99.2		1,763	0.0	0	0	
101.4		1,763	0.0	0	0	
		,		•	-	
101.4		1,763	100.0	18	18	
102.0		2,135		1,111	1,129	
103.0		3,583	100.0	2,859	3,988	
104.0		4,677	100.0	4,130	8,118	
105.0	00	5,828	100.0	5,253	13,370	
Device	Routing	In	ivert C	outlet Devices		
#1	Primary	90).23' 0	.04 cfs Exfiltration	n at all elevations	
#2	Secondary			8.0" Round Culve		
	eeeenaary				ecting, no headwal	Ke= 0.900
						= 0.0100 '/' Cc= 0.900
						ior, Flow Area= 1.77 sf
#3	Device 2	100		2.0" Vert. Orifice/		101, 110W AICa- 1.17 31
#3	Device 2	102		imited to weir flow		
#1	Tartian	103				ted Dector suler Main
#4	Tertiary	103				ted Rectangular Weir
				()		0 1.20 1.40 1.60 1.80 2.00
					0 4.50 5.00 5.50	
						2.68 2.67 2.65 2.65 2.65
			2	.65 2.66 2.66 2.6	7 2.69 2.72 2.76	2.83

Primary OutFlow Max=0.04 cfs @ 4.34 hrs HW=101.42' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.04 cfs)

Secondary OutFlow Max=3.32 cfs @ 12.15 hrs HW=103.87' (Free Discharge) 2=Culvert (Passes 3.32 cfs of 13.30 cfs potential flow) 3=Orifice/Grate (Orifice Controls 3.32 cfs @ 4.23 fps)

Tertiary OutFlow Max=1.68 cfs @ 12.15 hrs HW=103.87' (Free Discharge) 4=Broad-Crested Rectangular Weir (Weir Controls 1.68 cfs @ 0.86 fps)

Pond 4P: GUSF #5

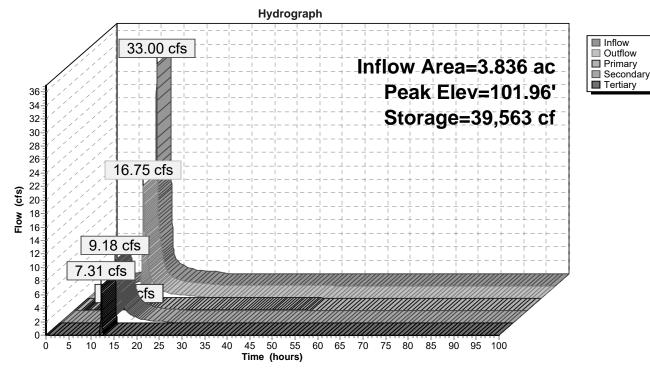
Summary for Pond 5P: Gravel Wetland #2

Inflow Area =	3.836 ac, 6	3.95% Impervious,	Inflow Depth = 7.74" for 100 Year Saco event					
Inflow =	33.00 cfs @	12.07 hrs, Volume=	= 2.473 af					
Outflow =	16.75 cfs @	12.19 hrs, Volume=	= 2.473 af, Atten= 49%, Lag= 7.4 min					
Primary =	0.25 cfs @	12.19 hrs, Volume=	= 0.572 af					
Routed to F	Reach 2R :							
Secondary =	9.18 cfs @	12.19 hrs, Volume=	= 1.763 af					
Routed to F	Reach 2R :							
Tertiary =	7.31 cfs @	12.19 hrs, Volume=	= 0.138 af					
Routed to Reach 2R :								

Routing by Stor-Ind method, Time Span= 0.00-100.00 hrs, dt= 0.01 hrs Peak Elev= 101.96' @ 12.19 hrs Surf.Area= 14,430 sf Storage= 39,563 cf

Plug-Flow detention time= 230.5 min calculated for 2.473 af (100% of inflow) Center-of-Mass det. time= 230.6 min (996.6 - 766.0)

Volume Invert Avail.Storage Storage Description					
#1 95.14' 55,660 cf Custom Stage Data (F	Prismatic)Listed below (Recalc)				
Elevation Surf.Area Voids Inc.Store Cu	um.Store				
-	ubic-feet)				
95.14 6,646 0.0 0	0				
97.98 6,646 0.0 0	0				
98.30 6,646 0.0 0	0				
98.31 6,646 100.0 66	66				
99.00 7,763 100.0 4,971	5,038				
100.00 11,190 100.0 9,477	14,514				
101.00 12,808 100.0 11,999	26,513				
102.00 14,501 100.0 13,655	40,168				
103.00 16,484 100.0 15,493	55,660				
100.00 10,100 10,100	00,000				
Device Routing Invert Outlet Devices					
#1 Device 2 95.14' 2.2" Vert. Orifice/Grate C=	= 0.600 Limited to weir flow at low heads				
#2 Device 3 97.98' 0.5' long x 6.0' breadth Br	0.5' long x 6.0' breadth Broad-Crested Rectangular Weir				
Head (feet) 0.20 0.40 0.60	Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00				
2.50 3.00 3.50 4.00 4.50	2.50 3.00 3.50 4.00 4.50 5.00 5.50				
	2.70 2.68 2.68 2.67 2.65 2.65 2.65				
2.65 2.66 2.66 2.67 2.69	2.72 2.76 2.83				
#3 Primary 97.90' 24.0" Round Culvert	97.90' 24.0" Round Culvert				
L= 20.0' CPP, square edge					
	97.80' S= 0.0050 '/' Cc= 0.900				
	mooth interior, Flow Area= 3.14 sf				
,	12.0" Vert. Orifice/Grate C= 0.600				
Limited to weir flow at low he					
#5 Secondary 100.27' 12.0" Vert. Orifice/Grate C					
Limited to weir flow at low he					
	30.0' long x 6.0' breadth Broad-Crested Rectangular Weir				
	0.80 1.00 1.20 1.40 1.60 1.80 2.00				
2.50 3.00 3.50 4.00 4.50					
Coef. (English) 2.37 2.51 2	2.70 2.68 2.68 2.67 2.65 2.65 2.65				


2.65 2.66 2.66 2.67 2.69 2.72 2.76 2.83

Primary OutFlow Max=0.25 cfs @ 12.19 hrs HW=101.96' (Free Discharge) 3=Culvert (Passes 0.25 cfs of 26.45 cfs potential flow) 2=Broad-Crested Rectangular Weir (Passes 0.25 cfs of 10.67 cfs potential flow) 1=Orifice/Grate (Orifice Controls 0.25 cfs @ 9.60 fps)

Secondary OutFlow Max=9.18 cfs @ 12.19 hrs HW=101.96' (Free Discharge) 4=Orifice/Grate (Orifice Controls 5.06 cfs @ 6.44 fps) 5=Orifice/Grate (Orifice Controls 4.12 cfs @ 5.25 fps)

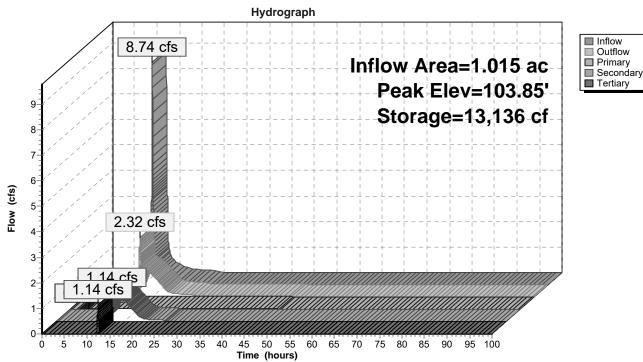
Tertiary OutFlow Max=7.27 cfs @ 12.19 hrs HW=101.96' (Free Discharge) **G=Broad-Crested Rectangular Weir** (Weir Controls 7.27 cfs @ 1.11 fps)

Pond 5P: Gravel Wetland #2

Summary for Pond 6P: GUSF #4

Inflow Area =	1.015 ac, 66.73% Impervious, Inflow E	Depth = 7.74" for 100 Year Saco event			
Inflow =	8.74 cfs @ 12.07 hrs, Volume=	0.655 af			
Outflow =	2.32 cfs @ 12.41 hrs, Volume=	0.655 af, Atten= 73%, Lag= 20.4 min			
Primary =	0.04 cfs @ 4.12 hrs, Volume=	0.143 af			
Routed to Reach 4R : POI #2					
Secondary =	1.14 cfs @ 12.41 hrs, Volume=	0.488 af			
Routed to Read	ch 4R : POI #2				
Tertiary =	1.14 cfs @ 12.41 hrs, Volume=	0.024 af			
Routed to Read	ch 4R : POI #2				

Routing by Stor-Ind method, Time Span= 0.00-100.00 hrs, dt= 0.01 hrs Peak Elev= 103.85' @ 12.41 hrs Surf.Area= 4,925 sf Storage= 13,136 cf


Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= 250.4 min (1,016.4 - 766.0)

Volume	Invert	Ava	il.Stora	age Storage Desc	e Storage Description		
#1	97.70'		13,892				
Elevatio	on Su	rf.Area	Void		Cum.Store		
(fee	et)	(sq-ft)	(%) (cubic-feet)	(cubic-feet)		
97.7	70	1,869	0.0	0 C	0		
99.8	39	1,869	0.0	0 C	0		
99.9	90	1,869			19		
100.0	00	1,924	100.0) 190	208		
101.0	00	2,446	100.0) 2,185	2,393		
102.0	00	3,511	100.0) 2,979	5,372		
103.0	00	4,241	100.0) 3,876	9,248		
104.0	00	5,047	100.0) 4,644	13,892		
Device	Routing	In	vert	Outlet Devices			
#1	Primary	97	7.70'	0.04 cfs Exfiltration at all elevations			
#2	Secondary	97	' .60'	18.0" Round Culvert			
				L= 20.0' CPP, square edge headwall, Ke= 0.500			
				Inlet / Outlet Invert=	= 97.60 [°] / 97.50' S	S= 0.0050 '/' Cc= 0.900	
				n= 0.013 Corrugate	ed PE, smooth inte	erior, Flow Area= 1.77 sf	
#3	Device 2	101	.22'	5.3" Vert. Orifice/Grate C= 0.600 Limited to weir flow at low heads			
#4	Tertiary	103.75' 15.0		15.0' long x 6.0' breadth Broad-Crested Rectangular Weir			
	Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00						
				2.50 3.00 3.50 4.0	00 4.50 5.00 5.50	D	
				Coef. (English) 2.3	7 2.51 2.70 2.68	2.68 2.67 2.65 2.65 2.65	
				2.65 2.66 2.66 2.6	67 2.69 2.72 2.7	6 2.83	

Primary OutFlow Max=0.04 cfs @ 4.12 hrs HW=99.89' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.04 cfs)

Secondary OutFlow Max=1.14 cfs @ 12.41 hrs HW=103.85' (Free Discharge) 2=Culvert (Passes 1.14 cfs of 19.95 cfs potential flow) -3=Orifice/Grate (Orifice Controls 1.14 cfs @ 7.47 fps)

Tertiary OutFlow Max=1.10 cfs @ 12.41 hrs HW=103.85' (Free Discharge) 4=Broad-Crested Rectangular Weir (Weir Controls 1.10 cfs @ 0.74 fps)

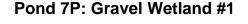
Pond 6P: GUSF #4

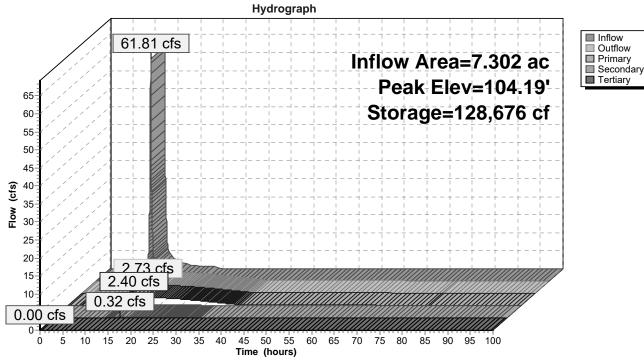
Summary for Pond 7P: Gravel Wetland #1

Inflow Area =	7.302 ac, 60	.35% Imperv	vious, Inflow De	epth = 7.50"	for 100 Year Saco event
Inflow =	61.81 cfs @ 1	2.07 hrs, V	olume=	4.561 af	
Outflow =	2.73 cfs @ 1	4.57 hrs, V	olume=	4.561 af, Atter	n= 96%, Lag= 149.8 min
Primary =	2.40 cfs @ 1	4.57 hrs, V	olume=	4.166 af	
Routed to Rea	ch 4R : POI #2				
Secondary =	0.32 cfs @ 1	4.57 hrs, V	olume=	0.395 af	
Routed to Rea	ch 4R : POI #2				
Tertiary =	0.00 cfs @	0.00 hrs, V	olume=	0.000 af	
Routed to Rea	ch 4R : POI #2				

Routing by Stor-Ind method, Time Span= 0.00-100.00 hrs, dt= 0.01 hrs Peak Elev= 104.19' @ 14.57 hrs Surf.Area= 29,197 sf Storage= 128,676 cf

Plug-Flow detention time= 737.9 min calculated for 4.560 af (100% of inflow) Center-of-Mass det. time= 738.1 min (1,510.7 - 772.6)


Volume	Invert	Ava	il.Stora	ge Storage Desci	ription	
#1	94.76'	1	38,013	cf Custom Stag	e Data (Prismatic	Listed below (Recalc)
Elevatio	on Su	rf.Area	Voids	Inc.Store	Cum.Store	
(fee	et)	(sq-ft)	(%)	(cubic-feet)	(cubic-feet)	
94.7	76	12,121	0.0	0	0	
97.6		12,121	0.0	0	0	
97.9	92	12,121	0.0	0	0	
97.9	93	12,121	100.0	121	121	
98.0		12,239	100.0	853	974	
99.0	00	14,188	100.0	13,214	14,187	
100.0	00	18,901	100.0	16,545	30,732	
101.0	00	20,916	100.0	19,909	50,640	
102.0	00	23,050	100.0	21,983	72,623	
103.0	00	25,237	100.0	24,144	96,767	
104.0	00	27,639	100.0	26,438	123,205	
104.2	25	29,662	100.0	7,163	130,367	
104.5	50	31,500	100.0	7,645	138,013	
Davias	Deuting	l a		Outlet Devices		
Device	Routing			Outlet Devices		
#1	Device 2	-	-			_imited to weir flow at low heads
#2	Device 3	97				ted Rectangular Weir
					.40 0.60 0.80 1.0	00 1.20 1.40 1.60 1.80 2.00
				2.50 2.50		2 4 0 2 0 0 0 7 2 2 0 2 0 0
				()	6 2.82 2.93 3.09	3.18 3.22 3.27 3.30 3.32
	Di	07		3.31 3.32		
#3	Primary	97		36.0" Round Culv		
				L= 69.0' CPP, squ		
						= 0.0145 '/' Cc= 0.900
ЩА	Davis 0	00				erior, Flow Area= 7.07 sf
#4 #5	Device 2					_imited to weir flow at low heads
#5	Secondary					Limited to weir flow at low heads
#6	Tertiary	104				ested Rectangular Weir
				Head (feet) 0.20 0	.40 0.60 0.80 1.0	JU 1.2U 1.4U 1.6U


Coef. (English) 2.49 2.56 2.70 2.69 2.68 2.69 2.67 2.64

Primary OutFlow Max=2.40 cfs @ 14.57 hrs HW=104.19' (Free Discharge) 3=Culvert (Passes 2.40 cfs of 77.56 cfs potential flow) 2=Broad-Crested Rectangular Weir (Passes 2.40 cfs of 337.18 cfs potential flow) 1=Orifice/Grate (Orifice Controls 0.39 cfs @ 12.36 fps) 4=Orifice/Grate (Orifice Controls 2.01 cfs @ 10.25 fps)

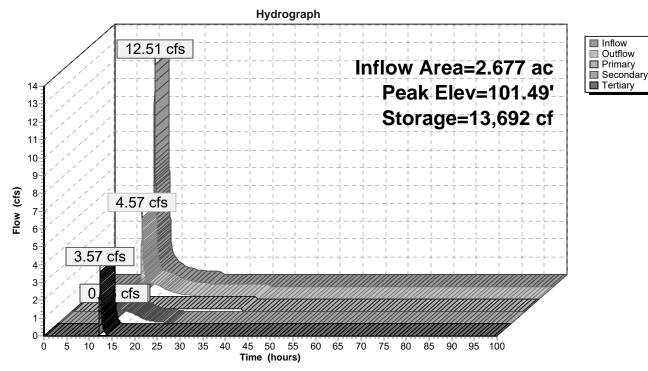
Secondary OutFlow Max=0.32 cfs @ 14.57 hrs HW=104.19' (Free Discharge) 5=Orifice/Grate (Orifice Controls 0.32 cfs @ 9.52 fps)

Tertiary OutFlow Max=0.00 cfs @ 0.00 hrs HW=94.76' (Free Discharge) G=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Summary for Pond 8/9P: GUSF #6 & #7

Inflow Area	=	2.677 ac, 3	36.33% Imp	ervious, Inflow De	epth = 3.95"	for 100 Year Saco event
Inflow	=	12.51 cfs @	12.08 hrs,	Volume=	0.881 af	
Outflow	=	4.57 cfs @	12.36 hrs,	Volume=	0.881 af, Atte	en= 63%, Lag= 17.0 min
Primary	=	0.14 cfs @	9.77 hrs,	Volume=	0.335 af	
Routed t	to Rea	ch 6R :				
Secondary	=	0.86 cfs @	12.36 hrs,	Volume=	0.411 af	
Routed t	to Rea	ch 6R :				
Tertiary	=	3.57 cfs @	12.36 hrs,	Volume=	0.136 af	
Routed t	to Rea	ch 6R :				

Routing by Stor-Ind method, Time Span= 0.00-100.00 hrs, dt= 0.01 hrs / 2 Peak Elev= 101.49' @ 12.36 hrs Surf.Area= 8,032 sf Storage= 13,692 cf


Plug-Flow detention time= 248.9 min calculated for 0.881 af (100% of inflow) Center-of-Mass det. time= 248.9 min (1,081.3 - 832.3)

Volume	Invert	Ava	il.Storage	Storage Descrip	otion	
#1	97.00'		27,139 cf	Custom Stage	Data (Prismatic)Li	sted below (Recalc)
Elevatio	on Su	rf.Area	Voids	Inc.Store	Cum.Store	
(fee		(sq-ft)	(%)	(cubic-feet)	(cubic-feet)	
97.0	00	4,024	0.0	0	0	
99.1	19	4,024	0.0	0	0	
99.2	20	4,024	100.0	40	40	
100.0	00	4,989	100.0	3,605	3,645	
101.0	00	7,445	100.0	6,217	9,862	
102.0		8,631	100.0	8,038	17,900	
103.0	00	9,847	100.0	9,239	27,139	
Device	Routing	In	vert Ou	tlet Devices		
#1	Primary	97		4 cfs Exfiltration	at all elevations	
#2	Secondary			0" Round Culve		
	,		-		ecting, no headwall	. Ke= 0.900
						0.0090 '/' Cc= 0.900
			n=	0.013 Corrugated	PE, smooth interic	or, Flow Area= 1.77 sf
#3	Device 2	100	.42' 6.0	" Vert. Orifice/Gr	ate C= 0.600 Lin	nited to weir flow at low heads
#4	Tertiary	101	.32' 20.	0' long x 8.0' bre	adth Broad-Creste	ed Rectangular Weir
	-					1.20 1.40 1.60 1.80 2.00
			2.5	0 3.00 3.50 4.00	4.50 5.00 5.50	
						.68 2.68 2.66 2.64 2.64
			2.6	4 2.65 2.65 2.66	6 2.66 2.68 2.70 2	2.74

Primary OutFlow Max=0.14 cfs @ 9.77 hrs HW=99.19' (Free Discharge)

Secondary OutFlow Max=0.86 cfs @ 12.36 hrs HW=101.49' (Free Discharge) 2=Culvert (Passes 0.86 cfs of 13.17 cfs potential flow) 3=Orifice/Grate (Orifice Controls 0.86 cfs @ 4.37 fps)

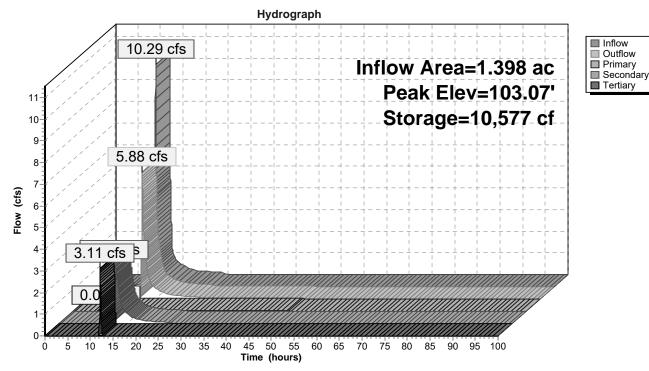
Tertiary OutFlow Max=3.55 cfs @ 12.36 hrs HW=101.49' (Free Discharge) 4=Broad-Crested Rectangular Weir (Weir Controls 3.55 cfs @ 1.02 fps)

Pond 8/9P: GUSF #6 & #7

Summary for Pond 10P: GUSF #8

Inflow Area	. =	1.398 ac, 6	60.77% Impe	ervious, Inflow De	epth = 6.16"	for 100 Year Saco event
Inflow	=	10.29 cfs @	12.07 hrs,	Volume=	0.718 af	
Outflow	=	5.88 cfs @	12.18 hrs,	Volume=	0.718 af, Atte	n= 43%, Lag= 6.2 min
Primary	=	0.05 cfs @	7.26 hrs,	Volume=	0.170 af	
Routed	to Rea	ch 6R :				
Secondary	=	2.73 cfs @	12.18 hrs,	Volume=	0.489 af	
Routed	to Rea	ch 6R :				
Tertiary	=	3.11 cfs @	12.18 hrs,	Volume=	0.058 af	
Routed	to Rea	ch 6R :				

Routing by Stor-Ind method, Time Span= 0.00-100.00 hrs, dt= 0.01 hrs Peak Elev= 103.07' @ 12.18 hrs Surf.Area= 5,067 sf Storage= 10,577 cf


Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= 230.8 min (1,031.9 - 801.1)

Volume	Invert	Ava	il.Stor	age	Storage Descript	ion	
#1	98.16'		21,97	′5 cf	Custom Stage	0ata (Prismatic)L	isted below (Recalc)
Elevatio	on Su	ırf.Area	Void	ls	Inc.Store	Cum.Store	
(fee		(sq-ft)	(%		(cubic-feet)	(cubic-feet)	
98.2		2,918	0.		0	0	
100.3	-	2,918	0.	-	0	0	
100.3		2,918	100.		29	29	
100.0		3,108	100.		1,928	1,958	
102.0		4,231	100.		3,670	5,627	
103.0		5,012			4,622	10,249	
104.0		5,850	100.		5,431	15,680	
105.0		6,741	100.		6,296	21,975	
Device	Routing	In	vert	Outl	et Devices		
<u>=====</u> #1	Primary		3.16'	-	cfs Exfiltration a	t all elevations	
#2	Secondary		3.10'		" Round Culvert		
	eeeenaary				0.8' CPP, project		Ke= 0 900
							0.0068 '/' Cc= 0.900
							or, Flow Area= 1.77 sf
#3	Device 2	101	.57'		" Vert. Orifice/Gr		,
				Limi	ted to weir flow at	low heads	
#4	Tertiary	102	2.87'	15.0	long x 6.0' brea	dth Broad-Crest	ed Rectangular Weir
							1.20 1.40 1.60 1.80 2.00
					3.00 3.50 4.00		
							2.68 2.67 2.65 2.65 2.65
				2.65	2.66 2.66 2.67	2.69 2.72 2.76	2.83

Primary OutFlow Max=0.05 cfs @ 7.26 hrs HW=100.35' (Free Discharge)

Secondary OutFlow Max=2.73 cfs @ 12.18 hrs HW=103.06' (Free Discharge) 2=Culvert (Passes 2.73 cfs of 13.79 cfs potential flow) -3=Orifice/Grate (Orifice Controls 2.73 cfs @ 5.00 fps)

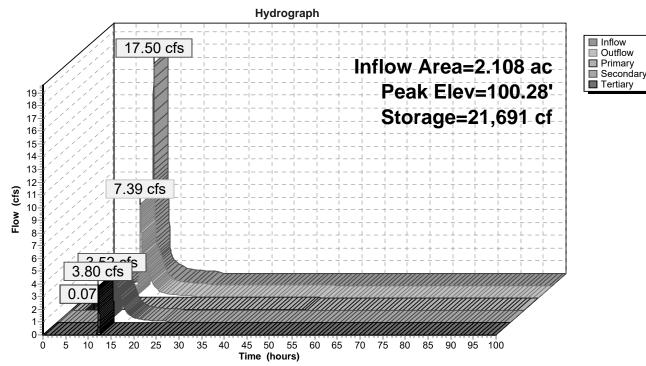
Tertiary OutFlow Max=3.06 cfs @ 12.18 hrs HW=103.06' (Free Discharge) 4=Broad-Crested Rectangular Weir (Weir Controls 3.06 cfs @ 1.05 fps)

Pond 10P: GUSF #8

Summary for Pond 11P: GUSF #9

Inflow Area =	2.108 ac, 70.56% Impervious, Inflow	Depth = 7.25" for 100 Year Saco event
Inflow =	17.50 cfs @ 12.07 hrs, Volume=	1.274 af
Outflow =	7.39 cfs @ 12.25 hrs, Volume=	1.274 af, Atten= 58%, Lag= 10.7 min
Primary =	0.07 cfs @ 5.09 hrs, Volume=	0.274 af
Routed to Rea	ach 5R : POI #3	
Secondary =	3.52 cfs @ 12.25 hrs, Volume=	0.906 af
Routed to Rea	ach 5R : POI #3	
Tertiary =	3.80 cfs @ 12.25 hrs, Volume=	0.093 af
Routed to Rea	ach 5R : POI #3	

Routing by Stor-Ind method, Time Span= 0.00-100.00 hrs, dt= 0.01 hrs Peak Elev= 100.28' @ 12.25 hrs Surf.Area= 8,436 sf Storage= 21,691 cf


Plug-Flow detention time= 249.4 min calculated for 1.274 af (100% of inflow) Center-of-Mass det. time= 249.5 min (1,028.1 - 778.6)

Volume	Invert	Ava	il.Stor	age	Storage Descript	ion	
#1	94.46'		28,06	8 cf	Custom Stage	Data (Prismatic)L	isted below (Recalc)
Elevatio	on Su	ırf.Area	Void	ls	Inc.Store	Cum.Store	
(fee		(sq-ft)	(%		(cubic-feet)	(cubic-feet)	
94.4	/	3,783	0.		0	0	
96.6		3,783	0.		0	0	
96.6		3,783	100.		38	38	
97.0		4,087	100.		1,338	1,376	
98.0		5,074	100.		4,581	5,956	
99.0	00	6,824	100.		5,949	11,905	
100.0	00	8,066	100.	0	7,445	19,350	
101.0	00	9,370	100.	0	8,718	28,068	
Device	Routing	In	vert	Outle	et Devices		
#1	Primary		.46'	-	cfs Exfiltration a	t all elevations	
#2	Secondary		.36'		" Round Culvert		
	,				8.1' CPP, project		Ke= 0.900
							0.0076 '/' Cc= 0.900
				n= 0	.013 Corrugated	PE, smooth interi	or, Flow Area= 1.77 sf
#3	Device 2	98	8.07'	10.0	" Vert. Orifice/Gr	ate C= 0.600	
				Limi	ted to weir flow at	low heads	
#4	Tertiary	100	.06'				ted Rectangular Weir
							1.20 1.40 1.60 1.80 2.00
					3.00 3.50 4.00		
							2.68 2.67 2.65 2.65 2.65
				2.65	2.66 2.66 2.67	2.09 2.72 2.76	2.83

Primary OutFlow Max=0.07 cfs @ 5.09 hrs HW=96.65' (Free Discharge)

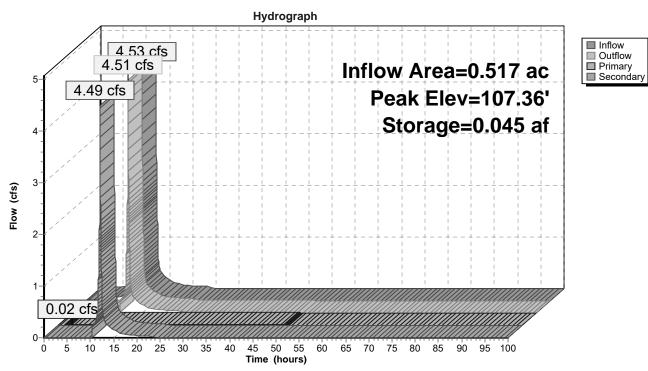
Secondary OutFlow Max=3.52 cfs @ 12.25 hrs HW=100.28' (Free Discharge) 2=Culvert (Passes 3.52 cfs of 15.28 cfs potential flow) -3=Orifice/Grate (Orifice Controls 3.52 cfs @ 6.45 fps)

Tertiary OutFlow Max=3.79 cfs @ 12.25 hrs HW=100.28' (Free Discharge) **4=Broad-Crested Rectangular Weir** (Weir Controls 3.79 cfs @ 1.13 fps)

Pond 11P: GUSF #9

Summary for Pond 12P: CHAMBER1

Inflow Area = 0.517 ac, 84.12% Impervious, Inflow Depth = 8.10" for 100 Year Saco event Inflow 4.53 cfs @ 12.07 hrs, Volume= 0.349 af = 4.51 cfs @ 12.08 hrs, Volume= Outflow = 0.349 af, Atten= 0%, Lag= 0.4 min 3.12 hrs, Volume= Primary = 0.02 cfs @ 0.077 af Routed to Reach 7R : 4.49 cfs @ 12.08 hrs, Volume= 0.272 af Secondary = Routed to Reach 7R :


Routing by Stor-Ind method, Time Span= 0.00-100.00 hrs, dt= 0.01 hrs / 2 Peak Elev= 107.36' @ 12.08 hrs Surf.Area= 0.021 ac Storage= 0.045 af

Plug-Flow detention time= 201.3 min calculated for 0.349 af (100% of inflow) Center-of-Mass det. time= 201.3 min (955.7 - 754.4)

Volume Inve	rt Avail.Stora	age Storage Description					
#1 104.1	0' 0.018	B af 5.33'W x 7.21'L x 3.54'H Prismatoid x 24					
#2 104.6	0' 0.029	0.075 af Overall - 0.029 af Embedded = 0.046 af x 40.0% Voids af Cultec R-330XLHD x 24 Inside #1					
#2 104.0	0 0.023	Effective Size= 47.8° W x 30.0"H => 7.45 sf x 7.00'L = 52.2 cf					
		Overall Size= 52.0"W x 30.5"H x 8.50'L with 1.50' Overlap					
0.047 af Total Available Storage							
Device Routing	Invert	Outlet Devices					
#1 Primary	104.10'	0.02 cfs Exfiltration at all elevations					
#2 Seconda	ry 106.95'	6.0' long x 0.7' breadth Broad-Crested Rectangular Weir Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.50 Coef. (English) 2.76 2.82 2.93 3.09 3.18 3.22 3.27 3.30 3.32 3.31 3.32					
Primary OutFlow Max=0.02 cfs @ 3.12 hrs HW=104.14' (Free Discharge)							

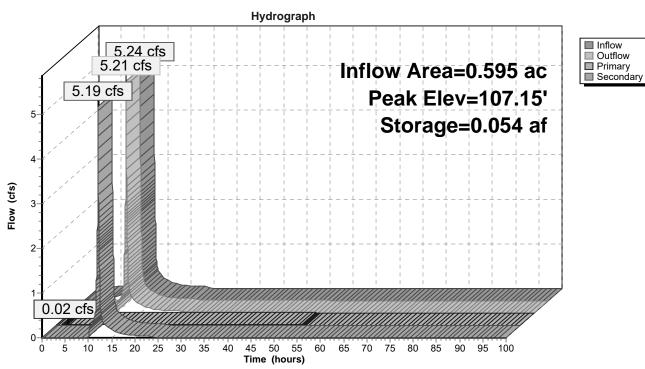
1=Exfiltration (Exfiltration Controls 0.02 cfs)

Secondary OutFlow Max=4.48 cfs @ 12.08 hrs HW=107.36' (Free Discharge) 2=Broad-Crested Rectangular Weir (Weir Controls 4.48 cfs @ 1.81 fps)

Pond 12P: CHAMBER1

Summary for Pond 13P: CHAMBER2

Inflow Area = 0.595 ac, 86.51% Impervious, Inflow Depth = 8.22" for 100 Year Saco event Inflow 5.24 cfs @ 12.07 hrs, Volume= 0.408 af = 5.21 cfs @ 12.08 hrs, Volume= Outflow = 0.408 af, Atten= 1%, Lag= 0.4 min 0.02 cfs @ 2.51 hrs, Volume= Primary = 0.085 af Routed to Reach 7R : 5.19 cfs @ 12.08 hrs, Volume= Secondary = 0.323 af Routed to Reach 7R :


Routing by Stor-Ind method, Time Span= 0.00-100.00 hrs, dt= 0.01 hrs / 2 Peak Elev= 107.15' @ 12.08 hrs Surf.Area= 0.026 ac Storage= 0.054 af

Plug-Flow detention time= 218.5 min calculated for 0.408 af (100% of inflow) Center-of-Mass det. time= 218.5 min (968.4 - 749.9)

Volume	Invert	Avail.Stora	ge Storage Description					
#1	104.10'	0.023	af 5.33'W x 7.21'L x 3.54'H Prismatoid x 30					
#2	104.60'	0.036	0.094 af Overall - 0.036 af Embedded = 0.058 af x 40.0% Voids af Cultec R-330XLHD x 30 Inside #1 Effective Size= 47.8"W x 30.0"H => 7.45 sf x 7.00'L = 52.2 cf Overall Size= 52.0"W x 30.5"H x 8.50'L with 1.50' Overlap					
0.059 af Total Available Storage								
Device	Routing	Invert	Outlet Devices					
#1	Primary	104.10'	0.02 cfs Exfiltration at all elevations					
#2	Secondary	106.70'	6.0' long x 0.7' breadth Broad-Crested Rectangular Weir Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.50 Coef. (English) 2.76 2.82 2.93 3.09 3.18 3.22 3.27 3.30 3.32 3.31 3.32					
Primary	Primary OutFlow Max=0.02 cfs @ 2.51 hrs HW=104.14' (Free Discharge)							

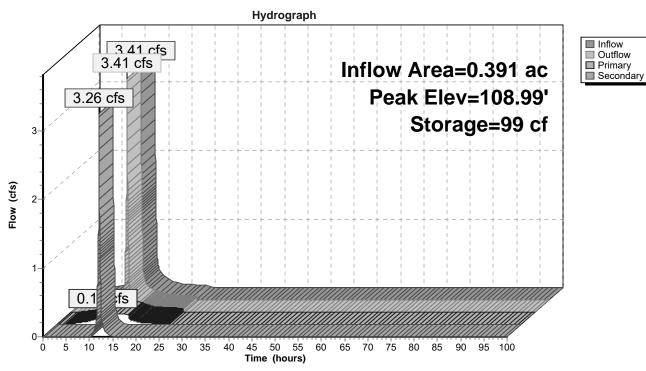
1=Exfiltration (Exfiltration Controls 0.02 cfs)

Secondary OutFlow Max=5.17 cfs @ 12.08 hrs HW=107.15' (Free Discharge) 2=Broad-Crested Rectangular Weir (Weir Controls 5.17 cfs @ 1.91 fps)

Pond 13P: CHAMBER2

Summary for Pond 14P: FocalPoint 1

Inflow Area =	0.391 ac, 80.52% Impervious, Inflow De	epth = 7.98" for 100 Year Saco event
Inflow =	3.41 cfs @ 12.07 hrs, Volume=	0.260 af
Outflow =	3.41 cfs @ 12.07 hrs, Volume=	0.260 af, Atten= 0%, Lag= 0.2 min
Primary =	0.15 cfs @ 9.95 hrs, Volume=	0.138 af
Secondary =	3.26 cfs @ 12.07 hrs, Volume=	0.122 af


Routing by Stor-Ind method, Time Span= 0.00-100.00 hrs, dt= 0.01 hrs Peak Elev= 108.99' @ 12.07 hrs Surf.Area= 64 sf Storage= 99 cf

Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= 1.6 min (760.1 - 758.5)

Volume	Invert	Avail.Sto	rage	Storage D	Description		
#1	105.95'		0 cf	16.00'W x	k 4.00'L x 2.25'	H FocalPoint	
				-	erall_x 0.0% V		
#2	108.20'	1()0 cf	Custom S	Stage Data (Pr	ismatic)Listed be	<u>elow (Recalc) -Impervio</u> us
		10	00 cf	Total Ava	ilable Storage		
Elevatio	n Si	urf.Area	Inc	Store	Cum.Store		
(fee		(sq-ft)		c-feet)	(cubic-feet)		
108.2	1	64	(000)	0	0		
108.5	-	124		28	28		
100.0	-	164		72	100		
Device	Routing	Invert	Outl	et Devices			
#1	Primary	105.95'	100.	000 in/hr E	Exfiltration over	er Surface area	Phase-In= 0.10'
#2	Secondary	108.70'	24.0	" Horiz. O	rifice/Grate C	= 0.600	
			Limi	ted to weir	flow at low hea	ds	
			~ ~ ~ ~			D: 1)	

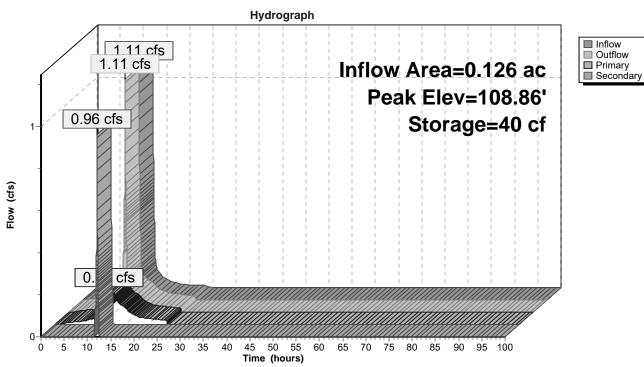
Primary OutFlow Max=0.15 cfs @ 9.95 hrs HW=108.20' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.15 cfs)

Secondary OutFlow Max=3.25 cfs @ 12.07 hrs HW=108.99' (Free Discharge) 2=Orifice/Grate (Weir Controls 3.25 cfs @ 1.77 fps)

Pond 14P: FocalPoint 1

Summary for Pond 15P: FocalPoint 2

Inflow Area =	0.126 ac, 95.31% Impervious, Inflow De	epth = 8.34" for 100 Year Saco event
Inflow =	1.11 cfs @ 12.07 hrs, Volume=	0.087 af
Outflow =	1.11 cfs @ 12.07 hrs, Volume=	0.108 af, Atten= 0%, Lag= 0.2 min
Primary =	0.15 cfs @ 11.59 hrs, Volume=	0.085 af
Secondary =	0.96 cfs @ 12.07 hrs, Volume=	0.024 af


Routing by Stor-Ind method, Time Span= 0.00-100.00 hrs, dt= 0.01 hrs / 2 Peak Elev= 108.86' @ 12.07 hrs Surf.Area= 64 sf Storage= 40 cf

Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= 52.1 min (797.0 - 744.9)

Volume	Invert	Avail.Sto	rage	Storage I	Description		
#1	105.95'		0 cf	16.00'W	x 4.00'L x 2.25	5'H FocalPoint	
					/erall_x 0.0% V		
#2	108.20'		53 cf	Custom	Stage Data (Pr	Prismatic)Listed below (Recalc) -Imperviou	S
		:	53 cf	Total Ava	ailable Storage	9	
Elevatio	n Sur	f.Area	Inc	Store	Cum.Store		
(fee	t)	(sq-ft)	(cubi	c-feet)	(cubic-feet)	1	
108.2	0	24		0	0		
108.5	0	64		13	13		
109.0	0	96		40	53		
Davias	Deuting	luo yourf	0.11	at Daviaca			
Device	Routing	Invert	-	et Devices			
#1	Primary	105.95'		00.000 in/hr Exfiltration over Surface area Phase-In=			
#2	Secondary	108.70'		18.0" Horiz. Orifice/Grate C= 0.600			
			Limi	ted to weir	flow at low hea	eads	

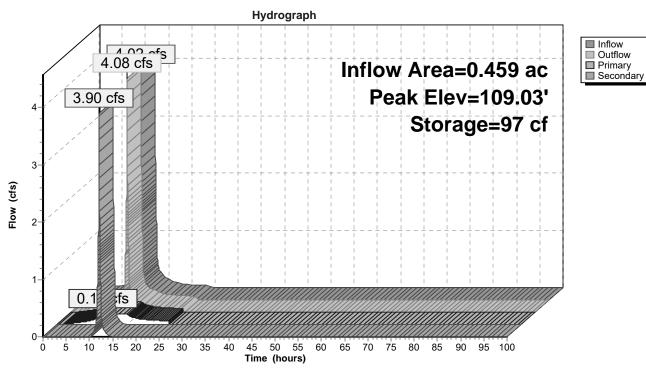
Primary OutFlow Max=0.15 cfs @ 11.59 hrs HW=108.20' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.15 cfs)

Secondary OutFlow Max=0.96 cfs @ 12.07 hrs HW=108.86' (Free Discharge) 2=Orifice/Grate (Weir Controls 0.96 cfs @ 1.30 fps)

Pond 15P: FocalPoint 2

Summary for Pond 16P: FocalPoint 3

Inflow Area =	0.459 ac, 83.70% Impervious, Inflow De	epth = 8.10" for 100 Year Saco event
Inflow =	4.02 cfs @ 12.07 hrs, Volume=	0.310 af
Outflow =	4.08 cfs @ 12.07 hrs, Volume=	0.330 af, Atten= 0%, Lag= 0.0 min
Primary =	0.18 cfs @ 9.90 hrs, Volume=	0.185 af
Secondary =	3.90 cfs @ 12.07 hrs, Volume=	0.145 af


Routing by Stor-Ind method, Time Span= 0.00-100.00 hrs, dt= 0.01 hrs / 2 Peak Elev= 109.03' @ 12.07 hrs Surf.Area= 76 sf Storage= 97 cf

Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= 26.1 min (780.4 - 754.4)

Volume	Invert	Avail.Sto	rage	Storage	Description		
#1	105.95'		0 cf	19.00'W	/ x 4.00'L x 2.25	'H FocalPoint	
					Overall x 0.0% V		
#2	108.20'		97 cf	Custom	n Stage Data (Pr	rismatic)Listed b	elow (Recalc) -Impervious
		9	97 cf	Total Av	ailable Storage		
Elevatio	on Sur	f.Area	Inc	.Store	Cum.Store		
(fee	et)	(sq-ft)	(cubi	c-feet)	(cubic-feet)		
108.2	20	76		0	0		
108.5	50	128		31	31		
108.9	95	168		67	97		
Device	Routing	Invert	Outl	et Device	S		
#1	Primary	105.95'	100.	000 in/hr	Exfiltration over	er Surface area	Phase-In= 0.10'
#2	Secondary	108.70'	24.0	24.0" Horiz. Orifice/Grate C= 0.600			
			Limi	mited to weir flow at low heads			

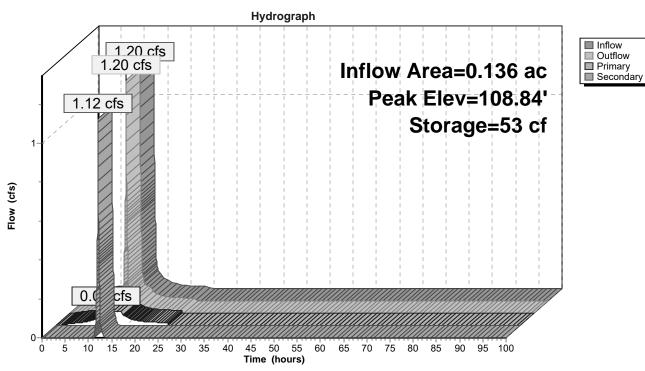
Primary OutFlow Max=0.18 cfs @ 9.90 hrs HW=108.20' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.18 cfs)

Secondary OutFlow Max=3.90 cfs @ 12.07 hrs HW=109.03' (Free Discharge) 2=Orifice/Grate (Weir Controls 3.90 cfs @ 1.88 fps)

Pond 16P: FocalPoint 3

Summary for Pond 17P: FocalPoint 4

Inflow Area =	0.136 ac, 96.01% Impervious, Inflow De	epth = 8.34" for 100 Year Saco event
Inflow =	1.20 cfs @ 12.07 hrs, Volume=	0.094 af
Outflow =	1.20 cfs @ 12.07 hrs, Volume=	0.096 af, Atten= 0%, Lag= 0.2 min
Primary =	0.07 cfs @ 10.68 hrs, Volume=	0.060 af
Secondary =	1.12 cfs @ 12.07 hrs, Volume=	0.036 af


Routing by Stor-Ind method, Time Span= 0.00-100.00 hrs, dt= 0.01 hrs / 2 Peak Elev= 108.84' @ 12.07 hrs Surf.Area= 32 sf Storage= 53 cf

Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= 9.7 min (754.6 - 744.9)

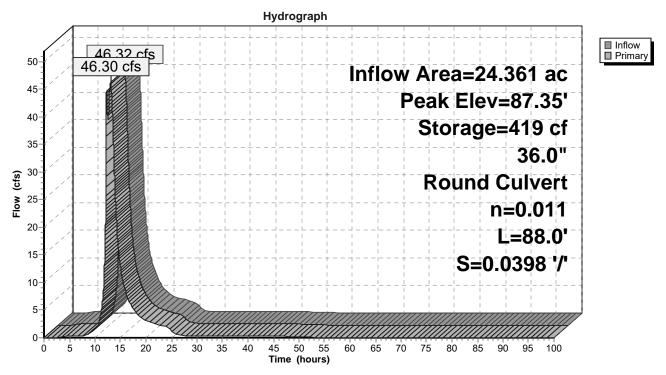
Volume	Invert	Avail.Sto	rage	Storage	Description		
#1	105.95'		0 cf	8.00'W	x 4.00'L x 2.25'H	I FocalPoint	
				. =	verall x 0.0% Vo		
#2	108.20'		67 cf	Custor	n Stage Data (Pr	rismatic)Listed be	elow (Recalc) -Impervious
		(67 cf	Total Av	ailable Storage		
Elevatio	on Sur	f.Area	Inc	Store	Cum.Store		
(fee	et)	(sq-ft)	(cubi	c-feet)	(cubic-feet)		
108.2	20	32		0	0		
108.5	50	88		18	18		
108.9	95	128		49	67		
Device	Routing	Invert	Outl	et Device	S		
#1	Primary	105.95'	100.	000 in/hr	^r Exfiltration over	er Surface area	Phase-In= 0.10'
#2	Secondary	108.70'	24.0	24.0" Horiz. Orifice/Grate C= 0.600			
			Limi	mited to weir flow at low heads			
	M	0 0 7 6	~				

Primary OutFlow Max=0.07 cfs @ 10.68 hrs HW=108.20' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.07 cfs)

Secondary OutFlow Max=1.12 cfs @ 12.07 hrs HW=108.84' (Free Discharge) 2=Orifice/Grate (Weir Controls 1.12 cfs @ 1.24 fps)

Pond 17P: FocalPoint 4

Summary for Pond 20P: POI 1


Inflow Area =	24.361 ac, 31.49% Impervious,	Inflow Depth = 6.44" for 100 Year Saco even	ıt
Inflow =	46.32 cfs @ 13.05 hrs, Volume=	= 13.067 af	
Outflow =	46.30 cfs @ 13.06 hrs, Volume=	= 13.067 af, Atten= 0%, Lag= 0.4 min	
Primary =	46.30 cfs @ 13.06 hrs, Volume=	= 13.067 af	

Routing by Stor-Ind method, Time Span= 0.00-100.00 hrs, dt= 0.01 hrs Peak Elev= 87.35' @ 13.06 hrs Surf.Area= 613 sf Storage= 419 cf

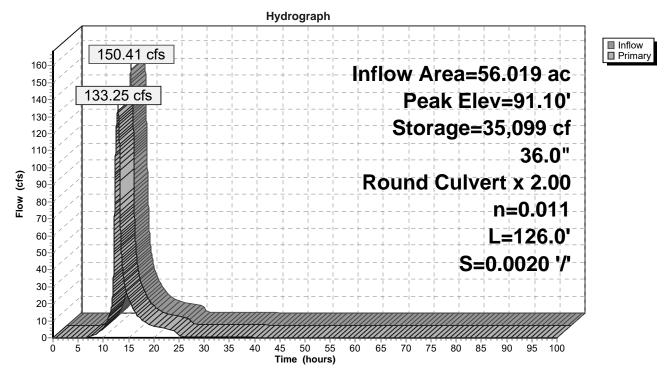
Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= 0.1 min (937.4 - 937.4)

Volume	Inv		<u> </u>	U	Description		
#1	84.0	00' 7,9	922 cf (Custom	Stage Data (Pr	r ismatic) Listed below (Recalc)	
Elevatio	on	Surf.Area	Inc.S	Store	Cum.Store		
(fee	et)	(sq-ft)	(cubic-	feet)	(cubic-feet)		
84.0	00	10		0	0		
85.0	00	20		15	15		
86.0	00	50		35	50		
87.0	00	350		200	250		
88.0	00	1,101		726	976		
89.0	00	3,257	2	,179	3,155		
90.0	00	6,278	4	,768	7,922		
Device	Routing	Invert	Outlet	Devices			
#1	Primary	84.00'	36.0"	Round	Culvert		
	-		L= 88.	0' CPP	, square edge h	neadwall, Ke= 0.500	
			Inlet /	Inlet / Outlet Invert= 84.00' / 80.50' S= 0.0398 '/' Cc= 0.900			
			n= 0.0	11 Cond	crete pipe, strai	ght & clean, Flow Area= 7.07 sf	

Primary OutFlow Max=46.30 cfs @ 13.06 hrs HW=87.35' (Free Discharge) ☐ 1=Culvert (Inlet Controls 46.30 cfs @ 6.55 fps)

Pond 20P: POI 1

Summary for Pond 90P: POI 3


Inflow Area	a =	56.019 ac, 19.04% Impervious, Inflow Depth = 5.83" for 100 Year Saco event
Inflow	=	150.41 cfs @ 12.65 hrs, Volume= 27.225 af
Outflow	=	133.25 cfs @ 12.87 hrs, Volume= 27.225 af, Atten= 11%, Lag= 13.1 min
Primary	=	133.25 cfs @ 12.87 hrs, Volume= 27.225 af

Routing by Stor-Ind method, Time Span= 0.00-100.00 hrs, dt= 0.01 hrs Peak Elev= 91.10' @ 12.87 hrs Surf.Area= 26,304 sf Storage= 35,099 cf

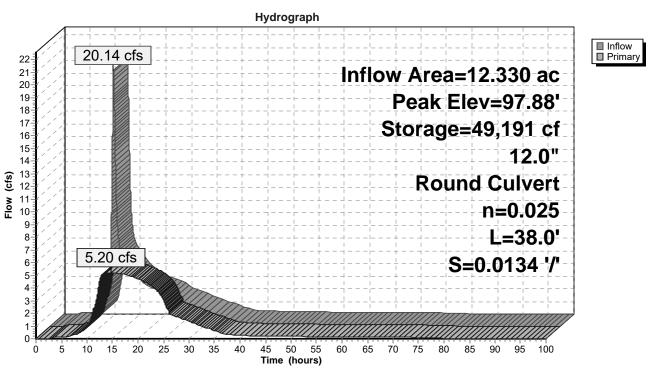
Plug-Flow detention time= 1.4 min calculated for 27.225 af (100% of inflow) Center-of-Mass det. time= 1.4 min (888.0 - 886.7)

Volume	Inv	ert Avail.Sto	orage Storage	e Description				
#1	83.4	45' 86,0	17 cf Custon	n Stage Data (P	rismatic)Listed below (Recalc)			
Elevatio	on	Surf.Area	Inc.Store	Cum.Store				
(fee	et)	(sq-ft)	(cubic-feet)	(cubic-feet)				
83.4	15	200	0	0				
85.0	00	500	542	542				
87.0	00	800	1,300	1,842				
88.0	00	1,325 1,		2,905				
90.0	00	10,603	11,928	14,833				
92.5	50	46,344	71,184	86,017				
Device	Routing	Invert	Outlet Device	es				
#1	Primary	83.45'	36.0" Round	d Culvert X 2.00				
	-		L= 126.0' CI	PP, projecting, n	o headwall, Ke= 0.900			
			Inlet / Outlet	Invert= 83.45' / 8	3.20' S= 0.0020 '/' Cc= 0.900			
			n= 0.011 Co	ncrete pipe, stra	ight & clean, Flow Area= 7.07 sf			
	Primary OutFlow Max=133.25 cfs @ 12.87 hrs HW=91.10' (Free Discharge)							

1=Culvert (Inlet Controls 133.25 cfs @ 9.43 fps)

Pond 90P: POI 3

Summary for Pond 91P: POI 2


Inflow Area	a =	12.330 ac, 45.25% Impervious, Inflow Depth = 7.13" for 100 Year Saco event
Inflow	=	20.14 cfs @ 12.44 hrs, Volume= 7.328 af
Outflow	=	5.20 cfs @ 14.73 hrs, Volume= 7.328 af, Atten= 74%, Lag= 137.3 min
Primary	=	5.20 cfs @ 14.73 hrs, Volume= 7.328 af

Routing by Stor-Ind method, Time Span= 0.00-100.00 hrs, dt= 0.01 hrs Peak Elev= 97.88' @ 14.73 hrs Surf.Area= 30,634 sf Storage= 49,191 cf

Plug-Flow detention time= 75.0 min calculated for 7.327 af (100% of inflow) Center-of-Mass det. time= 75.0 min (1,343.7 - 1,268.7)

Volume	In	vert Ava	ail.Storage	Storage	Description			
#1	93	.00'	88,629 cf	Custom	n Stage Data (P	rismatic)Listed below (Recalc)		
Elevatio		Surf.Area		c.Store	Cum.Store			
(fee	et)	(sq-ft)	(cub	ic-feet)	(cubic-feet)			
93.0	00	20		0	0			
94.0	00	359		190	190			
95.0	0	3,678		2,019	2,208			
96.0	0	9,638		6,658	8,866			
97.0	0	23,429		16,534	25,400			
99.0	00	39,800		63,229	88,629			
Device	Routing	g li	nvert Out	let Device	S			
#1	Primary	/ 9	3.10' 12.0)" Round	I Culvert			
	-		L= (38.0' CM	P, projecting, no	o headwall, Ke= 0.900		
			Inle	t / Outlet I	nvert= 93.10' / 9	92.59' S= 0.0134 '/' Cc= 0.900		
			n= (0.025 Coi	rrugated metal,	Flow Area= 0.79 sf		
Primary	Primary OutFlow Max=5.20 cfs @ 14.73 hrs HW=97.88' (Free Discharge)							

1=Culvert (Barrel Controls 5.20 cfs @ 6.62 fps)

Pond 91P: POI 2

ATTACHMENT 8

ABILITY TO SERVE LETTERS – MWC & WRRD

707 Sable Oaks Drive, Suite 30 South Portland, Maine 04106 207.772.2515

August 5, 2022

Marcus Knipp Maine Water 93 Industrial Park Road Saco, Maine 04072

Re: Lincoln Village 321 Lincoln Street, Saco, Maine Letter of Ability to Serve Request

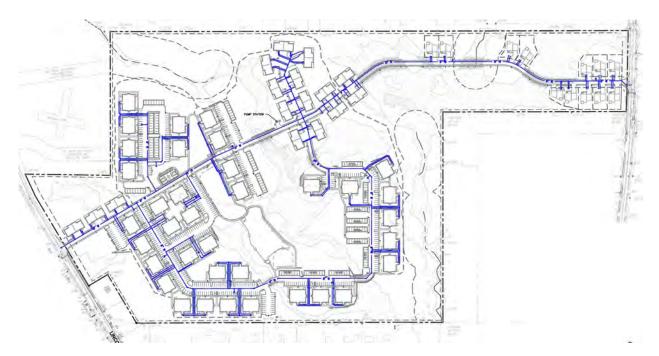
Dear Mr. Knipp:

321 Lincoln Street Development, LLC has retained Gorrill Palmer to assist in the preparation of plans and permitting for the development of Lincoln Village located in Saco, Maine. The property is identified as Map 52 and Lot 19 on the Town of Saco's tax map. The development area is approximately 33 acres in size and is currently undeveloped. The proposed project will include a mixed residential development with a network of roadways and walkways, landscaped areas, trails and stormwater maintenance facilities. As required by the reviewing authorities, we are writing to request a letter indicating the ability of Maine Water to serve this project. Preliminary utility plans are enclosed for your review.

Project Description

The proposed mixed residential development is expected to provide 332 units consisting of singlefamily, duplex, and multi-family with a roadway and walkway network. The existing site is bounded by Lincoln Street to the south, and Bradley Street to the north. The eastern and western sides of the site are bordered by single family lots along Skyline Drive (to the west) and Forest Street (to the east). The proposed mixed residential development is expected to provide 332 units as follows:

- 12 Single-Family Units
- 32 Duplex Units
- 288 Multi-Family Units


The development includes roadways and walkways within the site, as well as trails and landscaped areas. The site has a proposed main private road connecting Lincoln Street and Bradley Street, with an internally looped road connecting the southern and eastern portions of the site. Both the main road and the loop road have driveways and parking areas located off the roadways to provide access to each building. The development includes a sidewalk network along the proposed road and access drives, along with an internal trail network, with landscaped areas and stormwater maintenance facilities.

Lincoln Village August 5, 2022 Page 2

Existing and Proposed Service

There is an existing 8" public water main located in Bradley Street and Lincoln Street, adjacent to the site. The development is proposing an 8" private water main in the main roadway, with connections to these two public water mains on each side. Internally, the site will include a second 8" private water main along the looped road. Services to each building, including domestic and fire services, will be located off the proposed private mains, as well as hydrant services. The proposed water utility plan, seen below, has also been provided in Attachment A.

The design team met with Maine Water on June 8th, 2022 to discuss the proposed project. Based on this discussion, the following is incorporated into the project:

- Maine Water requests that a hydraulic assessment be performed for the surrounding development. 321 Lincoln Street Development, LLC has retained Tata & Howard, Inc. to perform this work. Maine Water provided recent fire flow tests to the team to aid in the analysis. Results of the assessment will be forwarded upon completion.
- We understand a maintenance agreement for the condo association to provide maintenance on the private water lines will be required. If templates that are acceptable to Maine Water are available, we are requesting these be sent to our office.
- Maine Water requested the 8-inch watermain connect to the existing stub on Bradley Street. This request has been incorporated into the preliminary utility plan. The stub was surveyed and is shown on the plan set.
- We understand that there will be one overall fire charge for the entire association. We also understand that each unit or building will be metered independently, since a meter pit for this size of development, in addition to the two connections, is not feasible.

Lincoln Village August 5, 2022 Page 3

In addition, the following design standards were confirmed and have been incorporated into the preliminary utility plans to the greatest extent practicable:

- 10 ft horizontal separation from sanitary sewer and gas mains.
- 18 inch minimum vertical crossing separation from other utilities, 12 inch minimum with rigid insulation provided.
- 5-5.5 ft preferred cover over the watermain.

Anticipated Flows

The anticipated wastewater generation for the proposed development was computed using the City of Saco Technical Design & Construction Standards. This article states that average flows shall be calculated based on 185 gallons per equivalent residential dwelling unit (EDU). This rate is then peaked by 600% based upon TR-16 guidelines for the peak daily generation. The table below is a summary of the Water Usage Calculation that is anticipated for the proposed development.

Anticipated Water Use Generation						
	Average Daily Wastewater Generation (gpd)	Peak Daily Wastewater Generation (gpd)				
	Generation (gpd)	Generation (gpd)				
332 Units (>800 SF)	61,420	368,520				
Total	61,420	368,520				

The Water Use Calculation sheet has been provided in Attachment B.

Ability to Serve

In support of the applications to the reviewing authorities, we are writing to request a letter indicating that Maine Water has the ability to serve the proposed project. In addition, we are interested in receiving:

- An estimate for any work the Maine Water would perform within the right-of-way.
- Information as to any easement or maintenance agreements templates.
- Any other information that you believe would be useful as this project proceeds.

Please contact me if you have any questions relative to this matter at 772-2515 or at dgagnon@gorrillpalmer.com

Sincerely,

Gorrill Palmer

Lincoln Village August 5, 2022 Page 4

Osw lager

Drew Gagnon, PE Project Manager

Attachments

Attachment A – Preliminary Utility Plans Attachment B – Water Use Calculation Sheet

ATTACHMENT A

ATTACHMENT B

	JOB	Lincoln Village Development			
	SHEET NO.		OF	I	
	CALCULATED BY	TPG	DATE	5-19-22	
GORRILL	CHECKED BY	DJG	DATE	5-19-22	
	SCALE	None			
PALMER					
Water Usage Calculations					
Lincoln Village					
Residential Units		Peak Flow Calculation			
Units 332		Subtotal Average Daily Design Flow	61,420	gallons/day	
Flow Rate I85.0 gpd/unit		Peaking Factor	6		
Subtotal 61,420 gallons/day					
Subtotal Design Flow 61,420 gallons/day		Subtotal Peak Design Flow	368,520	gallons/day	
	-				
Total Average Daily Design Flow 61,420 gallons/day					
1					

APPROVAL LETTER

March 17th, 2023

Gorrill Palmer ATTN: Drew Gagnon, PE 707 Sable Oaks Drive, Suite 30 South Portland, ME 04106

Re:

321 Lincoln Street - Lincoln Village Development - Ability to Serve Determination

Dear Mr. Gagnon,

The Maine Water Company (MWC) has received your request for Ability to Serve Determination on behalf of your client, 321 Lincoln Street Development LLC, for the above referenced project. The Request indicates a development that will consist of 12 Single Family, 32 Duplex and 288 Multi-family style units. The request further indicates a domestic usage of approximately 61,420 gallons per day (GPD) or a peak domestic demand of approximately 270 gallons per minute (gpm). Based on the criteria provided and the hydraulic analysis report from Tata & Howard running the Biddeford Saco Division hydraulic model, the expected increase in water usage is within the water system's available capacity. The specific fire flow information for the buildings is not yet available. The static pressure in the area is approximately 45psi. Additional infrastructure improvements may be required at the expense of the developer to meet the overall needs of this project.

Conditions of Service

- The development will require a 12-inch water main inside of the development between Lincoln and Bradley Street as outlined in the Tata & Howard hydraulic analysis report. An updated utility sheet will be required to show utility placement and separation, including any hydrants, services, valves, blow off assemblies and other waterline appurtenances.
- MWC will require inspection during installation.
- Additional plan approval, paperwork and fees associated with services and main extensions in this area will require proper coordination with MWC. Maine Water requires upfront payment for inspection and paperwork to be fully completed before any construction on waterworks materials.
- Allow up to 30 days for the MWC utility review process to be completed before any construction on waterworks materials will be approved.
- A hydrant flow test must be conducted at the expense of the developer at the nearest hydrant and analyzed by Maine Water and the local Fire Department to ensure adequate public fire protection is available at the expense of the developer.
- Proposed fire hydrants inside of the development must be accepted by the City of Saco or local Fire Authority.
- An easement for access and operation of all water service valves on this property must be signed, notarized and registered with the county registry before activation.

Should a Customer Agreement for service not be executed within one year of the date of this letter, MWC reserves the right to reevaluate its ability to serve this project.

All work must be completed in accordance with MWC Terms and Conditions as well as material specifications. All appropriate paperwork must be completed and deposit paid prior to the start of construction. Please forward all design plan revisions as the project develops to prevent construction delays. Water service will be provided in accordance with Maine Public Utility Commission rules. If you have any additional questions, please do not hesitate to contact our office at 1-800-287-1643 or by email at Marcus.Knipp@mainewater.com. We look forward to working with you throughout design and construction.

Sincerely, The Maine Water Company

Marcus Knipp, E.I. Engineer

ABILITY TO SERVE - LINCOLN VILLAGE

The Maine Water Company 93 Industrial Park Road Saco, ME 04072 T: 207.282.1543 www.mainewater.com

707 Sable Oaks Drive, Suite 30 South Portland, ME 04106 207.772.2515

August 9, 2022

Mr. Howard Carter

Water Resource Recovery Department 65 Front Street Saco, ME 04072

Subject: Lincoln Village 321 Lincoln Street, Saco, Maine Letter of Ability to Serve Request

Dear Mr. Carter:

321 Lincoln Street Development, LLC has retained Gorrill Palmer to assist in the preparation of plans and permitting for the development of Lincoln Village located in Saco, Maine. The property is identified as Map 52 and Lot 19 on the Town of Saco's tax map. The development area is approximately 33 acres in size and is currently undeveloped. The proposed project will include a mixed residential development with a network of roadways and walkways, landscaped areas, trails, and stormwater maintenance facilities. As required by the reviewing authorities, we are writing to request a letter indicating the ability of the City of Saco Water Resource Recovery Department (WRRD) to serve this project. Preliminary utility plans are enclosed in Attachment A for your review. Additional supporting documentation includes:

- Description of Development Site
- Project Description
- Proposed Service Connections
- Proposed Sanitary Design & Service
- Pump Station Design
- Estimated Flows
- Offsite Capacity Analysis
- Proposed Offsite Sanitary Construction
- Project Approval Request

DESCRIPTION OF DEVELOPMENT SITE

The proposed new development is located between the existing Lincoln and Bradley Streets in Saco, ME. The site is currently undeveloped, consisting of a range of conditions including, dense brush, woods, and wetlands. Please refer to Attachment B for a project Location Map.

PROJECT DESCRIPTION

The proposed mixed residential development is expected to provide 332 units consisting of single-family, duplex, and multi-family units with a roadway and walkway network. The existing site is bounded by Lincoln Street to the south and Bradley Street to the north. The eastern and western sides of the site are bordered by single family lots along Skyline Drive (to the west) and Forest Street (to the east). Please see Table 1 below for a Unit Usage Summary.

Table 1 – Anticipated Residential Units		
Туре	Number of Buildings	Number of Units
Single Family	12	12
Duplex	16	32
Multi-family	36	288
Total	64	332

Additionally, the development includes roadways and walkways within the site, as well as trails and landscaped areas. The site has a proposed main private road connecting Lincoln Street and Bradley Street, with an internally looped road connecting the southern and eastern portions of the site. Both the main road and the loop road have driveways and parking areas located off the roadways to provide access to each building. The development includes a sidewalk network along the proposed road and access drives, along with an internal trail network, with landscaped areas and stormwater maintenance facilities.

PROPOSED SERVICE CONNECTIONS

A new private sewer main is anticipated to be constructed via connections with existing infrastructure in both Lincoln and Bradley Street. An 8 inch sewer main exists in Lincoln Street with direct frontage to the project which conveys sanitary flow east along Lincoln Street. The project proposes an 8-inch private main connection into an existing sewer manhole. This existing manhole is identified as Manhole 1202.111 according to City of Saco GIS. This portion of the project will receive flow from 320 residential units.

On Bradley Street, an 8-inch main exists alongside the project's frontage. This sanitary main conveys sanitary flow southeast along Bradley Street. On the Northeastern side of the access drive, the project proposes connection to an existing 8 inch gravity sewer stub. This sewer stub is tributary to Manhole labeled 1037.114 according to City of Saco GIS. This portion of the project will only receive flow from 12 single family homes on site.

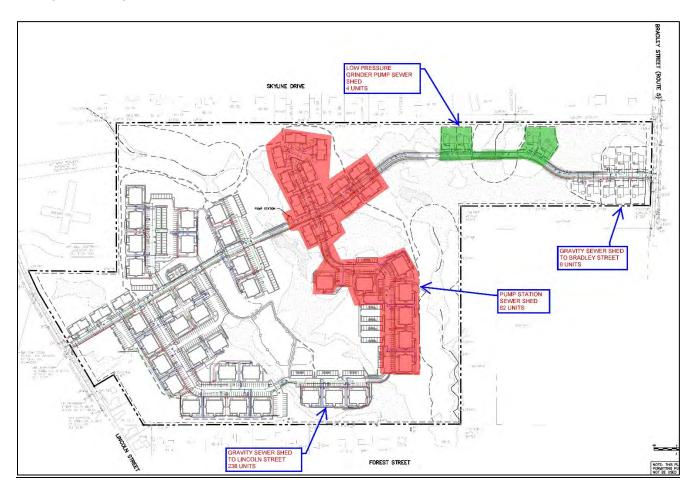
An excerpt of the proposed utility plan, with Sanitary Sewer highlighted in green, is shown below. The overall utility plan is also provided as part of Attachment A.

PROPOSED SANITARY DESIGN & SERVICE

The proposed project will utilize both gravity and pressure systems to convey sanitary flow to the surrounding sanitary network. The proposed breakdown of sewer shed for the project is as follows:

- Gravity flow to Lincoln Street 238 units
- Pumped flow to Lincoln Street 82 units
- Gravity flow to Bradley Street 8 units
- Pumped flow to Bradley Street 4 units

It should be noted that "pumped flow" to both public streets will enter terminus manholes and the flow will be conveyed to the public system via gravity prior to entering the City system.


Due to elevation, location and environmental constraints, the applicant proposes an approximate 600 ft 2inch HDPE low-pressure force main that would convey 4 of the 12 single family house lots near the Bradley Street side of the project. The 4 single family homes are proposed to utilize an E-One DH 071 grinder pump system. A complete design report completed by F.R. Mahony & Associates is included in Attachment C. In addition, an 8-inch gravity line, with respective 6-inch laterals, will serve the last 8 single family homes closest to Bradley Street.

82 "pumped" units to Lincoln Street will be conveyed via an internal 8 inch private sanitary sewer line to the proposed Pump Station, near the center of the site. The private pump station will convey the flow via an

approximate 215 ft long 3 inch HDPE force main to a private terminus manhole located approximately 900 ft from Lincoln Street and within the private access road. The remaining Lincoln Street "gravity connection" units will connect to a network of 6 and 8-inch sewer lines that convey flow to the same Lincoln Street manhole.

The figure below graphically shows the sanitary sewer sheds for the proposed project.

The below table summarizes to total private sanitary sewer infrastructure on site:

Table 2 - Sanitary Infrastructure		
Sewer Main	Main Size	Length (ft)
	2"	602
Private (on site)	3"	229
	8"	5,222
Services	Sanitary Laterals	Length (ft)
Private (on site)	6"	2,964
	Manholes	
Private (on site)		37
	Public	3

PUMP STATION DESIGN

A privately owned and maintained pump station is proposed to serve 82 duplexes and multi-family units near the center of the parcel. It will handle approximately 15,930 gpd of average flow and 91,800 gpd at its peak. Based on previous discussions with you and the City Engineer, this station is proposed to be submersible pump station with an adjacent valve pit to contain the force main appurtenances and other mechanical items.

The proposed 6 ft diameter wet well will contain submersible duplex 4.1 HP HOMA GRP34 3 phase pumps operating at 3450 rpm maximum. The system is proposed as variable frequency driven (VFD) such that the electrical power supplied to the motor will change the motor speed to electrical delivery to single phase. The control panel and other electrical components are proposed to be set near the pump station access drive in an outdoor rated enclosure. The pumps are selected to operate at a design point of 100 GPM at 25 total dynamic head. A 3-inch force main is proposed exiting the pump station to the valve pit, and subsequently to the terminus manhole near station 10+70 in the main access road. Under the design point described above, this provides velocity in the force main at approximately 5.1 ft/s.

The applicant is prosing a standby generator for the pump station. Since the generator is proposed, the Emergency Storage time has been reduced to 1 hour. The emergency storage was calculated from the lead pump on elevation to the invert of the incoming 8-inch line.

Calculations supporting these numbers and proposed Pump Cut Sheets can be found in Attachment D.

ESTIMATED FLOWS

The anticipated wastewater generation for the development was computed utilizing the City of Saco WWRD Flow Schedule (Chapter 176 Appendix A). The flow rate was assumed at 185 gallons per day per unit since all units are greater than 800 square feet. The peak flow was calculated with an assumption of 6 for a peaking factor based on TR-16 and discussions with your office.

The table below is a summary of the wastewater generation that is anticipated for the 321 Lincoln Street Development Project.

Table 3 – Estimated Wastewater Generation			
Average DailyPeak DailyWastewaterWastewaterGeneration (gpd)Generation (gpd)			
Multifamily Units (288)	53,280	319,680	
Duplex Units (32)	5,920	35,520	
Single Family (12)	2,220	13,320	
Total	61,420	368,520	

The Wastewater Generation Calculation Sheet has been provided in Attachment E.

OFFSITE CAPACITY ANALYSIS

Based on discussions with your office and per direction by the WRRD, the Applicant retained flow monitoring and metering services from Flow Assessment Services. It was determined that two manholes on Lincoln Street would need to be metered for 12 weeks to determine the existing baseline flow. The metering was completed December 10, 2021 to March 31, 2022.

The results of the testing were received on April 25th, 2022, from the City of Saco WRRD. Manhole 1's (ID 1202.109) flow meter was near Lincoln Street and Forest Street intersection. This manhole measured flow from an incoming 8" ACP sewer pipe and an outleting 8" ACP sewer pipe. Manhole 2's (ID 1202.104) flow meter was near 110. This manhole measured flow from an incoming 12" PVC pipe and an outleting 12" PVC pipe. The existing and baseline peak flow for the sanitary sewer pipes are summarized in Table 4 below:

Table 4 - Measured Peak Flow Rates			
Manhole 1 Location (8") Manhole 2 Location (12")			
Maximum Peak Flow	Maximum Peak Flow	Maximum Peak Flow	Maximum Peak Flow
(gpd)	(gpm)	(gpd)	(gpm)
241,508	168	696,787	484

Given the results from Table 4 and working in coordination with the City Engineer, the designer analyzed the available capacity in the Lincoln Street system based on the proposed development. It was determined that the pump station flow was conservatively calculated as an instantaneous flow to the system and added to the anticipated peak gravity flow from the proposed project. As built and design plans were provided to GP from the City of Saco:

- Boom Rd Sewer Extension "Record Drawing" Plan Set by Jones & Beach Engineers, Inc dated October 1980
- Lincoln Street Record Drawings Plan Set by Atlantic Resource Consultants dated March 15, 2018

Based on these plans, the 8 inch pipe segments upstream and downstream of Manhole 1 were determined at 0.0085 ft/ft slope and the upstream and downstream pipes at Manhole 2 were determined at 0.0024 ft/ft slope. Table 5 below shows the results of the analysis:

Table 5 - Offsite Capacity Analysis		
	Manhole 1 Location (8" ACP)	Manhole 2 Location (12" PVC)
Proposed Flow from Development (Peak - GPM)	284	284
Measured Existing Max Flow Peak (GPM)	168	484
Total Proposed Flow in Pipe (Peak - GPM)	452	768
Capacity of Pipe (flowing full - GPM)	498	924
Remaining Capacity (Peak - GPM)	46	156
Percent Capacity Remaining	9%	17%

Calculations for existing pipe capacity can be found in Attachment F. The existing report from Flow Assessment Services was previously provided to the City and WRRD and a copy can be provided upon request.

PROPOSED OFFSITE SANITARY CONSTRUCTION

Based on discussions with the City Engineer and the WRRD, it was determined that the proposed development would require the existing Sanitary pipe in Lincoln Street to be upgraded from 8 inch to 10 inch in diameter between Manhole ID 1202.111 and 1202.109. This is due to the proposed development utilizing nearly 57% of the 8-inch pipe capacity. An excerpt of the pipe replacement is presented below.

The existing outlet pipe on Manhole 1202.109 appears to steepen to a grade that would allow for greater capacity in the sewer main, therefore it was determined to remain in place. The below table shows the offsite capacity of the Lincoln Street system subsequent to full buildout, occupancy and construction:

Table 6 - Offsite Capacity Analysis - Upgraded		
	Manhole 1 Location (10" PVC)	Manhole 2 Location (12" PVC)
Proposed Flow from Development (Peak - GPM)	284	284
Measured Existing Max Flow Peak (GPM)	168	484
Total Proposed Flow in Pipe (Peak - GPM)	452	768
Capacity of Pipe (flowing full - GPM)	1069	924
Remaining Capacity (Peak - GPM)	617	156
Percent Capacity Remaining	58%	17%

Subsequent to the pipe upgrade, the proposed development would utilize approximately 27% of the capacity of the new pipe, which has been deemed acceptable by the City Engineer and WRRD. Calculations supporting the upgraded 10-inch pipe capacity are shown in Attachment F. Details showing the proposed removal and upsize of the existing Lincoln Street Sewer main for approximately 600 ft in length along the project's frontage is shown in the provided Plan set.

The Applicant is requesting the physical construction of the offsite sewer infrastructure described above occur when the Pump Station is activated for the site. Given that the Pump Station contributes to approximately 100 gpm and 20% of the 8-inch pipe capacity in Lincoln Street, it is our opinion that this Pump Station should trigger the construction and increase of offsite sewer.

PROJECT APPROVAL REQUEST

In support of the applications to the reviewing authorities, we are writing to request the City of Saco WRRD Approval for the proposed 321 Lincoln Street Development Project subsequent to the upgrades and design associated in this letter.

CLOSURE

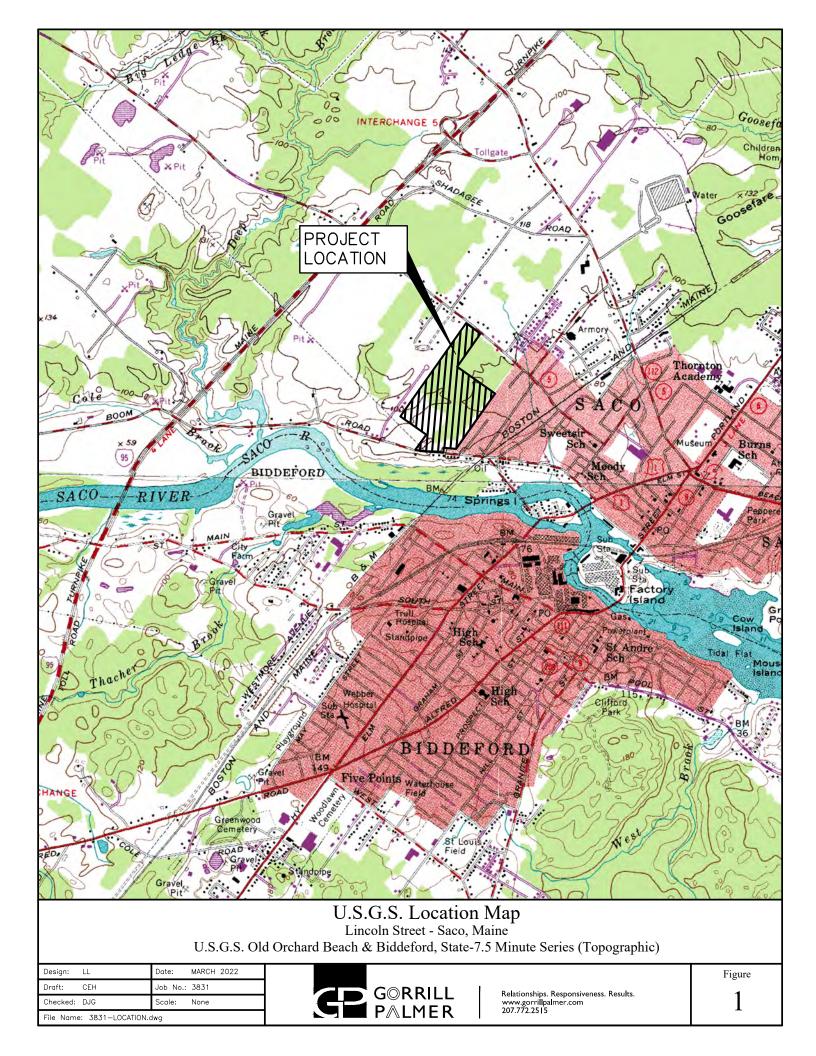
Please contact me if you have any questions relative to this matter at 772-2515 or at dgagnon@gorrillpalmer.com

Sincerely,

GORRILL PALMER

Oswolagen

Drew Gagnon, PE Project Manager Phone 207-772-2515 x288 dgagnon@gorrillpalmer.com


<u>Attachments:</u> Attachment A – Utility Plans Attachment B – Project Location Map Attachment C - Low Pressure Sewer Design Report by FRMA Attachment D – Pump Station Design Calculations & Cut Sheets Attachment E – Wastewater Generation Calculation Sheet Attachment F – Offsite Capacity Analysis – Lincoln Street

c: Loni Graiver, 321 Lincoln Street Development LLC

u:\3831_helios_mixed residential development - lincoln & bradley - sacolh utilities\sewer\3831 - sewer ability to serve.docx

ATTACHMENT A

ATTACHMENT B

ATTACHMENT C

info@frmahony.com www.frmahony.com

E/ONE Pressure System Design Report For

Lincoln & Bradley Street Property

Saco, ME

April 25th, 2022

SERVICE OPERATIONS

30 DuPaul Street Southbridge, MA 01550

info@frmahony.com www.frmahony.com

April 25, 2022

Drew Gagnon 707 Sable Oaks Drive, Suite 30 South Portland, ME 04106 RE: Lincoln & Bradley Street Property, Saco ME

Dear Drew;

This preliminary design analysis examines the use of the E/One Pressure Sewer System for your project. E/One is celebrating 50 years of installation and O&M experience along with considerable research and development leading to continuous product and system improvements. E/One remains the worldwide industry standard and industry leader in the pressure sewer technology. The unique characteristics of the E/One Pressure Sewer approach provides not only a technical solution, but also an economic advantage to be realized with low up front and O&M costs.

System Analysis

This project proposes to collect wastewater from four (4) single family homes, and discharge to a gravity manhole on Bradley Street.

Using the information you provided, we ran the enclosed preliminary pressure sewer pipe sizing analysis. This was run through our Low Pressure Sewer Design Software that employs our Flow Velocity and Friction Head Loss vs. Pumps in Simultaneous Operation Spreadsheet. We have used the surface topography provided to make our analyses.

Zone Layout

Using your site plans we laid into one (1) flow zones using a 2" HDPE FM. Computations are based on the Hazen-Williams formula for friction loss, using calculations of cross-sectional area and flow rate to determine pipe sizes that create "self-cleaning" velocities of 2.0 fps or higher. A "C" factor of 150, SDR 11 HDPE pipe and the average expected daily volumes for single family homes are also used in this analysis.

The highest Total Dynamic Head generated is approximately 20 feet which is comprised of static head and friction loss in the proposed pipelines. This is well below our pump's continuous-run rating of 185 ft, and well within its intermittent, i.e., normal, operating range. Flow velocity throughout the system meets or exceeds 2 fps. These characteristics and low retention time indicate that this will be a reliable low-maintenance system.

SERVICE OPERATIONS	30 DuPaul Street	D: (508) 765-0051
	Southbridge, MA 01550	F: (508) 765-1244

info@frmahony.com www.frmahony.com

Design Flows & System Velocity

We normally use average daily flows for system designs rather than the peak design flows commonly used for gravity sewer sizing. We do this because the system is sealed and void of inflow and infiltration commonly allowed for in gravity sewer designs. We size the system for an average daily flow of 200+/- gpd generally for single family homes. The pumps selected are rated to flows up to 700 gpd thus peak flows are easily handled. We size the pipelines for the proper scouring velocity based on the pump's output which has a consistent flow rate over a wide range of head conditions. We then look at the pipeline retention time to optimize the line size for the lowest retention that will pass wastewater in a short period of time to reduce sediment in the lines and prevent odor issues. This makes for a very reliable and maintenance free wastewater collection system.

Often we are asked to use the published "State" design values from various flow tables in order to secure approval. We can do this; but then we run the reports based on the actual predicted average flow to optimize the line size as mentioned above.

Many of our installations have seen flows that more closely mirror the EPA water use goals of 70 gpd/capita. We also look at seasonal uses a little more closely due to greater reductions in flow in the offseason. In applications of this type we look to find the best for both seasons.

Appurtenances

• Cleanouts, Air/Vacuum Release

Our normal recommendations for valve placement are as follows: flushing connections at 1,000' to 1,500' intervals and at branch ends and junctions; isolation valves at branch junctions; and air release valves at peaks of 25 ft. or more and/or at intervals of 2,000 to 2,500 ft. None should be needed on this project.

For this project I would recommend one flushing manhole at SMH37 at Lot 12.

• Service Laterals and Check Valves

Common practice in pressure sewers requires the ability to isolate each lot with a

SERVICE OPERATIONS	30 DuPaul Street	D: (508) 765-0051	
	Southbridge, MA 01550	F: (508) 765-1244	

info@frmahony.com www.frmahony.com

R

corporation stop off the main and service lateral kit to the lot line. E/One now requires that each pump connection be isolated with a combination curb stop/redundant check valve.

E/One has developed a true wastewater rated check valve which is built in to our stainless steel lateral kit shown in this report. These components are rated to 235 psi and with standard connection fittings rated to 150 psi. These items are included in the budget analyses and shown in this report.

We strongly advise against the use of waterworks check valves as they are not rated for sewage environments. We do not like to recommend brass due to concerns for corrosion. **WEF Manual of Practice FD-12, Second Edition**, page 45 speaks to the limited success of brass or bronze alloys.

"Besides corrosion considerations, brass is subject to de-alloying, while some bronze, such as 85-5-5, will give better performance. The terms *brass* and *bronze* are used loosely, despite having different meanings; the engineer is advised to evaluate these materials with caution."

We have also seen PVC body check valves with pressure rating to 150 psi that do not have the same rating for back pressure on the check valve. This can result in damage to the check valve and pumping issues as the check valve disc can become dislodged under pressure and then become a line obstruction.

Corporation Stops/ Mainline Connections

Connections to the main pressure line do not require WYE type fittings. We commonly use a TEE or saddle connection. We isolate each connection to the main line with a stainless steel corporation valve in the same manner used for other utilities such as gas and water services.

We recommend that the service laterals connect to the mainline and do not need to enter a cleanout manhole or other structure. These connections are very similar to a connection of a water service off of a water main.

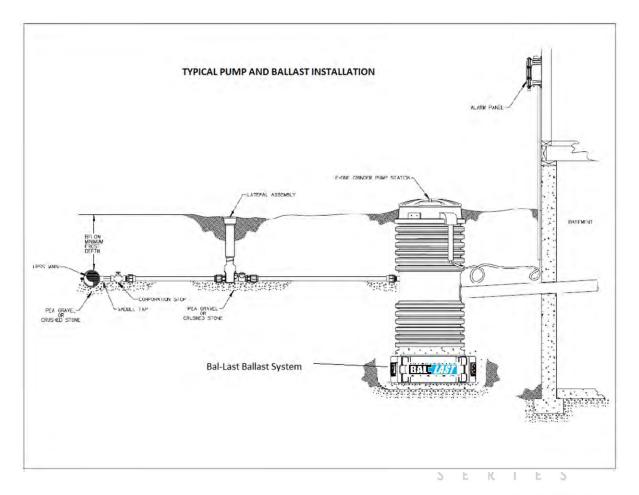
SERVICE OPERATIONS	30 DuPaul Street	D: (508) 765-0051	
	Southbridge, MA 01550	F: (508) 765-1244	

info@frmahony.com www.frmahony.com

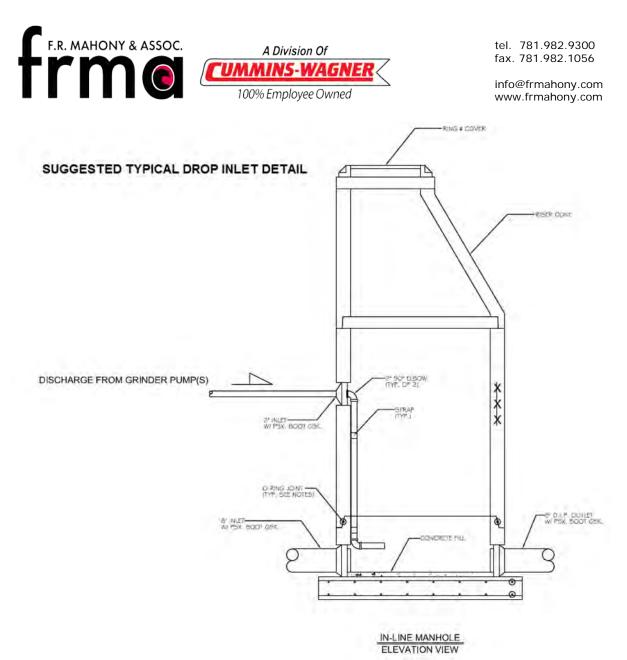
Budget Notes

We show both our outdoor Model DH071-93 pumps and indoor pump Model IH091-IDU in this report We can formally quote when project gets closer.

Costs of pipeline excavation and pump installation are best obtained from sources in your region. You may be better able to determine these costs.

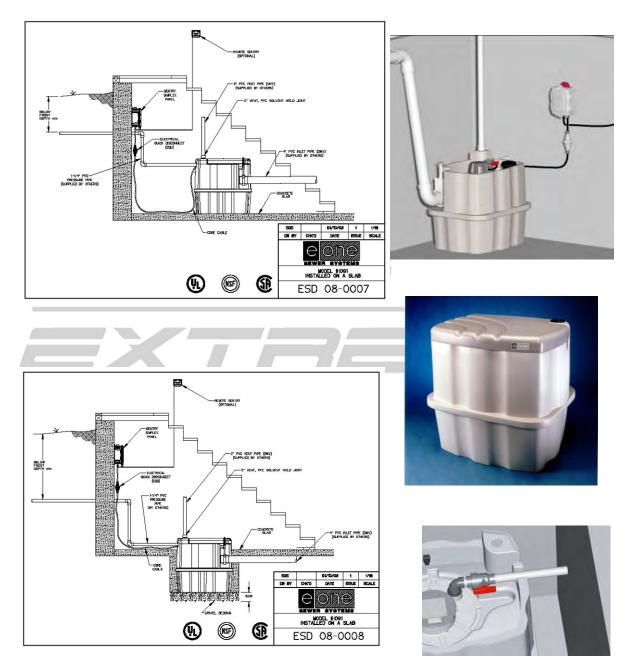

I am looking forward to working with you on this and future projects. Please contact me if you have any questions or require additional information.

info@frmahony.com www.frmahony.com


This image shows the typical layout of an outdoor pump unit for single-family home use. The pump unit is furnished complete, ready for installation. The installer needs to confirm the power cord length and discharge and inlet configuration. Standard products are supplied with 32 foot power supply cable. Standard inlets are 4-inch Schedule 40 Grommets (@ zero degrees) with 1-1/4 inch discharge (@ 180 degrees). Other configurations are available.

SERVICE OPERATIONS

30 DuPaul Street Southbridge, MA 01550 D: (508) 765-0051 F: (508) 765-1244


This detail is shown as a concept sketch when major grade adjustments are required. We recommend that smaller inlet lines match the crown of outlet gravity sewer lines in all cases in order to direct flow to properly drain to the gravity sewer

SERVICE OPERATIONS	30 DuPaul Street	D: (508) 765-0051
	Southbridge, MA 01550	F: (508) 765-1244

info@frmahony.com www.frmahony.com

<u>Model IH091 Indoor Pump</u> Connection options for this station can be adapted to connect above the sill plumbing or below slab plumbing as seen in the sketches below.

|--|

30 DuPaul Street Southbridge, MA 01550

info@frmahony.com www.frmahony.com

Standard alarm panels are the Sentry® panel mounted outside of the home as shown in the drawing (above).

Options include emergency generator connection (see photo) and Redundant alarm Remote Sentry® panel shown. Other panel configurations are available. See the partial listing of panel options below.

- Basic Panels include circuit breaker for the pump and separate breaker for the alarm. These panels include alarm light, alarm buzzer and alarm silence button. *All F. R. Mahony panels are equipped with dry contacts to enable the connection of the Remote Sentry® (battery powered redundant alarm panel option)*
- Standard options include auto transfer generator connection shown above. This panel provides automatic power transfer without having to open the alarm panel or having to operate any manual transfer switching. This feature can be added to the basic panel or the panels offered below.
- Popular options include the **"Protection Package"** which monitors and protects the system from:
 - Pump Run Dry Condition (Pump running out of water)
 - Pump Overpressure Condition (Closed valve)^S
 - Brownout Condition (Main voltage under 12% of nameplate)
 - o High Liquid Level
- The **"Protect Plus"** panel features offer the same items in the "Protection Package" plus the following:
 - High & Low Amperage draw by the pump
 - High & Low voltage to the pump
 - Extended Runtime by the pump (indicating wear or excessive flow) (field adjustable settings)
 - o Monitoring of:
 - Real-time Pump Voltage and Current
 - Cycles & Hours (can be reset)
 - Minimum & Maximum Amperage (can be reset)
 - Minimum, Maximum, Average, and Last Run Cycle (in minutes, can be reset)

SERVICE OPERATIONS	30 DuPaul Street	D: (508) 765-0051
	Southbridge, MA 01550	F: (508) 765-1244

info@frmahony.com www.frmahony.com

Emergency Generator Transfer Options.

The indoor pump units may be furnished with a receptacle for connection of emergency power supplies. The image to the right shows the connection receptacle on the right side of our Sentry panels. This connection may be connected by your electrician to a remote connection port outside of the home.

Wiring must be performed by a licensed electrician and conforming to NEC and local electrical codes.

The box (left) is shown in the face view (face up) and is intended to be mounted on the outside wall to permit connection of a portable generator to the receptacle on the bottom. Generator operation must always be in well ventilated areas outside of any living space.

The pump may be operated under emergency power provided the automatic transfer option is selected with the Sentry® panel. Normal pump run times are short and should not require the continuous connection of a generator. A single portable generator may be used to

service several homes effectively.

SERIES

NEMA# L14-20R 20 Amp 1-120/240 VAC

SERVICE OPERATIONS

info@frmahony.com www.frmahony.com

Pump models may be the DH071-93 (standard height) for outdoor use or the Model IH091 indoor unit. Both products are UL listed NSF and CSA certified and Massachusetts Plumbing Board Accepted.

Model DH071-93 Outdoor Pump With Bal-LastTM

The outdoor model is complete - ready for installation and connection to exterior plumbing and power supply. This unit is fully tested for operation and factory leak tested. No assembly is required and there are no floats to adjust. The pump is furnished complete with the alarm panel and direct bury power supply cable. Standard cable length is 32 feet with 50, 75, and 100 and up to 150 foot cables available. (See Alarm Panel options above)

Other station configurations are available for higher flow requirements. Please contact us for more information. Additional information may be found at <u>www.eone.com</u>

SERVICE OPERATIONS

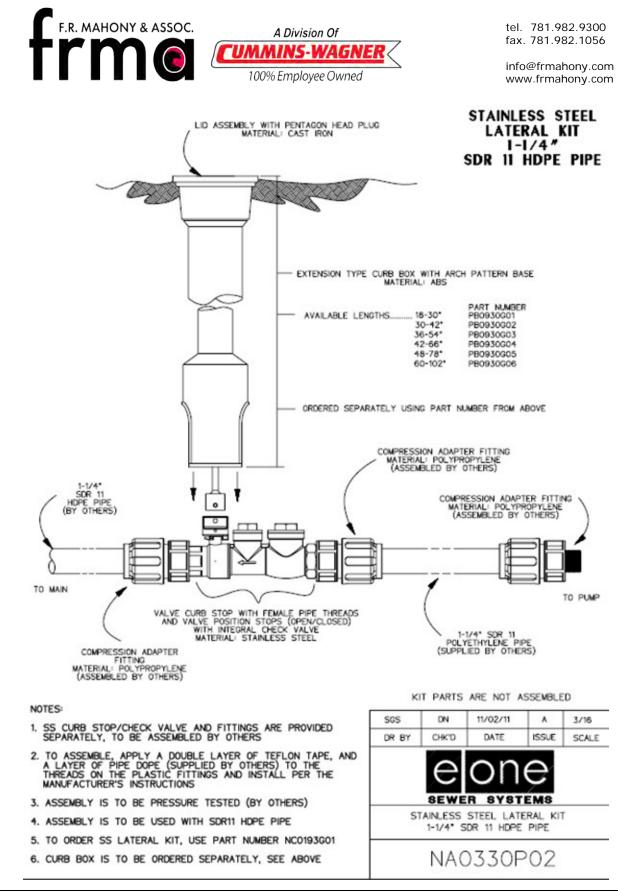
30 DuPaul Street Southbridge, MA 01550 D: (508) 765-0051 F: (508) 765-1244

info@frmahony.com www.frmahony.com

Operation Conditions

GRINDER PUMP PERFORMANCE CHARACTERISTICS

20.50 Feet is the highest TDH at simultaneous operating conditions with the expected number of pumps operating in each zone, or the head of an individual pump operating in a single zone condition.

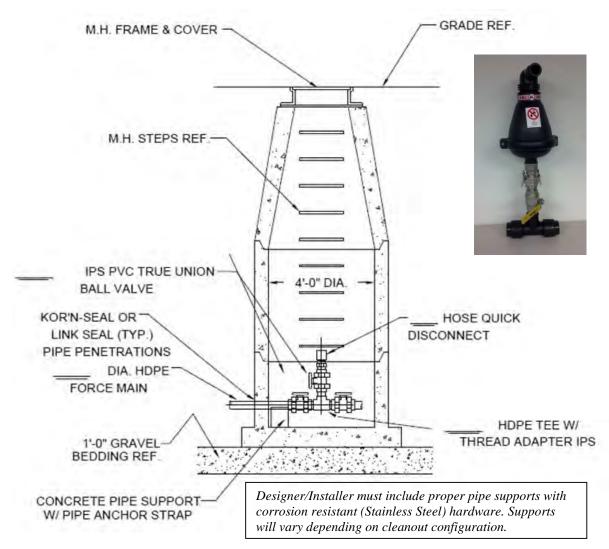

Operating range of E/One pumps from 0- 185 feet TDH and from 0 to -60 feet TDH. <u>Your System</u> <u>Range</u>

Anti-siphon valves in E/One cores provide for negative head pumping. In common systems with negative heads of 25-30 feet or more we recommend the use of combination air/vacuum release valves as described below.

SEWER SYSTEMS

SERVICE OPERATIONS

SERVICE OPERATIONS


30 DuPaul Street Southbridge, MA 01550 D: (508) 765-0051 F: (508) 765-1244

info@frmahony.com www.frmahony.com

Example of Typical Cleanout Detail

(Optional Air/Vacuum Valve shown -right)

Cleanout detail can be modified to match typical installation needs. Inline shut offs may be added to isolate flow direction. Image shown is flow through cleanout. These structures can be terminal end of line cleanouts, or junction cleanouts as may be required. Optional air and vacuum relief valves may be added when required.

SERVICE OPERATIONS	30 DuPaul Street	D: (508) 765-0051
	Southbridge, MA 01550	F: (508) 765-1244

Environment One Corporation

Pressure Sewer Preliminary

Cost and Design Analysis

For

Lincoln & Bradley Street Property

Prepared For: Drew Gagnon Gorrill Palmer 707 Sable Oaks Drive, Suite 30 South Portland ME 04106 Tel: 207.653.8748 Fax: Prepared By: D.Coppola April 25, 2022

\\CWMDFS02\Home - Remote\dcoppola\My Documents\EONE\Maine\Saco\Lincoln & Bradley St Property\Lincoln & Bradley St Property.EOne

Prepared By:

D.Coppola

Page 1

PRELIMINARY PRESSURE SEWER - PIPE SIZING AND BRANCH ANALYSIS

Lincoln & Bradley Street Property

Zone Numbe		s Number of Pumps in Zone	Pumps	per Pump	Max Flow Per Pump (gpm)	Max Sim Ops	Max Flow (GPM)	Pipe Size (inches)		Length of Main this Zone	Factor		Accum Fric Loss (feet)	Max Main Elevation	Minimum Pump Elevation	(feet)	Total Dynamic Head (ft)
	This spreadsheet was calculated using pipe diameters for: SDR11HDPE Friction loss calculations were based on a Constant for inside roughness "C" of: 150				0												
1	.00 1.0) 4	4	200	11.00	3	33.00	2.00	3.57	655.00	2.52	16.50	16.50	105.00	101.00	4.00	20.50

Note: This analysis is valid only with the use of progressive cavity type grinder pumps as manufactured by Environment One. \\CWMDFS02\Home - Remote\dcoppola\My Documents\EONE\Maine\Saco\Lincoln & Bradley St Property\Lincoln & Bradley St Property.EOne Prepared By: D.Coppola

PRELIMINARY PRESSURE SEWER - ACCUMULATED RETENTION TIME (HR) Lincoln & Bradley Street Property

April 25, 2022

Zone Number	Connects to Zone	Accumulated Total of Pumps this Zone	Pipe Size (inches)	Gallons per 100 lineal feet	Length of Zone	Capacity of Zone	Average Daily Flow	Average Fluid Changes per Day	Average Retention Time (Hr)	Accumulated Retention Time (Hr)
This spreadsheet was calculated using pipe diameters for: SDR11HDPE Gals per Day per Dwelling									200	
1.00	1.00	4	2.00	15.40	655.00	100.89	800	7.93	3.03	3.03

ATTACHMENT D

				ЈОВ		Lin	coln Village	Pump St
				SHEET NO.	_	I	OF	
CODDI	1.1			CALCULATED E	BY —	DJG	DATE	7
				CHECKED BY	_	DJG	DATE	7
	=D			SCALE	—	None		
FALM								
Task:			Compute Proposed Design Sanitary F	Flow to Pump Statio	on			
			Wastewater Generation G	Calculations				
			Pump Station					
Du	plex Units		Condo	ominiums - I Bedro	oom (under 80	0 sf)		
Dwelling Units	26		Dwelling Units		0			
Flow Rate	185	gpd/unit	Flow Rate		92.5	gpd/unit		
Subtotal	4,810	gallons/day		Subtotal	0	gallons/day		
Subtotal Design Flow	4,810	gallons/day	Subtotal Design Flow		0	gallons/day		
			Cond	ominiums - 2 B edı	room (over 800	sf)	-	
			Dwelling Units	offininarity - 2 Deal	56	31)		
			Flow Rate		185	gpd/unit		
				Subtotal	10,360	gallons/day		
						C ,		
			Subtotal Design Flow		10,360	gallons/day		
			Infiltration/Contingency					
			Subtotal Average Daily Flow		15,170			
			5% Infiltration/Contingency		5%			
					759 g	allons/day		
		Total Average	e Daily Flow to Pump Station =		15,929 g	allons/day		
			Peak Daily Flow					
Residential Development		Peaking Factor* 600%						
Commercial, Industrial and Institutional Develo	oment	300%						
*Peaking Factor from TR-16 Guides for Design of V	-		6					
· · · · ·								
			ak Daily Flow]				
Residential Development		15,170	91020 gallons/day					
Commercial, Industrial and Institutional Develo	pment	0	0 gallons/day					
Infiltration/Continengency		759	759 gallons/day	J				
		Total Deal	Noily Flow to Pump Station -		01 770 -	allons/day		
		i otal Pea	k Daily Flow to Pump Station =		91,779 g	allons/day		

Station	
۱ 7-14-22	
7-14-22	

LINCOLN VILLAGE PUMP STATION

PRELIMINARY INPUTS AND ASSUMPTIONS					
PUMP STATION DIAMETER	6	FT			
TERMINUS MANHOLE OUTLET ELEVATION	100.9				
TOTAL AVG FLOW (PS SEWER SHED)	15,929	GPD			
TOTAL PEAK FLOW	91,779	GPD			
TOTAL PEAK FLOW	91779	GPM			
USE PUMP RATE	100	GPM			
STORAGE TIME	0.05	HR			
EMERGENCY STORAGE	191.2	GAL			
EMERGENCY STORAGE	25.6	CF			
EMERGENCY STORAGE DEPTH	0.90	FT			

MINIMUM VELOCITY IN PIPE	3.00	FPS				
FORCE MAIN						
CROSS-SECTIONAL AREA OF FORCE MAIN	0.044	SF				
MINIMUM FLOW TO MAINTAIN MIN. VELOCITY	0.131	CFS				
DESIGN FLOW FOR PUMP	100	GPM				
VELOCITY IN FORCE MAIN	5.12	FPS				
FLOW IN FORCE MAIN	0.22	CFS				

		FORCE M	AIN INPUTS					
	FORCE MAIN							
	FORCE MAIN DIAME	TER	3	2.826	IN			
	FORCE M	AIN LENGTH		246	FT			
	LOWEST POIN	T ON FORCE MA	AIN	85.26				
63.7	HIGHEST POIN	T ON FORCE M	AIN	100.80				
	HAZEN	WILLIAMS C		150				
	EQ	UIVALENT LENG	GTH FOR FORCE MA	IN	•			
	ITEM	QUANTITY	EQ LENGTH					
	CHECK VALVE	I	20	20	FT			
	GATE VALVE (FULLY OPEN)	2	1.7	3.4	FT			
	45 BEND	I	3.75	3.75	FT			
	90 BEND	2	6.5	13	FT			
	TEE-SIDE	I	18	18	FT			
	EQUIVALENT LENGTH A	DDITIONS OF I	ORCE MAIN	58.15	FT			
	FORCE MAIN	304.15	FT					
	FORCE MAII	N STATIC HEAD		15.54	FT			

ULTIMATE FLOW							
FORCE MAIN							
FLOW	HEAD LOSS	TOTAL DYNAMIC HEAD					
(GPM)	(FT)	(FT)					
50	2.65	18.19					
60	3.72	19.26					
70	4.95	20.49					
80	6.33	21.87					
90	7.87	23.41					
100	9.57	25.11					
110	11.41	26.95					
120	13.41	28.95					
130	15.55	31.09					
140	17.83	33.37					
150	20.26	35.80					
160	22.83	38.37					

EMERGENCY STORAGE						
INV INTO PS	90.26	FT				
LEAD PUMP ON	87.26	FT				
VOLUME OF STORAGE	84.78	CF				
	634.15	GAL				
STORAGE TIME	1.0	HR				

			_
PUMP STATION E	LEVATIONS		
PUMP STATION DIAMETER	6	FT	
PEAK FLOW	91779	GPD	
PUMP STATION RIM	105.8		
INV. IN AT PUMP STATION	90.26		
EMERGENCY STORAGE	2.00	FT	
LEAD PUMP ON ELEV	87.26		
PUMP OFF ELE	VATION		
PUMP FLOW (q)	100.0	GPM	
MINUTES PER CYCLE (t)	10	MIN	
DRAWDOWN VOLUME (V)	250	GAL	
DRAWDOWN VOLUME (V)	33.4	CF	
DEPTH	1.18	FT	
LEAD PUMP OFF ELEV	86.08	FT	Us
BOTTOM OF WELL	84.33	FT	Us
PUMP OFF ELEVATION - AL	TERNATIVE MET	HOD	
PUMP FLOW	100.0	GPM	
MINUTES PER CYCLE	10	MIN	
CYCLES PER DAY	144	CYC	
DRAWDOWN VOLUME (V)	111	GAL	
DRAWDOWN VOLUME (V)	14.8	CF	
DEPTH	0.52	FT	
LEAD PUMP OFF ELEV	86.74	FT	Us
BOTTOM OF WELL	85.24	FT	Us

85.26 83.26

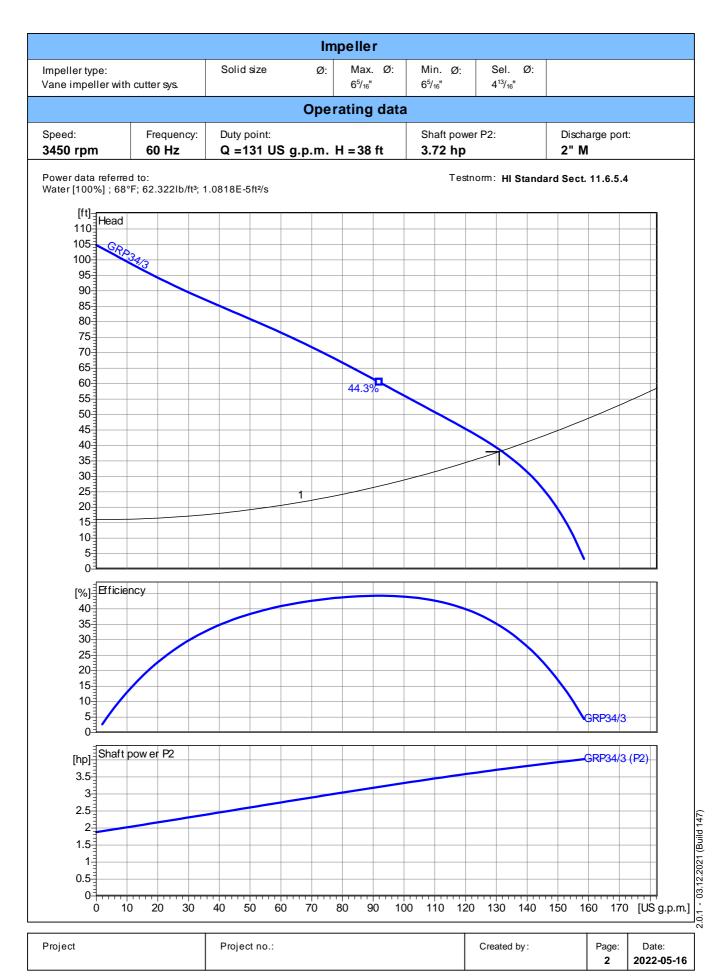
85.26 83.26

ULTIMATE DESI	GN POINT	
PUMP RATE	100	GPM
TOTAL DYNAMIC HEAD	25	FT

Technical Information

GRP34/3/C FM

Operating data Flow Head Shaft power P2 Pump efficiency Required pump NPSH Pumpe type No. of pumps Fluid Pump Pump Code Impeller Vane impelle Impeller size Solid size Discharge port Suction port	131 US g.p.m. 38 ft 3.72 hp 34.2 % Single pump 1 Wastewater GRP34/3/C FM er with cutter sys 4 ¹³ / ₁₆ " 2" M	[ft] Head 100 GRP34/3 90 80 70 60	stnorm: HI Standard Sect		RP34/3
Rated voltage Frequency Rated power P2	230/ 460 V 60 Hz 4.1 hp	[hp] Shaft power P2 3 2		<u>CPP</u> 34	1/3 (P2)
Rated speed Number of poles	3450 rpm 2				
Efficiency Rated current	83 % 10.4 / 5,2 A		30 100 120 1 [,]	40 16	0 [US g
Pump housing Cast Iron AS Motor bearing cover Cast Iron AS Impeller Cast Iron AS Cutting system Hardened Stainle Motor shaft AISI 430 F Bolts AISI 304 O-Rings Mechanical seal on medium side Mechanical seal on motor side Lower Bearing Double row angu	TM A48;CI.40B ess Stell HRC55 Stainless Steel Stainless Steel Nitrile Rubber SiC / SiC SiC / SiC	Wet well installation with coupling 22 Dimensions in mm [inch], letters see t		Table Dim	ensions (incl
Project	Project no.:		Created by:	Page: 1	Date: 2022-05-1


[US g.p.m.]

(inch)

Performance Curve

GRP34/3/C FM

Dimensions

GRP34/3/C FM

Wet well installation with coupling 2Z-1Z (GRP28...41) Dimensions in mm [inch], letters see table 223 [8 3/4"] Œ 120 [4 3/4"] 500 [19 5/8"] Upper slide rail bracket 418 [16 3/8"] 60 [2 3/8"] 70 [2 3/4"] (2x) Pipe 1" Ø11 [3/8"] (2x) Anchor bolt 80 [3 1/8"] 145 [53/4"] 90 [3 1/2"] 624 [24 5/8"] 2' M 120 [4 3/4"] 250 [9 7/8"] 222 [8 3/4"] 278 [107/8"] (4x) Anchor bolt 14 [1/2"] 115 [4 1/2"] 80 [3 1/8"] (inch) **Table Dimensions** 2.0.1 - 03.12.2021 (Build 147) Project Project no.: Created by: Page: Date: 2022-05-16 3

Technical Data

GRP34/3/C FM

Operating data							
Flow	131 US g.p. b fS	g.p.m.	Head	38 ft	ft		
Shaft power P2	3.7	hp	Static head	16	ft		
Pump efficiency	34.2	%	Required pump NPSH		ft		
Pumpe type	Single pump		No. of pumps	1			
Fluid	Wastewater		Temperature	68	°F		
Density	62.31	lb/ft ³	Kin. viscosity	1.077E-5	ft²/s		

Pump							
Pump Code	GRP34/3/C FM	Speed		3450	rpm		
Suction port		Head	Max.	104.8	ft		
Discharge port	2" M	neau	Min.	3.3	ft		
Impeller type	Vane impeller with cutter sys.	Flow	Max.	158.5	US g.p.m.		
Solid size	inch	Pump efficiency max.		44.3	%		
Impeller Ø	4.84 inch	Required rated power max. P2		4.0	hp		

		Mo	otor			
Motor design	Submersible moto	or	Insulation class		Н	
Motor name	AM136.5,4/2/3		Degree of protection		IP 68	
Frequency	60	Hz	Temperature class		T4	
Rated power P2	4.1	hp	NEMA code		н	
			Explosion protection		Class I, Div. 1, Grp.	C&D
Rated speed	3450	rpm		100%	83.0	%
Rated voltage	230 / 460	V 3~	Efficiency at % rated power	75%		%
Rated current	10.4 / 5,2	А		50%		%
Starting current, direct starting	66.8 / 33	,4 A		100%	0.84	
Starting current, star-delta	22	А	cosphi at % rated power	75%		
Starting mode	Directly		50%			
Power cable	7X1,5 / 10G1,5		Control cable		2X1,5 / -	
Type of power cable	NSSHÖU-J / H07F	N8-F PLUS	Type of control cable		ÖLFLEX-EB / -	
Cable length	32.8 ft		Service factor		1.15	
Shaft æal	Mechanical seal of	on medium	side SiC / SiC			
	Mechanical seal of	on motor sid	de SiC / SiC			
Bearing	Lower Bearing		Double row angular ball bearing			
	Upper Bearing		Deep Groove Ball Bearing			
Remarks						

		Materials	/ Weight				
Motor housing		Cast Iron ASTM A48;CI.40B	Motor shaft		AISI 4	30 F Sta	inless Steel
Pump housing		Cast Iron ASTM A48;CI.40B	AISI 304 Sta		04 Stain	less Steel	
Motor bearing cover		Cast Iron ASTM A48;CI.40B	Nitrile Rub		Rubber	ubber	
Impeller		Cast Iron ASTM A48;CI.40B					
Cutting system		Hardened Stainless Stell HR	55				
Weight aggregat		97.002 lb					
							1
Project	F	Project no.:		Created by:		Page: 4	Date: 2022-05-16

ATTACHMENT E

				ЈОВ			Lincoln V
				SHEET NO.		I	OF
				CALCULATED B	Y	DJG	DATE
GOR	RILL			CHECKED BY		DJG	DATE
GOR PAL				SCALE		None	
PAL	MER						
Task:		Compute	e Proposed Design Sanitary Flow for Lincol	n Village Mixed Res	idential Proje	ct	
			Wastewater Generation C	Calculations			
	Duplex Units		Condo	miniums - I Bedro	oom (under 8	00 sf)	
Dwelling Units	32		Dwelling Units		0		7
Flow Rate	185	gpd/unit	Flow Rate		92.5	gpd/unit	
Subtotal	5,920	gallons/day		Subtotal	0	gallons/day	
Subtotal Design Flow	5,920	gallons/day	Subtotal Design Flow		0	gallons/day	
	Single Family Units		Conde	ominiums - 2 Bedr	oom (over 80)0 sf)	
Dwelling Units	12		Dwelling Units		288		-
Flow Rate	185	gpd/unit	Flow Rate		185	gpd/unit	
Subtotal	2,220	gallons/day		Subtotal	53,280	gallons/day	
						8	
Subtotal Design Flow	2,220	gallons/day	Subtotal Design Flow		53,280	gallons/day	
			Infiltration/Contingency				
			Subtotal Average Daily Flow		61,420		
			5% Infiltration/Contingency		5%		
					3,071	gallons/day	
			Total Average Daily Flow =		64,491	gallons/day	
			Peak Daily Flow				
		Peaking Factor*					
Residential Development		600%					
Commercial, Industrial and Institutional	-	300%					
*Peaking Factor from TR-16 Guides for De	sign of Wastewater Treatment Works	s - 2011 edition and revised in 2	016				
	S	Subtotal Average Daily Flow	Peak Daily Flow				
Residential Development		61,420	368,520 gallons/day				
Commercial, Industrial and Institutional	Development	0	0 gallons/day				
Infiltration/Continengency		3,071	3,071 gallons/day				
			Total Peak Daily Flow =		371,591	gallons/day	

Village
7-14-22
7-14-22

ATTACHMENT F

					JOB	Lincoln Stre	et Sewer Anal	ysis
-					SHEET NO.	1	OF	3
					CALCULATED BY	TPG	DATE	7-28-21
-		DDU			CHECKED BY	DJG	DATE	4-25-22
1	G G G G G G G G G G G G G G G G G G G	RRIL			SCALE	None		
	P GO PA	IME	D					
-								
				CAPA	CITY ANALYSIS			
				8" sev	er pipe on Lincoln Street			
QUATI	ONS:							
	Manning's Equation, V = (1.4	9/n)R ^{2/3} S ^{1/2}						
	Q = VA	in the second seco						
	Froude Number = $V/(gd)^{1/2}$							
IPUT:								
	Diameter (D) =	0.67 ft						
	Depth of flow (d) =	0.67 ft	Flowing Fu	III				
	Manning's n =	0.013						
	Slope of pipe (s) =	0.0085 ft/ft						
OUTPU	-:							
	Angle (a) =	0.00 radians						
	Wet Perimeter (P) =	2.09 ft						
	Area of Flow (A) =	0.35 sq. ft.						
	Hydr. Radius (R) =	0.17 ft						
	Velocity of Flow (V) =	3.2 fps						
	Flow Capacity (Q) =	1.11 cfs		717,652 gpd	=	49	98 gpm	
	Froude Number (F) =	0.69 < 1, sub	critical flow					

JOB	Lincoln Street	Lincoln Street Sewer Analysis				
SHEET NO.	2	OF	3			
CALCULATED BY	TPG	DATE	7-28-21			
CHECKED BY	DJG	DATE	7-14-22			
SCALE	None					

CAPACITY ANALYSIS

10" propsoed sewer pipe on Lincoln Street

EQUATIONS:

Manning's Equation, V = $(1.49/n)R^{2/3}S^{1/2}$ Q = VA Froude Number = V/(gd)^{1/2}

INPUT:

Diameter (D) =	0.83 ft	
Depth of flow (d) =	0.83 ft	Flowing Full
Manning's n =	0.011	
Slope of pipe (s) =	0.0085 ft/ft	

OUTPUT:

Angle (a) =	0.00 radia	ns			
Wet Perimeter (P) =	2.62 ft				
Area of Flow (A) =	0.55 sq. ft.				
Hydr. Radius (R) =	0.21 ft				
Velocity of Flow (V) =	4.4 fps				
Flow Capacity (Q) =	2.38 cfs	=	1,538,913 gpd	=	1069 gpm
Froude Number (F) =	0.84 < I, s	subcritical	flow		

JOB	Lincoln Stree	Lincoln Street Sewer Analysis				
SHEET NO.	3	OF	3			
CALCULATED BY	TPG	DATE	7-28-21			
CHECKED BY	DJG	DATE	4-25-22			
SCALE	None					

CAPACITY ANALYSIS

12" sewer pipe on Lincoln Street

EQUATIONS:

Manning's Equation, V = $(1.49/n)R^{2/3}S^{1/2}$ Q = VA Froude Number = V/(gd)^{1/2}

INPUT:

Diameter (D) =	1.00 ft	
Depth of flow (d) =	1.00 ft	Flowing Full
Manning's n =	0.011	
Slope of pipe (s) =	0.0024 ft/ft	

OUTPUT:

Angle (a) =	0.00 radia	ns			
Wet Perimeter (P) =	3.14 ft				
Area of Flow (A) =	0.79 sq. ft.				
Hydr. Radius (R) =	0.25 ft				
Velocity of Flow (V) =	2.6 fps				
Flow Capacity (Q) =	2.06 cfs	=	1,330,529 gpd	=	924 gpm
Froude Number (F) =	0.46 < I, s	ubcritical	flow		

Wastewater Discharge Application Water Resource Recovery Department 300 Main Street, Saco, ME 04072

#207-282-3564 / EPrescott@sacomaine.org

Please complete this form if you plan to connect to any part of the City of Saco's sewer system. This form is used to help the WRRD understand potential impacts to the sewer system. The WRRD uses this form to assist businesses with any required industrial pretreatment and retains the data for sewer infrastructure planning.

Contact Information

Legal name of busine	ess or industry:		
Physical Facility Add	ress:		
Mailing Address:	ling Address:		
Facility Contact (Nat	ne, title, work email, work phone):		
II D 1			

Use Details Type of Business / Use / Operations:

For Multi-family Only: Anticipated number of housing units:

Pump Station Required?:

If multi-family housing, stop and skip to signature section.

Applicable industry classification codes (NAICS or SIC codes):

Hazardous or other types of chemicals stored or used at facility?

Operational Details

Do you use water for purposes other than sanitary (toilet, shower) use? Do you discharge process wastewater to the public sewer system? Does the facility have a grease trap or oil/water separator?

Grease trap size: Location of grease trap within facility: Maintenance schedule: Hauler name: Destination of intercepted waste: Does the facility generate or receive any wastes? Material: Amount (gallons or lbs./month): Removal schedule: Hauler name: Describe storage method and location:

Wastewater Details

This section required only for light industrial, heavy industrial, processing facilities, and breweries/distilleries uses. If you do not know the answers to the below questions, please contact the Industrial Compliance Manager at the City of Saco Water Resource Recovery Department to discuss.

Biochemical Oxygen Demand (BOD) in mg/L: Total Suspended Solids (TSS) in mg/L: pH: Fats, Oils and Grease (FOG) in mg/L: Arsenic concentration in mg/L:

Select all contaminants that may be in your wastewater:

Will your process water have any kind of discoloration?

Are you planning on treating your wastewater prior to discharge?

Water and/or sewer account number(s), if applicable:

For Light Industrial, Heavy Industrial, Brewery/Distillery, Food Processing & Restaurant Uses: Attach site plans, floor plans, mechanical and pumping plans and details to show all sewers, sewer connections, inspection manholes, sampling chambers, and appurtenances by size, location and elevation, if applicable. All sources of discharge should be numbered and identified as being process flow, sanitary flow, or combinations thereof, if applicable.

<u>Certification & Signature</u>: I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information is, to the best of my knowledge and belief, true, accurate, and complete. I understand per ARTICLE XV §176-74 of SACO CITY CODE that new, proposed dischargers shall file permit applications at least 90 days prior to connecting to the city's wastewater facilities. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

Dews Capton

Title

Printed Name

Date

APPROVAL LETTER

Water Resource Recovery Department (WRRD)

Saco City Hall 300 Main Street Saco, Maine 04072-1538 Phone: (207) 282-3564 x. 211

Emily Cole-Prescott Compliance Manager Eprescott@sacomaine.org Howard Carter Director Hcarter@sacomaine.org

To: Drew Gagnon, Gorrill Palmer (Consultant), Jason Garnham, City Planner & Shannon Chisholm, Assistant Planner
From: Saco Water Resource Recovery Department (WRRD)
Date: September 9, 2022 (rev. through 09/15/22)
Re: 321 Lincoln Street (Map 52 Lot 19): Proposed 322-unit residential development with associated site amenities

The WRRD has received a capacity to serve request and has been asked to review the planning board submission materials for preliminary subdivision, site plan, and site location of development applications. The WRRD offers the following:

Capacity to Serve: The applicant is planning to construct 332 dwelling units all over 800 square feet. Therefore, the anticipated flow rate is 61,420 gallons per day (GPD). The applicant has indicated that 320 dwelling units will connect to Manhole 1202.111 on Lincoln Street, and the remaining 12 single family homes will connect to Manhole 1037.114 on Bradley Street. The applicant has completed a flow monitoring assessment at the city's direction. Results of this assessment require replacing segments of 8" sewer main with 10" pipe between manholes 1202.111 and 1202.109, which will reduce the development's capacity utilization from 57% to 30%. The sewer offsite improvements are further outlined in the applicant's capacity to serve request and Drawing Nos. C200-C218 of the plan set.

The WRRD grants a conditional capacity to serve, which requires that the indicated offsite

improvements are made. Please include the following condition on any subsequent reviews for this project:
<u>Condition</u>: The applicant shall be required to upgrade the existing 8" sewer main to 10" sewer pipe between manhole IDs 1202.111 and 1202.109 prior to construction of the dwelling units that will be served by this section of the collections system. The applicant shall include construction costs for this upgrade in their financial guarantee, which financial guarantee amount shall be reviewed and approved by the City Planner, City Engineer, and WRRD Director before pre-con meeting is scheduled. The applicant shall coordinate this construction with the Public Works Department.

Impact Fees: This project is subject to impact fees. Currently, the WRRD impact fee is \$33.60 per gallon. Therefore, the WRRD impact fee for this project is \$2,063,712. If there are any questions about these impact fees, please contact WRRD directly.

Private Sewer Facilities:

<u>Private Pump Station</u>: The applicant proposes a private pump station to serve 82 duplexes and multi-family dwelling units as indicated in the site plan set. The pump station will be equipped with a standby generator and will be constructed per the details provided in the capacity to serve letter and Attachment D of the site plan set. The pump station is shown as limited to 100 gallons per minute (GPM); however, the pump curve submitted for the pump station indicates a slightly higher pump rate of 131 GPM. Final design of the pump station to be reviewed and approved by the City Engineer and WRRD Director before pre-con meeting.

Drawing No. C205 indicates that single family house lots 9-12 on low pressure sewer will utilize DH071-93 E/One Grinder pump shown on Drawing No. C405. This low pressure sewer and the associated E/One

Grinder pumps shall remain private; the city accepts no maintenance responsibility for this low pressure system and associated grinder pumps.

The sewer-related infrastructure proposed on this property shall remain in private ownership; the city accepts no maintenance responsibility for any of the sewer infrastructure shown on this site. Future homeowners shall be responsible for the maintenance of the pump station, grinder pumps, force mains, and all sewer lines on this site. The WRRD will require that a private sewer facilities maintenance agreement be signed and recorded for future owners to be aware of this requirement and referenced in each owner's deed. Any future approved site or subdivision plan should include a condition that all sewer facilities on this site are private. As such, please include the following conditions with any subsequent reviews:

- Condition: All sewer facilities shall remain in private ownership with the condominium association and future homeowners. A private sewer facilities agreement shall be drafted, reviewed, and approved by the WRRD Director, and shall be filed on the York County Registry. Additionally, each property deed shall include reference to the Private Sewer Facilities Maintenance Agreement. A sample property deed shall be provided to the WRRD for review and approval before sale of any dwelling unit. Lastly, the condo association documentation shall also include reference to the private sewer facilities maintenance agreement and shall be provided to the WRRD for review and approval.
- <u>Condition</u>: The future homeowners shall also have a maintenance agreement with a qualified third party to annually inspect the pump station and provide a report of such inspection to the WRRD, due at the annual anniversary of the completion of pump station construction.

Water Meters and Future Billing: The WRRD understands that all units will be sold to separate owners. Please include the following condition in any subsequent approval:

Condition: Each single family and duplex unit shall be equipped with its own water meter and accompanying sewer account. Each 8-unit multifamily building shall be equipped with one water meter per building, and the condominium association documents shall reflect how the sewer account will be paid among the condominium owners. The condominium association language shall be reviewed and approved by the WRRD before building permits are issued.

STANDARD CONDITIONS:

- 1. If a shared community space with kitchen facilities is proposed, a grease trap will be required, designed to specifications reviewed and approved by the WRRD Director.
- 2. All connections must be made in accordance with specifications of the Technical Design Construction Standards Manual (TDCSM), Chapter 176 and Chapter 186 of the City's Ordinances, and any other applicable City, state, or federal standards, reviewed by the City Engineer and Saco Water Resource Recovery Director.

Feel free to contact the Saco WRRD with any questions about this review. Thank you.

ATTACHMENT 9

SOLID WASTE DISPOSAL PLAN

June 17, 2022

707 Sable Oaks Drive, Suite 30 South Portland, Maine 04106 207.772.2515

Bill Bennett Pine Tree Waste Inc. 87 Pleasant Hill Road Scarborough, ME 04074 Office: 207-833-9777 William.bennett@casella.com

Dear Mr. Bennett:

On behalf of 321 Lincoln Street Development, Gorrill Palmer has been retained to prepare plans and permit applications for a proposed mixed residential development in Saco, Maine. The parcel is approximately $56.70 \pm$ acres and is proposed to have 64 buildings on site, which account for 332 units. The land is located between Lincoln and Bradley Street, which can be seen on the attached Location Map.

As required by Local Site and Subdivision Application reviewing authority, we are writing to request a letter indicating the ability of Pine Tree Waste Inc. to serve this project.

Using typical solid waste generation rates, it is anticipated that the construction of the new development may result in the following quantities:

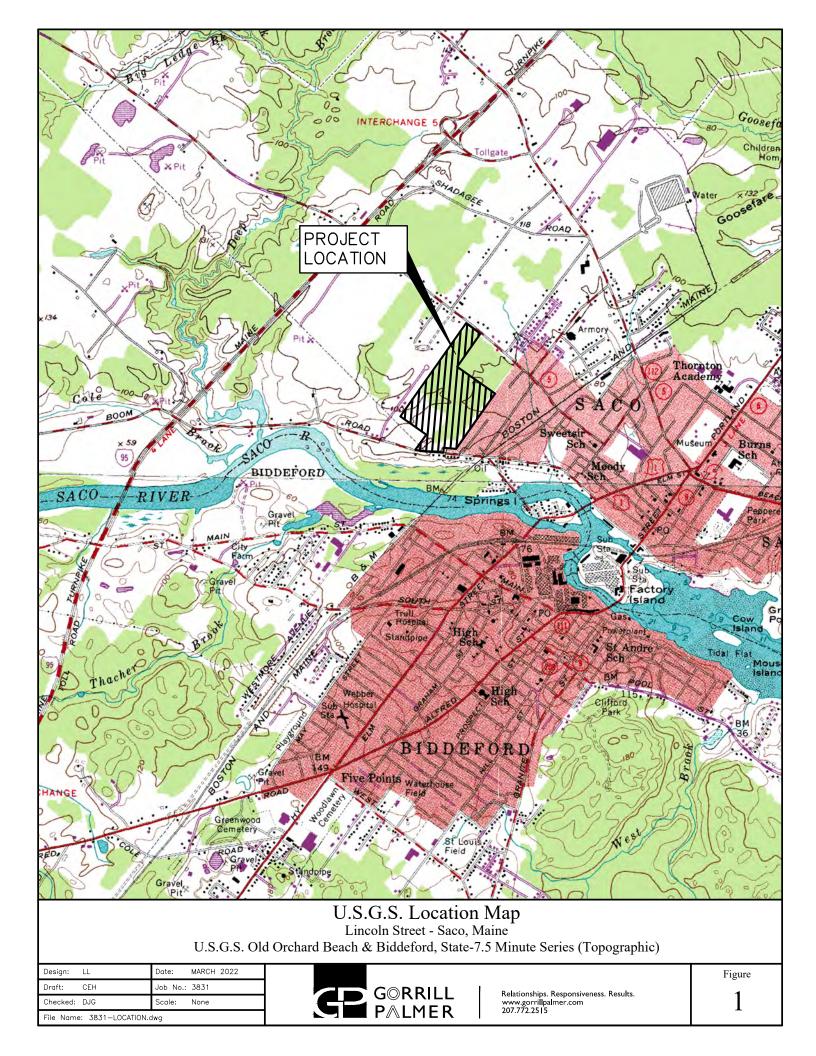
- Stumps & Grubbing –13,200 C.Y.
- Construction Debris 3,060 C.Y.
- Recyclable Waste 920 C.Y. / Month
- Non-Recyclable Waste I,100 C.Y. / Month

According to typical waste generation rates, the development would produce an estimated average of 2,020 cubic yards of solid waste monthly after construction. We are writing to request the ability of Pine Tree Waste Inc. to serve the 321 Lincoln Street Mixed Residential Development following construction, as well as to serve this project for the collection and transport of the construction debris to an approved location licensed by the MDEP. It is our understanding that Pine Tree Waste Inc. would be able to provide the necessary containers for the collection of construction debris and can transport the waste to the licensed facility.

If you have any questions or require any further additional information, please contact our office.

Sincerely, Gorrill Palmer

fourn follow


Lauren Labbay Design Engineer 207-772-2515 x240 Ilabbay@gorrillpalmer.com

Enclosure

u:\3831_helios_mixed residential development - lincoln & bradley - saco\p applications\local\site & subdivision application may 2022\ability to serve - solid waste.docx

ATTACHMENT I

PROJECT LOCATION MAP

June 24, 2022

Lauren Labbay Gorrill Palmer 707 Sable Oaks Drive Suite 30 South Portland, ME 04106

RE: Ability to Serve for Lincoln Street Development Lincoln and Bradley Street, Saco ME

Dear Lauren,

This letter is to confirm that Pine Tree Waste Inc. located in Old Orchard Beach, Maine, has the capabilities to pick up, and dispose of annual volumes of (CDD) construction demolition debris as well as CDD material generated by proposed construction at Lincoln and Bradley Street, Saco, ME. The end site for this material will be:

Juniper Ridge Landfill 2828 Bennoch Road Alton, Me 44088 MDEP Permit # S-020700-WD-N-A

Pine Tree Waste Inc can also transport volumes of non-hazardous MSW (Municipal Solid Waste). The end site for this material will be: Juniper Ridge Landfill 2828 Bennoch Road Alton, ME 44088

This letter is not a quote for service. It is a statement of capabilities. The sole purpose of this letter is to communicate the willingness and capabilities that Pine Tree Waste Inc. has towards providing this service as requested. If you have any questions or concerns, please do not hesitate to give me a call.

Sincerely,

Bill Bennett Pine Tree Waste Inc. 87 Pleasant Hill Road Scarborough, ME 04074 Cell: 653-4426 Office: 883-9777 Fax: 883-1954 William.bennett@casella.com

ATTACHMENT 10

EROSION AND SEDIMENTATION CONTROL REPORT

BASIC STANDARDS EROSION AND SEDIMENTATION CONTROL REPORT

LINCOLN VILLAGE SACO, MAINE

Prepared for 321 LINCOLN STREET DEVELOPMENT, LLC

SACO, ME 04074

Prepared by

Gorrill Palmer 707 Sable Oaks Drive – Suite 30 South Portland, Maine 04106 207.772.2515

AUGUST 2022

8-10-22

<u>SECT</u>	ION DESCRIPTION PAGE
14.0	Overview
14.1	Existing Conditions and Soil Types1
14.2	Existing Erosion Problems
14.3	Protected Natural Resources
14.4	Critical Areas
14.5	Erosion Control Measures and Site Stabilization
A	. Dewatering
В	Inspection and Construction Monitoring3
С	. Temporary Erosion Control Measures4
D	. Permanent Erosion Control Measures
14.6	Implementation Schedule
14.7	Erosion, Sedimentation and Stabilization Control Plan8
14.8	Details and Specifications
14.9	Winter Stabilization Plan
14.10	Standards for Timely Stabilization of Construction Sites During Winter
14.11	Chapter 500: Appendix C – Good Housekeeping12
14.12	Conclusion
14.13	Attachments

TABLE OF CONTENTS

Attachments

- Attachment A Seeding Plan
- Attachment B Operation and Maintenance Plan
- Attachment C Inspection Report
- Attachment D Stormwater Facility Inspection and Maintenance Forms
- Attachment E Temporary Sediment Basin Calculations

MaineDEP SLDA SECTION 14

EROSION AND SEDIMENTATION CONTROL BASIC STANDARDS (LEVEL 2 REVIEW)

I 4.0 <u>Overview</u>

This exhibit demonstrates the developer has made adequate provision for controlling erosion and sedimentation.

Gorrill Palmer has been retained by 321 Lincoln Street Development LLC to prepare an Erosion and Sedimentation Control Report for a proposed 56.7 \pm acre mix of residential housing, including single family, duplex, and condominium/apartment units. Areas determined suitable for development have been determined by avoiding large impacts to sensitive natural areas. Figure 1 is a map showing the project location.

The proposed development consists of 12 single family development windows ranging in size from 0.12 ac to 0.24 ac, 16 duplexes, and 288 condominium/apartment units. In addition, a main private roadway is proposed to connect the existing Lincoln and Bradley Streets. Stemming off this are proposed drives to provide full access to buildings. Utility and drainage infrastructure has been designed to meet or exceed requirements.

This narrative contains the general erosion and sedimentation control measures, which are appropriate for the construction of the project. Erosion and sedimentation control plans and details have also been prepared by Gorrill Palmer to accompany this report.

14.1 Existing Conditions and Soil Types

The proposed development is located between the existing Lincoln and Bradley Streets in Saco, ME. The lot is undeveloped and consists of mostly forested land. The development will create approximately 16.3 acres of new non-vegetated surface. The overall disturbed area is approximately 27.8 acres. Within the site, existing soil material will be utilized to create a trail throughout the area for recreational purposes, providing many opportunities for full interconnectivity within the community.

The topography and terrain for the planned development area varies in elevation from approximately 93 to 117 feet. For drainage purposes, the southern portion of the property drains to a series of streams and swales that drain south near Lincoln Street. The northern portion of the property generally drains to the central/eastern portion of the site to a tributary stream that conveys flow offsite and subsequently the Saco River. Most of the site contains slopes ranging from approximately 0.5% to 5%, and minimal area with steeper 30% slopes associated with the stream banks and existing quarry.

A High Intensity Soil Survey (HISS) was completed for the property by Flycatcher, LLC. Please refer to the Soil Report in Attachment 12, included with this application, for further details of the determined existing soils.

In addition to on-site soil classification, a Medium Intensity Soil Survey (MISS) for York County was used for the offsite locations surrounding the property to perform necessary runoff analysis calculations.

The susceptibility of soils to erosion is indicated on a relative "K" scale of values over a range of 0.17 to 0.49. The higher values are indicative of the more erodible soils. Table 1 lists the soils identified in the HISS and their K values:

TABLE 1 – K VALUE (HISS)				
Туре	Subsurface	Substratum		
Canandaigua silt Ioam (CaA)	0.49	0.49		
Croghan-Naumburg Complex (CnA)	0.17	0.17		
Croghan Fine Sandy Loam (CrA/CrB)	0.17	0.17		
Elmwood-Swanton Complex (EsA/EsB/EsC)	0.32	0.32		
Naumburg loamy fine sand (NsA)	0.17	0.17		
Swanton Very Fine Sandy Loam (SpA/SpB/SsA/SsB)	0.32	0.32		
Tubridge-Lyman Complex (TIA/TIB/TIC)	0.24/0.20	0.24/0.20		

Based on Section 11's Soil Report, the on-site soils have moderate susceptibility to erosion. The following erosion and sedimentation control management plan will need to be closely followed by the Contractor to minimize erosion.

14.2 Existing Erosion Problems

Gorrill Palmer is not aware of any existing erosion problems at the project site.

14.3 Protected Natural Resources

Wetland delineation and vernal pool surveys were performed by Power Engineers, Inc. in September of 2018. In September and November of 2021, Flycatcher LLC also prepared a wetland delineation report. There were two vernal pools identified, neither of which met the NRPA definition of a Significant Vernal Pool. Their reports and a Wetland Impact Plan are included in the NRPA Tier II application as well as the City of Saco Site Plan Application. Based upon the FEMA maps, the proposed development is not located within a 100-year floodplain.

14.4 Critical Areas

Critical areas that would require special attention during construction that have been identified on-site include those with side slopes adjacent to any wetlands. A number of areas on the site will be critical during construction to implement and diligently maintain all erosion control measures that prevent sedimentation of adjacent wetlands. As directed by MaineDEP all disturbed areas upslope of wetlands shall be protected by a minimum of a double row of silt fence or mulch berm. Should field conditions dictate, additional measures shall be provided to protect adjacent wetlands.

14.5 Erosion Control Measures and Site Stabilization

The primary emphasis of the erosion/sedimentation control plan, which will be implemented for this project, is as follows:

- Development of a careful construction sequence.
- Rapid revegetation of denuded areas to minimize the period of soil exposure.
- Rapid stabilization of drainage paths to avoid rill and gully erosion.
- The use of on-site measures to capture sediment (sedimentation basins, hay bales/stone check dams/silt fence, etc.)

The following temporary and permanent erosion and sediment control devices will be implemented as part of the site development. These devices shall be installed as indicated on the plans or as described within this report. For further reference, see the latest edition of the Maine Erosion and Sediment Control Practices Field Guide for Contractors.

A. Dewatering

Water from construction trench dewatering shall pass first through a filter bag or secondary containment structure (e.g. hay bale lined pool) prior to discharge. The discharge site shall be selected to avoid flooding, icing, and sediment discharges to a protected resource. In no case shall the filter bag or containment structure be located within 50 feet of a protected natural resource.

B. Inspection and Construction Monitoring

Maintenance measures shall be applied as needed during the entire construction season. Before and within 24 hours after each wet weather event that produces more than 0.5 inch of rainfall in a consecutive 24-hour period, snowstorm, or period of thawing and runoff, the qualified contractor knowledgeable of DEP standards shall perform a visual inspection of all installed erosion control measures and perform repairs as needed to insure their continuous function. Additionally, inspections shall be performed at least once a week. Following the temporary and/or final seeding and mulching, the contractor shall in the spring inspect and repair any damages and/or unestablished spots. Established vegetative cover means a minimum of 90% of areas vegetated with vigorous growth.

The following standards must be met during construction.

- 1. Inspection and corrective action. An Engineer or someone with knowledge of erosion and stormwater standards as described in the conditions of the permit shall inspect disturbed and impervious areas, erosion control measures (including catch basin inlet protection measures, sediment filter measures, and stabilization of slopes), materials storage areas that are exposed to precipitation, and locations where vehicles enter or exit the site. Inspect these areas at least once a week as well as before and within 24 hours after a storm event (wet weather event that produces more than 0.5 inch in a consecutive 24-hour period), and prior to completing permanent stabilization measures. Upon final subdivision plans, the inspection log will be updated to reflect all structures.
- 2. Maintenance. If best management practices (BMPs) need to be repaired, the repair work should be initiated upon discovery of the problem but no later than the end of the next workday. The contractor is responsible for all maintenance associated with these inspections. If additional BMPs or significant repair of BMPs are necessary, implementation must be completed within 7

calendar days and prior to any storm event (wet weather event that produces more than 0.5 inch in a consecutive 24-hour period). All measures must be maintained in effective operating condition until areas are permanently stabilized.

3. Documentation. Keep a log (report) summarizing the inspections and any corrective action taken. The log must include the name(s) and qualifications of the person making the inspections, the date(s) of the inspections, and major observations about the operation and maintenance of erosion and sedimentation controls, materials storage areas, and vehicles access points to the parcel. Major observations must include BMPs that need maintenance, BMPs that failed to operate as designed or proved inadequate for a particular location, and location(s) where additional BMPs are needed. For each BMP requiring maintenance, BMP needing replacement, and location needing additional BMPs, note in the log the corrective action taken and when it was taken. The log must be made accessible to Department staff and a copy must be provided upon request. The permittee shall retain a copy of the log for a period of at least three years from the completion of permanent stabilization.

C. <u>Temporary Erosion Control Measures</u>

Excavation and earthwork shall be completed such that any area left exposed can be controlled by the contractor. Limit the exposed area to one acre at a time or no larger area that can be mulched in one day.

Typical Slope Restoration:

- Erosion control blankets required between 2:1 and 3:1 slopes
- Slopes steeper than 8% require Erosion Control Mulch
- Slopes steeper than 2:1 shall not use solely vegetated stabilization methods
- 1.5:1 slopes are prohibited.

The following measures are planned as temporary erosion/sedimentation control measures during construction:

- 1. A crushed stone-stabilized construction entrance shall be placed at the approved access drive on Bradley Street and Lincoln Street.
- 2. Siltation fence or wood waste compost berms shall be installed downstream of any disturbed areas to trap runoff- borne sediments until grass areas are revegetated. The silt fence and/or wood waste compost berms shall be installed per the details provided in this package and inspected at least once a week and before and immediately after a storm event of 0.5 inches or greater, and at least daily during prolonged rainfall. Repairs shall be made if there are any signs of erosion or sedimentation below the fence or berm line. If there are signs of undercutting at the center or the edges, or impounding of large volumes of waste compost berms are not to be used adjacent to wetland areas that are not to be disturbed, but it can be placed inside the silt fence as a secondary row.
- 3. Nine (9) sedimentation basins are proposed for the development to aid in preventing migration of sediments resulting from construction. The sedimentation basins are designed for a 24-hour

delay time. A perforated riser shall be installed as the basin's outlet. The sediment basin shall remain in use until the tributary area has been stabilized. Calculations for the sedimentation basin are included in Attachment E.

- 4. Straw or hay mulch including hydroseeding is intended to provide cover for denuded or seeded areas until revegetation is established. Mulch placed between April 15th and October 15th on slopes of less than 15 percent shall be anchored by applying water; mulch placed on slopes of equal to or steeper than 15 percent shall be covered by a fabric netting and anchored with staples in accordance with manufacturer's recommendation. Fabric netting and staples shall be used on disturbed areas within 50' of lakes, streams, and wetlands regardless of the upstream slope. Mulch placed between October 15th and April 15th on slopes equal to or steeper than 8 percent shall be covered with a fabric netting and anchored with staples in accordance with a fabric netting and anchored with staples in accordance with a Slopes steeper than 3:1 and equal to or flatter than 2:1, which are to be revegetated, shall receive Curlex blankets by American Excelsior or equal. Slopes steeper than 2:1 shall receive riprap as noted on the plans. The mulch application rate for both temporary and permanent seeding is 75 lbs per 1000 sf as identified in Attachment A of this section. Mulch shall not be placed over snow.
- 5. Temporary stockpiles of stumps, grubbings, or common excavation will be protected as follows:
 - a) Temporary stockpiles shall not be located within 50 feet of any wetlands which will not be disturbed and shall be located away from drainage swales.
 - b) Stockpiles shall be stabilized within 7 days by either temporarily seeding the stockpile by a hydroseed method containing an emulsified mulch tackifier or by covering the stockpile with mulch, such as hay, straw, or erosion control mix.
 - c) Stockpiles shall be surrounded by sedimentation barrier at the time of formation. Sediment barriers should be installed downgradient of stockpiles. Additionally, stormwater shall be prevented from running onto stockpiles.
- 6. All denuded areas that are within 50 feet of an undisturbed wetland, which have been rough graded and are not located within a building pad, parking area, or access drive subbase area, shall receive mulch or erosion control mesh fabric within 48 hours of initial disturbance of soil. All areas within 75 feet of an undisturbed wetland shall be mulched prior to any predicted rain event regardless of the 48 hour window. In other areas, the time period may be extended to 7 days.
- 7. Lincoln and Bradley Street (undisturbed portions entering the project site) shall be swept to control mud and dust as necessary. Additional stone shall be added to the stabilized construction entrance to minimize the tracking of material off the site and onto the surrounding roadways.
- 8. During grubbing operations stone check dams shall be installed at any evident concentrated flow discharge points and as directed on the Erosion Control Plans.

- 9. Silt fencing with a minimum stake spacing of 6 feet shall be used, unless the fence is supported by wire fence reinforcement of minimum 14 gauge and with a maximum mesh spacing of 6 inches, in which case stakes may be spaced a maximum of 10 feet apart. The bottom of the fence shall be anchored.
- 10. Wood waste compost/bark berms may be used in lieu of siltation fencing in areas not adjacent to wetlands, but can be used inside of silt fence as a secondary row. Berms shall be removed and spread in a layer not to exceed 3" thick once upstream areas are completed and a 90% catch of vegetation is attained.
- 11. Water and/or calcium chloride shall be furnished and applied in accordance with MDOT specifications Section 637 Dust Control.
- 12. Loam and seed is intended to serve as the primary permanent revegetative measure for all denuded areas not provided with other erosion control measures, such as riprap. Application rates are provided in Attachment A of this section. Seeding shall not occur over snow.
- 13. All catch basins shall be protected during construction with a catch basin inlet filter and, in cases of heavy flows, a stone sediment barrier as shown on Sheet C404.

D. Permanent Erosion Control Measures

The following permanent erosion control measures have been designed as part of the Erosion/Sedimentation Control Plan:

- All areas disturbed during construction, but not subject to other restoration (paving, riprap, gravel subbase, etc.) will be loamed, limed, fertilized, mulched, and seeded. Fabric netting, anchored with staples, shall be placed over the mulch in areas as noted in **Temporary Erosion Control Measures** paragraph 4 of this report. All areas within 50 feet of an undisturbed wetland shall be mulched prior to any predicted rain event regardless of the 48-hour window. Native topsoil shall be stockpiled and reused for final restoration when it is of sufficient quality.
- 2. All storm drain pipe outlets shall have riprap aprons at their outlet to protect the outlet and receiving channel from scour and deterioration. Installation details are provided in the plan set. The aprons shall be installed and stabilized to the extent practicable prior to directing runoff to the tributary pipe or culvert.
- 3. Catch basins shall be provided with sediment sumps and inlet hoods (the Snout) for all outlet pipes that are 18" in diameter or less.

14.6 Implementation Schedule

The following construction sequence shall be required to ensure the effectiveness of the erosion and sedimentation control measures are optimized:

It is anticipated that construction will begin in Fall/Winter 2022. The intent of construction is to follow a phased pattern, working from Bradley & Lincoln Street ends and working into the center of the project.

- Note: For all grading activities, the contractor shall exercise extreme caution not to overexpose the site, this shall be accomplished by limiting the disturbed area. Area shall be limited to no more than the contractor can mulch in one day.
- 1. Install stabilized construction entrances at the approved locations.
- 2. Install perimeter silt fence and/or wood waste berms.
- 3. Install sediment basins, diversion dikes, or check dams (clear only those areas necessary to install BMP's)
- 4. Clear and grub site. Install stone check dams at any evident concentrated flow discharge points.
- 5. Commence installation of drainage appurtenances.
- 6. Commence earthwork for stormwater facilities.
- 7. Commence earthwork and grading to subgrade.
- 8. Commence installation of retaining walls (if necessary).
- 9. Commence installation of water and sewer lines.
- 10. Continue earthwork and grading to subgrade as necessary for construction.
- 11. Complete installation of underground utilities to within 5' of future buildings.
- 12. Install light pole foundations and light poles.
- 13. Complete remaining earthwork operations.
- 14. Complete installation of drainage appurtenances.
- 15. Install sub-base and base gravel within parking areas, walkways, and all driveways.
- 16. Install curbing in parking areas as needed.
- 17. Install base course paving for drives and parking area as well as concrete surfaces.
- 18. Loam, lime, fertilize, seed and mulch disturbed areas and complete all landscaping.
- 19. Install surface course paving for drives and parking areas. Stripe per plan.
- 20. Once the site is stabilized and a 90% catch of vegetation has been obtained, remove all temporary erosion control measures.
- 21. Touch up loam and seed.

Prior to construction of the project, the contractor shall submit to the owner a schedule for the completion of the work, which will satisfy the following criteria:

 The above construction sequence should generally be completed in the specified order; however, several separate items may be constructed simultaneously. Work must also be scheduled or phased to reduce the extent of the exposed areas as specified below. The intent of this sequence is to provide for erosion control and to have structural measures such as silt fence and construction entrances in place before large areas of land are denuded.

- 2. The work shall be conducted in sections which shall:
 - (a) Limit the amount of exposed area to those areas in which work is expected to be undertaken during the proceeding 30 days.
 - (b) Revegetate disturbed areas as rapidly as possible. All areas shall be permanently stabilized within 7 days of final grading or before a storm event; or temporarily stabilized within 48 hours of initial disturbance of soil for areas within 50 feet of an undisturbed wetland and 7 days for all other areas. Areas within 50 feet of an undisturbed wetland shall be mulched prior to any predicted rain event regardless of the 48 hour window.
 - (c) Incorporate planned inlets and drainage system as early as possible into the construction phase. The ditches shall be immediately lined or revegetated as soon as their installation is complete.

14.7 Erosion, Sedimentation and Stabilization Control Plan

The Erosion Control information is included in the plan set.

14.8 Details and Specifications

The Erosion Control details and specifications are included in the plan set.

14.9 Winter Stabilization Plan

The winter construction period is from November 1 through April 15. If the construction site is not stabilized with pavement, a road gravel base, or riprap by November 15 then the site needs to be protected with over-winter stabilization. An area considered open is any area not stabilized with pavement; vegetation, mulching, erosion control mats, riprap or gravel base on a road.

Winter excavation and earthwork shall be completed such that any area left exposed can be controlled by the contractor. Limit the exposed area to one acre or an area that can be mulched in one day prior to any snow event.

All areas shall be considered to be denuded until the subbase gravel is installed in parking areas or the areas of future loam and seed have been loamed, seeded and mulched. Hay and straw mulch rate shall be a minimum of 150 lbs./1,000 s.f. (3 tons/acre) and shall be properly anchored.

For work, which is conducted between October 15th and April 15th of any calendar year, all denuded areas, shall be covered with hay mulch or erosion control mix, applied at twice the normal application rate and anchored with a fabric netting. The time period for applying mulch shall be limited to 2 days for all areas.

The contractor shall install any added measures which may be necessary to control erosion/sedimentation from the site dependent upon the actual site and weather conditions. Continuation of earthwork operations on additional areas shall not begin until the exposed soil surface on the area being worked has been stabilized, in order to minimize areas without erosion control protection.

1. Soil Stockpiles

Stockpiles of soil or subsoil shall be mulched for over winter protection with hay or straw at twice the normal rate or at 150 lbs/1,000 s.f. (3 tons per acre) or with a four-inch layer of woodwaste erosion control mix. This shall be done within 24 hours of stocking and re-established prior to any rainfall or snowfall. Any soil stockpile shall not be placed (even covered with hay or straw) within 50 feet from any natural resources.

2. Natural Resource Protection

Any areas within 75 feet from any natural resources, if not stabilized with a minimum of 90% mature vegetation catch, shall be mulched by December 1 and anchored with plastic netting or protected with erosion control mats. During winter construction, a double line of sediment barriers (i.e. silt fence backed with hay bales or erosion control mix) shall be placed between any natural resource and the disturbed area. Projects crossing the natural resource shall be protected a minimum distance of 75 feet on either side from the resource. Existing projects not stabilized by December 1 shall be protected with the second line of sediment barrier to ensure functionality during the spring thaw and rains.

3. <u>Sediment Barriers</u>

During frozen conditions, sediment barriers shall consist of wood waste filter berms as frozen soil prevents the proper installation of hay bales and sediment silt fences.

4. Mulching

An area shall be considered denuded until areas of future loam and seed have been loamed, seeded and mulched. Hay and straw mulch shall be applied at a rate of 150 lb. per 1,000 square feet or 3 tons/acre (twice the normal accepted rate of 75-lbs./1,000 s.f. or 1.5 tons/acre) and shall be properly anchored. Mulch shall not be spread on top of snow. The snow shall be removed down to a one-inch depth or less prior to application. After each day of final grading, the area shall be properly stabilized with anchored hay or straw or erosion control matting. An area shall be considered to have been stabilized when exposed surfaces have been either mulched with straw or hay at a rate of 150 lb. per 1,000 square feet (3 tons/acre) and adequately anchored that ground surface is not visible though the mulch.

Between the dates of November 1 and April 15, all mulch shall be anchored by peg line, mulch netting, asphalt emulsion chemical, or wood cellulose fiber. When ground surface is not visible through the mulch then cover is sufficient. After November 1st, mulch and anchoring of all bare soil shall occur at the end of each final grading workday.

5. Mulching on Slopes and Ditches

Slopes shall not be left exposed for any extended time of work suspension unless fully mulched and anchored with peg and netting or with erosion control blankets. Mulching shall be applied at a rate of 230 lbs/1,000 s.f. on all slopes greater than 8%.

Mulch netting shall be used to anchor mulch in all drainage ways with a slope greater than 3% for slopes exposed to direct winds and for all other slopes greater that 8%. Erosion control blankets

shall be used in lieu of mulch in all drainage ways with slopes greater than 8%. Erosion control mix can be used to substitute erosion control blankets on all slopes except ditches.

6. <u>Seeding</u>

Between the dates of October 15 and April 1st, loam or seed will not be required. During periods of above freezing temperatures finished areas shall be fine graded and either protected with mulch or temporarily seeded and mulched until such time as the final treatment can be applied. If the date is after November 1st and if the exposed area has been loamed, final graded with a uniform surface, then the area may be dormant seeded at a rate of 3 times higher than specified for permanent seed and then mulched. Dormant seeding may be selected to be placed prior to the placement of mulch and fabric netting anchored with staples. If dormant seeding is used for the site, all disturbed areas shall receive 4" of loam and seed at an application rate of 5 lbs/1,000 s.f. All areas seeded during the winter shall be inspected in the spring for adequate catch. All areas insufficiently vegetated (less than 90% catch) shall be revegetated by replacing loam, seed and mulch. If dormant seeding is not used for the site, all disturbed areas shall be revegetated in the spring.

7. <u>Winter Construction Inspection</u>

After each rainfall, snow storm or period of thawing and runoff, the qualified contractor knowledgeable of DEP standards shall perform a visual inspection of all installed erosion control measures and perform repairs as needed to insure their continuous function. Inspections shall be performed a minimum of once per week and shall be conducted in accordance with the Erosion Control Measures and Site Stabilization within the Erosion Control Report.

14.10 <u>Standards for Timely Stabilization of Construction Sites During Winter</u>

Standard for the timely stabilization of ditches and channels - The applicant shall construct and stabilize all stone-lined ditches and channels on the site by November 15. The applicant shall construct and stabilize all grass-lined ditches and channels on the site by September 1. If the applicant fails to stabilize a ditch or channel to be grass-lined by September 1, then the applicant will take one of the following actions to stabilize the ditch for late fall and winter.

<u>Install a sod lining in the ditch</u> -- The applicant shall line the ditch with properly installed sod by October 1. Proper installation includes the applicant pinning the sod onto the soil with wire pins, rolling the sod to guarantee contact between the sod and underlying soil, watering the sod to promote root growth into the disturbed soil, and anchoring the sod with jute or plastic mesh to prevent the sod strips from sloughing during flow conditions.

<u>Install a stone lining in the ditch</u> --The applicant shall line the ditch with stone riprap by November 15. The applicant shall hire a registered professional engineer to determine the stone size and lining thickness needed to withstand the anticipated flow velocities and flow depths within the ditch. If necessary, the applicant shall regrade the ditch prior to placing the stone lining so to prevent the stone lining from reducing the ditch's cross-sectional area.

Standard for the timely stabilization of disturbed slopes -- The applicant shall construct and stabilize stone-covered slopes by November 15. The applicant shall seed and mulch all slopes to be vegetated by September 1. The department shall consider any area having a grade greater than 15% to

be a slope. If the applicant fails to stabilize any slope to be vegetated by September 1, then the applicant shall take one of the following actions to stabilize the slope for late fall and winter.

<u>Stabilize the soil with temporary vegetation and erosion control mats</u> -- By September 1 the applicant shall seed the disturbed slope with winter rye at a seeding rate of 3 pounds per 1,000 square feet and apply erosion control mats over the mulched slope. The applicant shall monitor growth of the rye over the next 30 days. If the rye fails to grow at least three inches or cover at least 75% of the disturbed slope by November 1, then the applicant shall cover the slope with a layer of woodwaste compost as described in item iii of this standard or with stone riprap as described in item iv of this standard.

<u>Stabilize the slope with sod</u> -- The applicant shall stabilize the disturbed slope with properly installed sod by September 1. Proper installation includes the applicant pinning the sod onto the slope with wire pins, rolling the sod to guarantee contact between the sod and underlying soil, and watering the sod to promote root growth into the disturbed soil. The applicant shall not use late-season sod installation to stabilize slopes having a grade greater than 33% (3H:1V).

<u>Stabilize the slope with woodwaste compost</u> -- The applicant shall place a six-inch layer of woodwaste compost on the slope by November 15. Prior to placing the woodwaste compost, the applicant shall remove any snow accumulation on the disturbed slope. The applicant shall not use woodwaste compost to stabilize slopes having grades greater than 50% (2H:1V) or having groundwater seeps on the slope face.

<u>Stabilize the slope with stone riprap</u> -- The applicant shall place a layer of stone riprap on the slope by November 15. The applicant shall hire a registered professional engineer to determine the stone size needed for stability and to design a filter layer for underneath the riprap.

Standard for the timely stabilization of disturbed soils -- By September 15 the applicant shall seed and mulch all disturbed soils on areas having a slope less than 15%. If the applicant fails to stabilize these soils by this date, then the applicant shall take one of the following actions to stabilize the soil for late fall and winter.

<u>Stabilize the soil with temporary vegetation</u> -- By September 1 the applicant shall seed the disturbed soil with winter rye at a seeding rate of 3 pounds per 1000 square feet, lightly mulch the seeded soil with hay or straw at 75 pounds per 1000 square feet, and anchor the mulch with plastic netting. The applicant shall monitor growth of the rye over the next 30 days. If the rye fails to grow at least three inches or cover at least 90% of the disturbed soil before November 1, then the applicant shall mulch the area for over-winter protection as described below.

<u>Stabilize the soil with sod</u> -- The applicant shall stabilize the disturbed soil with properly installed sod by September 15. Proper installation includes the applicant pinning the sod onto the soil with wire pins, rolling the sod to guarantee contact between the sod and underlying soil, and watering the sod to promote root growth into the disturbed soil.

<u>Stabilize the soil with mulch</u> -- By November 15 the applicant shall mulch the disturbed soil by spreading hay or straw at a rate of at least 150 pounds per 1000 square feet on the area so that no soil is visible through the mulch. Prior to applying the mulch, the applicant shall remove any snow accumulation on

the disturbed area. Immediately after applying the mulch, the applicant will anchor the mulch with plastic netting to prevent wind from moving the mulch off the disturbed soil.

14.11 Chapter 500: Appendix C – Good Housekeeping

Authorized Non-stormwater discharges. Identify and prevent contamination by non-stormwater discharges. Where allowed non-stormwater discharges exist, they must be identified and steps should be taken to ensure the implementation of appropriate pollution prevention measures for the non-stormwater component(s) of the discharge. Authorized non-stormwater discharges are:

- a) Discharges from firefighting activity;
- b) Fire hydrant flushings;
- c) Vehicle washwater if detergents are not used and washing is limited to the exterior of vehicles (engine, undercarriage and transmission washing is prohibited);
- d) Dust control runoff in accordance with permit conditions and Appendix (C)(3);
- e) Routine external building washdown, not including surface paint removal, that does not involve detergents;
- f) Pavement washwater (where spills/leaks of toxic or hazardous materials have not occurred, unless all spilled material had been removed) if detergents are not used;
- g) Uncontaminated air conditioning or compressor condensate;
- h) Uncontaminated groundwater or spring water;
- i) Foundation or footer drain-water where flows are not contaminated;
- j) Uncontaminated excavation dewatering (see requirements in Appendix C(5));
- k) Potable water sources including waterline flushings; and
- I) Landscape irrigation.

Unauthorized non-stormwater discharges. The Department's approval under this Chapter does not authorize a discharge that is mixed with a source of non stormwater, other than those discharges in compliance with Appendix C (6). Specifically, the Department's approval does not authorize discharges of the following:

- a) Wastewater from the washout or cleanout of concrete, stucco, paint, form release oils, curing compounds or other construction materials;
- b) Fuels, oils or other pollutants used in vehicle and equipment operation and maintenance;
- c) Soaps, solvents, or detergents used in vehicle and equipment washing; and
- d) Toxic or hazardous substances from a spill or other release.

14.12 Conclusion

The Applicant has provided temporary and permanent erosion control measures as well as specifying a sequence of construction as measures to minimize erosion and sedimentation.

14.13 Attachments

Attachment A	Seeding Plan
Attachment B	Operation and Maintenance Plan
Attachment C	Inspection Report
Attachment D	Stormwater Facility Inspection and Maintenance Forms
Attachment E	Temporary Sediment Basin Calculations

ATTACHMENT A

SEEDING PLAN

SEEDING PLAN

Pro	<u>oject</u> : Lincoln Village				
<u>Site</u>	<u>e Location</u> : Saco, ME				
	Permanent Seeding	Temporary Seeding			
١.	Instruction on preparation of soil: Prepare	a good seed bed for planting me	thod used.		
2.	Apply lime as follows:# / acres, OR <u>138</u> # /M Sq. Ft.				
3.	Fertilize with pounds of N-P-K/ac. OR <u>13.8</u> pounds of <u>10-10-10</u> N-P-K/M Sq. Ft.				
4.	Method of applying lime and fertilizer: Spread and work into the soil before seeding.				
5.	Seed with the following mixture:				
	50% Winter Rye				
	50% Annual Rye				
6.	6. Mulching instructions: Apply at the rate ofper acre, OR 75 pounds per M. Sq. Ft.				
7.	TOTAL LIME	<u>Amount</u> 138	<u>Unit # Tons. Etc</u> . #/1000 sq. ft.		
8.	TOTAL FERTILIZER	13.8	#/1000 sq. ft.		
9.	TOTAL SEED	1.03	#/1000 sq. ft.		
10.	TOTAL MULCH	75	#/1000 sq. ft.		
11.	TOTAL other materials, seeds, etc.				
12.	REMARKS				

Spring seeding is recommended; however, late summer (prior to September I) seeding can be made. <u>Permanent</u> seeding should be made prior to August 5 or as a dormant seeding after the first killing frost and before the first snowfall. If seeding cannot be done within these seeding dates, temporary seeding and mulching shall be used to protect the site. Permanent seeding shall be delayed until the next recommended seeding period.

SEEDING PLAN

Pro	<u>pject</u> : Lincoln Village					
<u>Site</u>	<u>e Location</u> : Saco, ME					
\boxtimes	Permanent Seeding	mporary Seeding				
١.	Instruction on preparation of soil: Prepare a go	ood seed bed for planting me	ethod used.			
2.	Apply lime as follows:# / acres, OR 138	<u>8 </u> # /M Sq. Ft.				
3.	Fertilize with pounds of N-P-K/ac. OR <u>18.4</u> pounds of <u>10-20-20 N</u> -P-K/M Sq. Ft.					
4.	Method of applying lime and fertilizer: Spread and work into the soil before seeding.					
5.	Seed with the following mixture:					
	40% Creeping Red Fescue 30% Charger II Perennial Ryegrass					
20% KenBlue Kentucky Bluegrass						
	10% Tiffany Chewings Fescue					
6. Mulching instructions: Apply at the rate ofper acre, OR <u>75 pounds per M. Sq. Ft.</u>						
7.	TOTAL LIME	<u>Amount</u> 138	<u>Unit # Tons. Etc</u> . #/1000 sq. ft.			
8.	TOTAL FERTILIZER	18.4	#/1000 sq. ft.			
9.	TOTAL SEED	1.03	#/1000 sq. ft.			
10.	TOTAL MULCH	75	#/1000 sq. ft.			
11.	TOTAL other materials, seeds, etc.					
12.	REMARKS					

Spring seeding is recommended, however, late summer (prior to September I) seeding can be made. <u>Permanent</u> seeding should be made prior to August 5 or as a dormant seeding after the first killing frost and before the first snowfall. If seeding cannot be done within these seeding dates, temporary seeding and mulching shall be used to protect the site. Permanent seeding shall be delayed until the next recommended seeding period.

ATTACHMENT B

OPERATION & MAINTENANCE PLAN

Prepared by:

- □ Professional Engineer:
 - Print Name: Drew Gagnon______

Osus lager

- Signature:
- License #: 16111

□ Landscape Architect:

- o Print Name:_____
- o Signature:_____
- o License #:
- □ Certified ESC Professional:

 - o Signature:_____
 - o License #:

<u>Company:</u>

<u>Stamp:</u>

Maintenance of Facilities

The anticipated maintenance responsibilities for Lincoln Village infrastructure is as follows:

Maintained by 321 Lincoln Street Development, LLC:

- Gravel Wetland I
- Gravel Wetland 2
- Grassed Underdrain Soil Filter I
- Grassed Underdrain Soil Filter 2
- Grassed Underdrain Soil Filter 3
- Grassed Underdrain Soil Filter 4
- Grassed Underdrain Soil Filter 5
- Grassed Underdrain Soil Filter 6
- Grassed Underdrain Soil Filter 7
- Grassed Underdrain Soil Filter 8
- Grassed Underdrain Soil Filter 9
- Level Lip Spreader at OCS I
- Level Lip Spreader at OCS 2
- Level Lip Spreader at OCS 3
- Focal Points I-4
- Subsurface Chambers I & 2
- Drip Edges for Single Family & Duplex Buildings

Maintained by City of Saco:

• Lincoln and Bradley Street Infrastructure

Long-term operation/maintenance recommended for the stormwater facilities are presented below.

Inspections shall be conducted by a person with knowledge of erosion and stormwater control, including the standards and conditions in the permit. The responsible party, which may be a contractor knowledgeable of standard stormwater and erosion control measures, may contract with such professionals as necessary in order to comply with this provision and may rely on the advice of such professionals in carrying out its duty hereunder, provided, that the following operation and maintenance procedures are hereby established as a minimum for compliance with this section. A maintenance log of the inspections shall be kept by the responsible party for a minimum of 5 years after construction. A rainfall event that produces more than a 1-inch storm in a consecutive 24-hour period shall prompt a post construction inspection.

City of Saco Annual Certifications:

Per MaineDEP and the City of Saco Post-Construction Stormwater Management Plan Code requirements, inspections of the stormwater and drainage infrastructure are due to the Department of Public Works by July 15th of each year. Below is a summary of the forms and logs to be completed by the applicant and returned to the Department of Public Works:

Inspection Form	Returned to Code Enforcement Officer (any given year)
 Stormwater Management Plan for City of Saco, Maine - Annual Stormwater Management Facilities Certification (Form 2) Inspection and Maintenance Log 	July 15th

Forms due by **July 15**th can be found in **Attachment 1** included with this O&M plan.

Inspection and Maintenance Frequency and Corrective Measures:

The following areas, facilities, and measures will be inspected, and the identified deficiencies will be corrected. Clean-out must include the removal and legal disposal of any accumulated sediments and debris.

Catch Basins:

Inspect catch basins 2 times per year (preferably in Spring and Fall) to ensure that the catch basins are working in their intended fashion and that they are free of debris. Clean structures when sediment depths reach 12" from invert of outlet. If the basin outlet is designed with a hood to trap floatable materials (i.e. Snout), check to ensure watertight seal is working. At a minimum, remove floating debris and hydrocarbons at the time of the inspection.

Field Inlets:

Inspect field inlets 2 times per year (preferably in Spring and Fall) to ensure that the field inlets are working in their intended fashion and that they are free of debris. Clean structures when sediment depths reach 12" from invert of outlet.

Culverts:

Inspect culverts 2 times per year (preferably in Spring and Fall) to ensure that the culverts are working in their intended fashion and that they are free of debris. Remove any obstructions to flow; remove accumulated sediments and debris at the inlet, at the outlet, and within the conduit and repair any erosion damage at the culvert's inlet and outlet.

Vegetated Areas:

Inspect slopes and embankments early in the growing season to identify active or potential erosion problems. Replant bare areas or areas with sparse growth. Where rill erosion is evident, armor the area with an appropriate lining or divert the erosive flows to on-site areas able to withstand the concentrated flows. The facilities will be inspected after major storms and any identified deficiencies will be corrected.

Roadways and Parking Surfaces: Clear accumulations of winter sand in parking lots and along roadways at least once a year, preferably in the spring. Accumulations on pavement may be removed by pavement sweeping. Accumulations of sand along road shoulders may be removed by grading excess sand to the pavement edge and removing it manually or by a front-end loader. Repair potholes and other roadway obstructions and hazards. Plowing and sanding of paved areas shall be performed as necessary to maintain vehicular traffic safety.

Stormdrain Outlets:

Inspect outlets 2 times per year (preferably in Spring and Fall) to ensure that the outlets are working in their intended fashion and that they are free of debris. Remove any obstructions to flow; remove accumulated sediments and debris at the outlet and within the conduit. Repair any erosion damage at the storm drain outlet.

Gravel Wetlands:

Operation and maintenance requirements similar to those for underdrained filter basins should be expected. The plant biomass should be harvested annually, and accumulated sediment removed at intervals of 5-10 years. These activities may disrupt the wetlands system and may require some vegetation re-establishment. The riser pipes may clog and will require annual clean-out (it should be done in the wintertime when one can walk on the wetland). Inspection frequency should occur after every major storm in the first year following construction. Inspect that the system drains within 24-48 hours. The plants may need watering, if necessary, during the first growing season. Revegetate if the vegetation is poorly establishing. Identify areas of erosion and make timely repairs. Check all inlets, outlets and subdrains for proper functioning. Risers may need to be cleaned. Inspection frequency should occur at least every 6 months and after every major storm. Check the cells for a dense root mat establishment of wetland vegetation. Check and clean the risers if there is evidence of standing water, discolored water or accumulated sediments in the cells. Check and clean the forebay for sediments, trash and debris. When sediments have accumulated to a depth of 12 inches, standing water is persistent or wetland vegetation become established, the forebay will need to be excavated and reformed. Verify that the cells drain within 24-48 hours. Sediment will need to be removed when an accumulation of 4 inches is evident over the wetland surface. Check and clean all outlets and overflow spillway if blocked or there is evidence of structural damage or erosion. Remove decaying vegetation, litter and debris. Check for foreign species. Particular care must be used to avoid the unintended introduction of invasive species such as purple loosestrife (Lythrum salicaria) and common reed (Phragmites australis). It is recommended that a qualified wetland biologist be consulted when these are found in the area of the gravel wetland.

Level Lip Spreaders:

Operation and maintenance requirements similar to those for sediment forebays should be expected. Level Lip Spreaders shall be inspected 2 times per year (preferably in Spring and Fall) to ensure the spreaders are working in their intended fashion, that they are free of debris and vegetative growth, that flow is not bypassing the stone berm, and that no signs of erosion are evident within the sediment forebay or downstream of the spreader. Any woody vegetation growing through riprap linings must be removed. Repair any slumping side slopes as soon as practicable. Sediment build-up shall be removed appropriately when sediment exceeds 25% of the capacity of the sediment forebay.

Soil Filter - Grassed Underdrained Soil Filter:

Inspect all upstream pre-treatment measures 2 times per year (preferably in Spring and Fall) for sediment and floatables accumulation. Remove and dispose of any sediments or debris.

Surface (Underdrain Filter, Swale or Bio-Filter):

The soil filters shall be inspected within the first three months after construction; thereafter the filters shall be inspected 2 times per year (preferably in Spring and Fall) to ensure that the filter is draining within 24 to 48 hours of a rain event equivalent to 1" or more. Adjustments shall be made to the outlet valve, by opening or closing valve, to ensure that the grassed underdrain soil filter drains within 24 to 48 hours. Failure to drain in 72 hours will require part or all of the soil filter media to be removed and replaced with new material meeting the soil filter gradation. The facilities shall be inspected after major storms

and any identified deficiencies shall be corrected. Harvesting and weeding of excessive growth shall be performed as needed. Inspect for unwanted or invasive plants and remove as necessary.

Focal Point Treatment Devices:

A FocalPoint system will be used on site to treat surface runoff from impervious and landscaped area. Inspection of the filter should be performed after each major rainfall event to ensure that stormwater runoff is able to pass through the filters. The vegetation should be inspected and maintained regularly similar to other landscape features on site. The underdrain outlet should be inspected regularly. Inlets and pretreatment devices should be cleared of any debris and sediment. The system should be inspected semi-annually and maintained as instructed by manufacturer. The manufacturer typically commits to the first year of maintenance if their strict guidelines are followed for installation, which is highly encouraged to achieve peak performance. It is recommended that an outside agent who is familiar with the product be retained for future maintenance.

Subsurface Detention Chamber:

Inspect chambers per manufacturer's recommendation. At a minimum inspect chambers 2 times per year (preferably in Spring and Fall) to ensure that the structures are working in their intended fashion and that they are free of debris. Remove sediment from the Isolator Row when depth of sediment reaches 3 inches.

Roofline Drip Edge Facilities:

The drip strip will be inspected within the first three months after construction; thereafter the filter will be inspected 2 times per year (preferably in Spring and Fall) to ensure that the filter is draining within 24 to 48 hours of a rain event equivalent to 1" or more. Adjustments will be made to the outlet valve to ensure that the drip strip drains within 24 to 48 hours. Failure to drain in 72 hours will require part or all of the soil filter media to be removed and replaced with new material meeting the soil filter gradation. The facilities will be inspected after major storms and any identified deficiencies will be corrected. Inspect for unwanted or invasive plants and remove as necessary. Remove debris from the surface. Since the Roofline Drip edge is part of the approved stormwater management plan, it cannot be paved over or altered in any way. Gutters shall not be installed along the roofline.

Inlet/Outlet Control Structures:

Inspect structures and piping 2 times per year (preferably in Spring and Fall) to ensure that the structures are working in their intended fashion and that they are free of debris. Remove any obstructions to flow; remove accumulated sediments and debris within the structure. Ensure drop down weirs are in working order and no flow is improperly bypassing the weirs.

Ditches, Swales, and other Open Stormwater Channels:

Inspect 2 times per year (preferably in Spring and Fall) to ensure they are working in their intended fashion and that they are free of sediment and debris. Remove any obstructions to flow, including accumulated sediments and debris and vegetated growth. Repair any erosion of the ditch lining. Vegetated ditches will be mowed at least annually or otherwise maintained to control the growth of woody vegetation and maintain flow capacity. Any woody vegetation growing through riprap linings must also be removed. Repair any slumping side slopes as soon as practicable. If the ditch has a riprap lining, replace riprap on areas where any underlying filter fabric or underdrain gravel is showing through the stone or where stones have dislodged. Correct any erosion of the channel's bottom or side slopes. The facilities shall be inspected after major storms and any identified deficiencies shall be corrected.

Sediment Forebays:

Inspect sediment forebays 2 times per year (preferably in Spring and Fall) to ensure that the forebays are working in their intended fashion and that they are free of debris. Remove any obstructions to flow; remove accumulated sediments and debris in the forebay. Repair any erosion damage at the forebay outlet.

Recertification

As part of the Stormwater Permit, the applicant is required to meet the standards in Appendix B of the Chapter 500 Rules. Appendix B states that a project must submit a certification of the following to the department within three months of the expiration of each five-year interval from the date of issuance of the permit.

- (a) Identification and repair of erosion problems. All areas of the project site have been inspected for areas of erosion, and appropriate steps have been taken to permanently stabilize these areas.
- (b) Inspection and repair of stormwater control system. All aspects of the stormwater control system have been inspected for damage, wear, and malfunction, and appropriate steps have been taken to repair or replace the system, or portions of the system.
- (c) Maintenance. The erosion and stormwater maintenance plan for the site is being implemented as written, or modifications to the plan have been submitted to and approved by the department, and the maintenance log is being maintained.
- (d) Proprietary Systems. All proprietary systems have been maintained according to the manufacturer's recommendations. Where required by the Department, the permittee shall execute a 5-year maintenance contract with a qualified professional for the coming 5-year interval. The maintenance contract must include provisions for routine inspections, cleaning, and general maintenance.
- (e) Post-construction inspection and maintenance documents shall be retained for at least five (5) years.

Housekeeping

The following procedures are hereby established as a minimum for compliance with this section. For further information on the procedures listed below, refer to MDEP Chapter 500 rules – Appendix C.

Spill prevention. Controls must be used to prevent pollutants from construction and waste materials stored on site to enter stormwater, which includes storage practices to minimize exposure of the materials to stormwater. The site contractor or operator must develop, and implement as necessary, appropriate spill prevention, containment, and response planning measures.

NOTE: Any spill or release of toxic or hazardous substances must be reported to the Department. For oil spills, call 1-800-482-0777 which is available 24 hours a day. For spills of toxic or hazardous material, call 1-800-452-4664 which is available 24 hours a day. For more information, visit the Department's website at :http://www.maine.gov/dep/spills/emergspillresp/

Groundwater protection. During construction, liquid petroleum products and other hazardous materials with the potential to contaminate groundwater may not be stored or handled in areas of the site draining to an infiltration area. An "infiltration area" is any area of the site that by design or as a result of soils, topography and other relevant factors accumulates runoff that infiltrates into the soil. Dikes, berms, sumps, and other forms of secondary containment that prevent discharge to groundwater may be used to isolate portions of the site for the purposes of storage and handling of these materials. Any project proposing infiltration of stormwater must provide adequate pre-treatment of stormwater prior to

discharge of stormwater to the infiltration area, or provide for treatment within the infiltration area, in order to prevent the accumulation of fines, reduction in infiltration rate, and consequent flooding and destabilization. See Appendix D for license by rule standards for infiltration of stormwater.

NOTE: Lack of appropriate pollutant removal best management practices (BMPs) may result in violations of the groundwater quality standard established by 38 M.R.S.A. §465-C(1).

Fugitive sediment and dust. Actions must be taken to ensure that activities do not result in noticeable erosion of soils or fugitive dust emissions during or after construction. Oil may not be used for dust control, but other water additives may be considered as needed. A stabilized construction entrance (SCE) should be included to minimize tracking of mud and sediment. If off-site tracking occurs, public roads should be swept immediately and no less than once a week and prior to significant storm events. Operations during dry months, that experience fugitive dust problems, should wet down unpaved access roads once a week or more frequently as needed with a water additive to suppress fugitive sediment and dust.

NOTE: Dewatering a stream without a permit from the Department may violate state water quality standards and the Natural Resources Protection Act.

Debris and other materials. Minimize the exposure of construction debris, building and landscaping materials, trash, fertilizers, pesticides, herbicides, detergents, sanitary waste and other materials to precipitation and stormwater runoff. These materials must be prevented from becoming a pollutant source.

NOTE: To prevent these materials from becoming a source of pollutants, construction and postconstruction activities related to a project may be required to comply with applicable provision of rules related to solid, universal, and hazardous waste, including, but not limited to, the Maine solid waste and hazardous waste management rules; Maine hazardous waste management rules; Maine oil conveyance and storage rules; and Maine pesticide requirements.

Excavation de-watering. Excavation de-watering is the removal of water from trenches, foundations, coffer dams, ponds, and other areas within the construction area that retain water after excavation. In most cases the collected water is heavily silted and hinders correct and safe construction practices. The collected water removed from the ponded area, either through gravity or pumping, must be spread through natural wooded buffers or removed to areas that are specifically designed to collect the maximum amount of sediment possible, like a cofferdam sedimentation basin. Avoid allowing the water to flow over disturbed areas of the site. Equivalent measures may be taken if approved by the Department.

NOTE: Dewatering controls are discussed in the "Maine Erosion and Sediment Control BMPs, Maine Department of Environmental Protection."

Authorized Non-stormwater discharges. Identify and prevent contamination by non-stormwater discharges. Where allowed non-stormwater discharges exist, they must be identified, and steps should be taken to ensure the implementation of appropriate pollution prevention measures for the non-stormwater component(s) of the discharge. Authorized non-stormwater discharges are:

- a) Discharges from firefighting activity;
- b) Fire hydrant flushings;
- c) Vehicle wash water if detergents are not used and washing is limited to the exterior of vehicles (engine, undercarriage and transmission washing is prohibited);
- d) Dust control runoff in accordance with permit conditions and Appendix (C)(3);

- e) Routine external building washdown, not including surface paint removal, that does not involve detergents;
- f) Pavement wash water (where spills/leaks of toxic or hazardous materials have not occurred, unless all spilled material had been removed) if detergents are not used;
- g) Uncontaminated air conditioning or compressor condensate;
- h) Uncontaminated groundwater or spring water;
- i) Foundation or footer drain-water where flows are not contaminated;
- j) Uncontaminated excavation dewatering (see requirements in Appendix C(5));
- k) Potable water sources including waterline flushings; and
- I) Landscape irrigation.

Unauthorized non-stormwater discharges. The Department's approval under this Chapter does not authorize a discharge that is mixed with a source of non-stormwater, other than those discharges in compliance with Appendix C (6). Specifically, the Department's approval does not authorize discharges of the following:

- a) Wastewater from the washout or cleanout of concrete, stucco, paint, form release oils, curing compounds or other construction materials;
- b) Fuels, oils or other pollutants used in vehicle and equipment operation and maintenance;
- c) Soaps, solvents, or detergents used in vehicle and equipment washing; and
- d) Toxic or hazardous substances from a spill or other release.

Attachments

 I - Annual Stormwater Management Facilities Certification (Stormwater Management Plan for City of Saco, ME - Form 2) and Inspection and Maintenance Log (Provided in Attachment C for Section 14)

ATTACHMENT I

ANNUAL STORMWATER MANAGEMENT FACILITIES CERTIFICATION

FORM 2

Annual Stormwater Management Facilities Certification

(to be completed by a Qualified Post-Construction Stormwater Inspector and sent to City of Saco Public Works Department)

I, ______ (print or type name), a Qualified Post-Construction Stormwater Inspector, certify the following:

 1. I am making this Annual Stormwater Management Facilities Certification for the following property:

 property:
 (print or type name of subdivision, condominium or other development) located at (print or type address), (the "Property");

3. I have knowledge of erosion and stormwater control and have reviewed the approved Post-Construction Stormwater Management Plan for the Property;

4. On _____, 20__, I inspected the Stormwater Management Facilities, including but not limited to parking areas, catch basins, drainage swales, detention basins and ponds, pipes and related structures required by the approved Post-Construction Stormwater Management Plan for the Property;

5. At the time of my inspection of the Stormwater Management Facilities on the Property, I identified the following need(s) for routine maintenance or deficiencies in the Stormwater Management Facilities:

6. On _____, 20__, I took the following routine maintenance or the following corrective action(s) to address the deficiencies in the Stormwater Management Facilities stated in 5. above:

7. As of the date of this certification, the Stormwater Management Facilities are functioning as intended by the approved Post-Construction Stormwater Management Plan for the Property.

Date:_____, 20_. By:_____

Signature

STATE OF MAINE, ss.		, 20
Personally appeared the of		, the, and acknowledged the foregoing leed in said capacity.
Annual Certification to be said p	erson's free act and d	eed in said capacity.
	Before me, _	Notary Public/Attorney at Law
	Print Name: _	
sign below verifying the inform Stormwater Inspector.	nation above was co	arty having control over the Property shall mpleted by a Qualified Post-Construction
Date:	, 20 By:	Signature
		Signature
		Print Name
STATE OF MAINE, ss		, 20
Personally appeared the of		, the, and acknowledged the foregoing leed in said capacity.
Annual Certification to be said p	erson's free act and d	leed in said capacity.
	Before me, _	
	Print Name: _	Notary Public/Attorney at Law
Mail or hand deliver this	certification to the Ca City of Saco c/o City 300 Main Stra Saco, ME 040	eet

Print Name

ATTACHMENT C

INSPECTION LOG

Lincoln Village Maintenance Log				
Date:				
Structure	Condition	Depth of Sediment	Inspection Comments	Maintenance Required
CB I CB 2				
CB 2 CB 3				
CB 4				
CB 5				
CB 6				
CB 7				
CB 8				
CB 9				
CB 10				
CB II				_
CB 12 CB 13				
CB 13 CB 14				
CB 15				
CB 16				
CB 17		1		
CB 18				
CB 19				
CB 20				
CB 21				
CB 22				
CB 23				_
CB 24 CB 25				
CB 25				
CB 26 CB 27				
CB 28				
CB 29				
CB 30				
CB 31				
CB 32				
CB 33				
CB 34				
CB 35				
CB 36				
CB 37 CB 38				
CB 39				
CB 40				
CB 4I				
CB 42				
CB 43				
CB 44				
CB 45				
CB 46				
CB 47		-		
CB 48 CB 49				
CB 49 CB 50		+		
CB 50				+
CB 52				
CB 53		1		
CB 54				
CB 55				
CB 56				
CB 57				
CB 58				
CB 59				
CB 60		-		
CB 61				
CB 62 CB 63		+		
CB 63 CB 64		+		
CB 65		+		
CB 66		+	1	

CD (7	1 1		1
CB 67			
CB 68			
CB 69 CB 70			
CB 70	+		
CB 72	+		
CB 73			
CB 74			
DMH I	+		
DMH 2	+		
DMH 3			
DMH 4			
DMH 5			
DMH 6			
DMH 7			
DMH 8			
DMH 9			
2' x 3' Culvert @ STA 11+74			
2' x 3' Culvert @ STA 12 +14			
2' x 3' Culvert @ STA 17+59			
2' x 3' Culvert @ STA 18+09			
2' x 3' Culvert @ STA 18+53	+ +		
2' x 3' Culvert @ STA 18+98	+ +		
2' x 3' Culvert @ STA 20+35	+ +		
2' x 3' Culvert @ STA 22+39	++		
2' x 3' Culvert @ STA 25+50	+ +		
2' x 3' Culvert @ STA 26+00	++		
3' x 2' Culvert near Building #27	+		
3' x 2' Culvert near Building #29			
3' x 2' Culvert near Building #36			
3' x 6' Culvert @ STA 22+66			
Plunge Pool at GW 2			
Gravel Wetland I	Condition	Inspection Comments	Maintenance Required
Berm Slopes			
Vegetation			
Sediment Forebay			
Gravel Trench			
Storm Drain Outlet			
Overflow Spillway			
Embankment Stablization			
OCS I			
OCS 2			
Gravel Wetland 2	Condition	Inspection Comments	Maintenance Required
Berm Slopes			
Vegetation			
Sediment Forebay			
Gravel Trench	-		
Storm Drain Outlet			
Overflow Spillway			
Overflow Spillway Embankment Stablization			
Overflow Spillway Embankment Stablization OCS 3			
Overflow Spillway Embankment Stablization OCS 3 OCS 4			
Overflow Spillway Embankment Stablization OCS 3 OCS 4 Level Lip Spreader from OCS 1	Condition	Inspection Comments	Maintenance Required
Overflow Spillway Embankment Stablization OCS 3 OCS 4 Level Lip Spreader from OCS 1 Berm Slopes	Condition	Inspection Comments	Maintenance Required
Overflow Spillway Embankment Stablization OCS 3 OCS 4 Level Lip Spreader from OCS 1 Berm Slopes Sedimet Forebay	Condition	Inspection Comments	Maintenance Required
Overflow Spillway Embankment Stablization OCS 3 OCS 4 Level Lip Spreader from OCS 1 Berm Slopes Sedimet Forebay Level Lip Spreader Inlet	Condition	Inspection Comments	Maintenance Required
Overflow Spillway Embankment Stablization OCS 3 OCS 4 Level Lip Spreader from OCS 1 Berm Slopes Sedimet Forebay Level Lip Spreader Inlet Overflow Spillway			
Overflow Spillway Embankment Stablization OCS 3 OCS 4 Level Lip Spreader from OCS 1 Berm Slopes Sedimet Forebay Level Lip Spreader Inlet Overflow Spillway Level Lip Spreader from OCS 2	Condition	Inspection Comments Inspection Comments	Maintenance Required
Overflow Spillway Embankment Stablization OCS 3 OCS 4 Level Lip Spreader from OCS 1 Berm Slopes Sedimet Forebay Level Lip Spreader Inlet Overflow Spillway Level Lip Spreader from OCS 2 Berm Slopes			
Overflow Spillway Embankment Stablization OCS 3 OCS 4 Level Lip Spreader from OCS 1 Berm Slopes Sedimet Forebay Level Lip Spreader Inlet Overflow Spillway Level Lip Spreader from OCS 2 Berm Slopes Sedimet Forebay			
Overflow Spillway Embankment Stablization OCS 3 OCS 4 Level Lip Spreader from OCS 1 Berm Slopes Sedimet Forebay Level Lip Spreader Inlet Overflow Spillway Level Lip Spreader from OCS 2 Berm Slopes Sedimet Forebay Level Lip Spreader Inlet			
Overflow Spillway Embankment Stablization OCS 3 OCS 4 Level Lip Spreader from OCS I Berm Slopes Sedimet Forebay Level Lip Spreader Inlet Overflow Spillway Level Lip Spreader from OCS 2 Berm Slopes Sedimet Forebay Level Lip Spreader Inlet Overflow Spillway Level Lip Spreader Inlet Sedimet Forebay Level Lip Spreader Inlet Overflow Spillway	Condition	Inspection Comments	Maintenance Required
Overflow Spillway Embankment Stablization OCS 3 OCS 4 Level Lip Spreader from OCS 1 Berm Slopes Sedimet Forebay Level Lip Spreader Inlet Overflow Spillway Level Lip Spreader from OCS 2 Berm Slopes Sedimet Forebay Level Lip Spreader Inlet Overflow Spillway Level Lip Spreader from OCS 3			
Overflow Spillway Embankment Stablization OCS 3 OCS 4 Level Lip Spreader from OCS 1 Berm Slopes Sedimet Forebay Level Lip Spreader Inlet Overflow Spillway Level Lip Spreader from OCS 2 Berm Slopes Sedimet Forebay Level Lip Spreader Inlet Overflow Spillway Level Lip Spreader Inlet Overflow Spillway Level Lip Spreader from OCS 3 Berm Slopes	Condition	Inspection Comments	Maintenance Required
Overflow Spillway Embankment Stablization OCS 3 OCS 4 Level Lip Spreader from OCS 1 Berm Slopes Sedimet Forebay Level Lip Spreader Inlet Overflow Spillway Level Lip Spreader from OCS 2 Berm Slopes Sedimet Forebay Level Lip Spreader Inlet Overflow Spillway Level Lip Spreader from OCS 3 Berm Slopes Sedimet Forebay	Condition	Inspection Comments	Maintenance Required
Overflow Spillway Embankment Stablization OCS 3 OCS 4 Level Lip Spreader from OCS 1 Berm Slopes Sedimet Forebay Level Lip Spreader Inlet Overflow Spillway Level Lip Spreader from OCS 2 Berm Slopes Sedimet Forebay Level Lip Spreader Inlet Overflow Spillway Level Lip Spreader from OCS 3 Berm Slopes Sedimet Forebay Level Lip Spreader Inlet	Condition	Inspection Comments	Maintenance Required
Overflow Spillway Embankment Stablization OCS 3 OCS 4 Level Lip Spreader from OCS 1 Berm Slopes Sedimet Forebay Level Lip Spreader Inlet Overflow Spillway Level Lip Spreader from OCS 2 Berm Slopes Sedimet Forebay Level Lip Spreader Inlet Overflow Spillway Level Lip Spreader from OCS 3 Berm Slopes Sedimet Forebay Level Lip Spreader Inlet Overflow Spillway	Condition Condition Condition Condition	Inspection Comments Inspection Comments	Maintenance Required Maintenance Required Maintenance Required
Overflow Spillway Embankment Stablization OCS 3 OCS 4 Level Lip Spreader from OCS 1 Berm Slopes Sedimet Forebay Level Lip Spreader Inlet Overflow Spillway Level Lip Spreader from OCS 2 Berm Slopes Sedimet Forebay Level Lip Spreader Inlet Overflow Spillway Level Lip Spreader Inlet Overflow Spillway Level Lip Spreader from OCS 3 Berm Slopes Sedimet Forebay Level Lip Spreader Inlet Overflow Spillway Level Lip Spreader Inlet Overflow Spillway	Condition	Inspection Comments	Maintenance Required
Overflow Spillway Embankment Stablization OCS 3 OCS 4 Level Lip Spreader from OCS 1 Berm Slopes Sedimet Forebay Level Lip Spreader Inlet Overflow Spillway Level Lip Spreader from OCS 2 Berm Slopes Sedimet Forebay Level Lip Spreader Inlet Overflow Spillway Level Lip Spreader Inlet Overflow Spillway Level Lip Spreader from OCS 3 Berm Slopes Sedimet Forebay Level Lip Spreader Inlet Overflow Spillway	Condition Condition Condition Condition	Inspection Comments Inspection Comments	Maintenance Required Maintenance Required Maintenance Required
Overflow Spillway Embankment Stablization OCS 3 OCS 4 Level Lip Spreader from OCS 1 Berm Slopes Sedimet Forebay Level Lip Spreader Inlet Overflow Spillway Level Lip Spreader from OCS 2 Berm Slopes Sedimet Forebay Level Lip Spreader Inlet Overflow Spillway Level Lip Spreader Inlet Overflow Spillway Level Lip Spreader Inlet Overflow Spillway Level Lip Spreader from OCS 3 Berm Slopes Sedimet Forebay Level Lip Spreader Inlet Overflow Spillway Level Lip Spreader Inlet Overflow Spillway Grassed Underdrained Soil Filter 1 OCS5 Berm Slopes	Condition Condition Condition Condition	Inspection Comments Inspection Comments	Maintenance Required Maintenance Required Maintenance Required
Overflow Spillway Embankment Stablization OCS 3 OCS 4 Level Lip Spreader from OCS 1 Berm Slopes Sedimet Forebay Level Lip Spreader Inlet Overflow Spillway Level Lip Spreader from OCS 2 Berm Slopes Sedimet Forebay Level Lip Spreader Inlet Overflow Spillway Level Lip Spreader Inlet Overflow Spillway Level Lip Spreader from OCS 3 Berm Slopes Sedimet Forebay Level Lip Spreader Inlet Overflow Spillway	Condition Condition Condition Condition	Inspection Comments Inspection Comments	Maintenance Required Maintenance Required Maintenance Required

Pond Inlet			
Storm Drain Outlet			
Overflow Spillway			
	Canditian	lana stina Commente	Maintanana Daminad
Grassed Underdrained Soil Filter 2 OCS6	Condition	Inspection Comments	Maintenance Required
Berm Slopes			
Vegetation			
Sediment Forebay			
Pond Inlet			
Storm Drain Outlet			
Overflow Spillway			
Grassed Underdrained Soil Filter 3	Condition	Inspection Comments	Maintenance Required
OCS7			
Berm Slopes			
Vegetation			
Sediment Forebay			
Pond Inlet			
Storm Drain Outlet			
Overflow Spillway			
Grassed Underdrained Soil Filter 4	Condition	Inspection Comments	Maintenance Required
OCS8			
Berm Slopes			
Vegetation			
Sediment Forebay			
Pond Inlet			
Storm Drain Outlet			
Overflow Spillway			
Grassed Underdrained Soil Filter 5	Condition	Inspection Comments	Maintenance Required
OCS9			
Berm Slopes			
Vegetation			
Sediment Forebay			
Pond Inlet			
Storm Drain Outlet			
Overflow Spillway			
Grassed Underdrained Soil Filter 6	Condition	Inspection Comments	Maintenance Required
OCS10		·	· · · ·
Berm Slopes			
Vegetation			
Sediment Forebay			
Pond Inlet			
Storm Drain Outlet			
Overflow Spillway			
Grassed Underdrained Soil Filter 7	Condition	Inspection Comments	Maintenance Required
Berm Slopes		•	
Vegetation			
Sediment Forebay	1 1		
Pond Inlet	1 1		
Storm Drain Outlet	1 1		
Overflow Spillway	1 1		
Grassed Underdrained Soil Filter 8	Condition	Inspection Comments	Maintenance Required
OCSII			
Berm Slopes	<u> </u>		
Vegetation	1 1		
Sediment Forebay	+		
Pond Inlet	<u> </u>		
Storm Drain Outlet	+ +		
Overflow Spillway	+ +		
Grassed Underdrained Soil Filter 9	Condition	Inspection Comments	Maintenance Required
OCS12	Condition	inspection comments	i lancenance Required
Berm Slopes	┨────┤		
	┨────┤		
Vegetation Sodiment Forebox	+		
Sediment Forebay	┥───┤		
Pond Inlet	┨─────┤		
Storm Drain Outlet	┥───┤		
Overflow Spillway			
FocalPoint I	Condition	Inspection Comments	Maintenance Required
Berm Slopes			
Plantings			
Sediment			<u> </u>
Rip Rap Apron			

Mulch Bedding			
Beehive Overflow			
Access Structures	-		
Rain Guardian			
Cultec 330XL Chambers			
FocalPoint 2	Condition	Increation Comments	Maintenance Required
	Condition	Inspection Comments	Maintenance Required
Berm Slopes			
Plantings			
Sediment			
Rip Rap Apron			
Mulch Bedding	_		
Beehive Overflow			
Access Structures			
Rain Guardian			
FocalPoint 3	Condition	Inspection Comments	Maintenance Required
Berm Slopes			
Plantings			
Sediment			
Rip Rap Apron			
Mulch Bedding			
Beehive Overflow			
Access Structures			
Rain Guardian			
FocalPoint 4	Condition	Inspection Comments	Maintenance Required
Berm Slopes			
Plantings			
Plantings			
Plantings Sediment			
Plantings Sediment Rip Rap Apron			
Plantings Sediment Rip Rap Apron Mulch Bedding			
Plantings Sediment Rip Rap Apron Mulch Bedding Beehive Overflow			
Plantings Sediment Rip Rap Apron Mulch Bedding Beehive Overflow Access Structures			
Plantings Sediment Rip Rap Apron Mulch Bedding Beehive Overflow Access Structures Rain Guardian	Condition	Inspection Comments	Maintenance Required
Plantings Sediment Rip Rap Apron Mulch Bedding Beehive Overflow Access Structures Rain Guardian Cultec 330XL Chambers	Condition	Inspection Comments	Maintenance Required
Plantings Sediment Rip Rap Apron Mulch Bedding Beehive Overflow Access Structures Rain Guardian Cultec 330XL Chambers Roof Dripline Filter Duplex Unit 1	Condition	Inspection Comments	Maintenance Required
Plantings Sediment Rip Rap Apron Mulch Bedding Beehive Overflow Access Structures Rain Guardian Cultec 330XL Chambers Roof Dripline Filter Duplex Unit 1 Duplex Unit 2	Condition	Inspection Comments	Maintenance Required
Plantings Sediment Rip Rap Apron Mulch Bedding Beehive Overflow Access Structures Rain Guardian Cultec 330XL Chambers Roof Dripline Filter Duplex Unit 1 Duplex Unit 2 Single Family Lot 1	Condition	Inspection Comments	Maintenance Required
Plantings Sediment Rip Rap Apron Mulch Bedding Beehive Overflow Access Structures Rain Guardian Cultec 330XL Chambers Roof Dripline Filter Duplex Unit 1 Duplex Unit 2 Single Family Lot 1 Single Family Lot 2	Condition	Inspection Comments	Maintenance Required
Plantings Sediment Rip Rap Apron Mulch Bedding Beehive Overflow Access Structures Rain Guardian Cultec 330XL Chambers Roof Dripline Filter Duplex Unit 1 Duplex Unit 2 Single Family Lot 1 Single Family Lot 2 Single Family Lot 3	Condition	Inspection Comments	Maintenance Required
Plantings Sediment Rip Rap Apron Mulch Bedding Beehive Overflow Access Structures Rain Guardian Cultec 330XL Chambers Roof Dripline Filter Duplex Unit 1 Duplex Unit 2 Single Family Lot 1 Single Family Lot 2 Single Family Lot 3 Single Family Lot 4	Condition	Inspection Comments	Maintenance Required
Plantings Sediment Rip Rap Apron Mulch Bedding Beehive Overflow Access Structures Rain Guardian Cultec 330XL Chambers Roof Dripline Filter Duplex Unit 1 Duplex Unit 2 Single Family Lot 1 Single Family Lot 2 Single Family Lot 3 Single Family Lot 4 Single Family Lot 5	Condition	Inspection Comments	Maintenance Required
Plantings Sediment Rip Rap Apron Mulch Bedding Beehive Overflow Access Structures Rain Guardian Cultec 330XL Chambers Roof Dripline Filter Duplex Unit I Duplex Unit 2 Single Family Lot 1 Single Family Lot 3 Single Family Lot 4 Single Family Lot 5 Single Family Lot 6	Condition	Inspection Comments	Maintenance Required
Plantings Sediment Rip Rap Apron Mulch Bedding Beehive Overflow Access Structures Rain Guardian Cultec 330XL Chambers Roof Dripline Filter Duplex Unit 1 Duplex Unit 2 Single Family Lot 1 Single Family Lot 2 Single Family Lot 3 Single Family Lot 4 Single Family Lot 5	Condition	Inspection Comments	Maintenance Required

ATTACHMENT D

STORMWATER FACILITY INSPECTION & MAINTENANCE FORMS

<u>Project:</u> Lincoln Village <u>Client:</u> 321 Lincoln Street Development, LLC <u>Field Rep:</u> <u>Time on-site:</u>

Visit Date: Report Date: Weather: Temperature Range:

Distribution:

GRAVEL WETLAND | CHECKLIST:

Yes	<u>No</u>		<u>Comments:</u>
		Inlets and Outlets	
		Inlets and Outlets are clear of debris/obstructions.	
		No signs of erosion in rip rap outlet aprons.	
		Rip rap outlet aprons are clear of woody and/or vegetative growth.	
		Wetland Bottom	
		Dense root mat established	
		Channel protection volume empties within 24-48 hours after storm.	
		Risers are clean and no accumulated sediment in the cells	
		Decaying vegetation has been removed and foreign species are not present	
		Foreign species are not present	
		Sediment Forebay	
		Forebay is free of vegetative or woody growth.	
		Rip rap slopes appear to stable with no signs of erosion.	
		Sediment forebay is not being used for snow storage.	
		Embankments/Gravel Wetland Cells	
		Embankments appear to be stable with no signs of erosion.	
		Embankments are free of woody growth on side slopes.	
		Grass cover is greater than 90%.	
		Gravel Wetland Cells are clear of trash debris.	
		Gravel Wetland Cells are not being used for snow storage.	
		Outlet Control Structure 1 & 2	
		Sump is clear of sediment accumulation.	
		Inlet and outlets within structure are clear of debris/obstructions.	
		Trash rack is clear of debris/obstructions.	

GRAVEL WETLAND 2 CHECKLIST:

<u>Yes</u>	<u>No</u>		Comments:
		Inlets and Outlets	
		Inlets and Outlets are clear of debris/obstructions.	
		No signs of erosion in rip rap outlet aprons.	
		Rip rap outlet aprons are clear of woody and/or vegetative growth.	
		Wetland Bottom	
		Dense root mat established	
		Channel protection volume empties within 24-48 hours after storm.	
		Risers are clean and no accumulated sediment in the cells	
		Decaying vegetation has been removed and foreign species are not present	
		Foreign species are not present	
		Sediment Forebay	
		Forebay is free of vegetative or woody growth.	
		Rip rap slopes appear to stable with no signs of erosion.	
		Sediment forebay is not being used for snow storage.	
		Embankments/Gravel Wetland Cells	
		Embankments appear to be stable with no signs of erosion.	
		Embankments are free of woody growth on side slopes.	
		Grass cover is greater than 90%.	
		Gravel Wetland Cells are clear of trash debris.	
		Gravel Wetland Cells are not being used for snow storage.	
		Outlet Control Structure 3 & 4	
		Sump is clear of sediment accumulation.	
		Inlet and outlets within structure are clear of debris/obstructions.	
		Trash rack is clear of debris/obstructions.	

LEVEL LIP SPREADER FROM OCS | CHECKLIST:

Yes	No		Comments:
	r	Inlet	
		Inlets is clear of debris/obstructions.	
		No signs of erosion in rip rap aprons.	
		Rip rap aprons are clear of woody and/or vegetative growth.	
		Sediment Forebay	
		Forebay is free of vegetative or woody growth.	
		Forebay is free of debris such as leaf litter, branches, or trash debris.	
		Sediment build-up within the forebay is less than 25% of design volume or channel capacity.	
		Rip rap slopes appear to stable with no signs of erosion.	
		Sediment forebay is not being used for snow storage.	
		Embankments/Soil Filter Surface	
		Embankments appear to be stable with no signs of erosion.	
		Embankments are free of woody growth on side slopes.	

Other Comments:

LEVEL LIP SPREADER FROM OCS 2 CHECKLIST:

Yes	No		Comments:
		Inlet	
		Inlets is clear of debris/obstructions.	
		No signs of erosion in rip rap aprons.	
		Rip rap aprons are clear of woody and/or vegetative growth.	
		Sediment Forebay	
		Forebay is free of vegetative or woody growth.	
		Forebay is free of debris such as leaf litter, branches, or trash debris.	
		Sediment build-up within the forebay is less than 25% of design volume or channel capacity.	
		Rip rap slopes appear to stable with no signs of erosion.	

	Sediment forebay is not being used for snow	
	storage.	
	Embankments/Soil Filter Surface	
	Embankments appear to be stable with no signs of	
	erosion.	
	Embankments are free of woody growth on side	
	slopes.	

Other Comments:

LEVEL LIP SPREADER FROM OCS 3 CHECKLIST:

Yes	No		Comments:
	-	Inlet	
		Inlets is clear of debris/obstructions.	
		No signs of erosion in rip rap aprons.	
		Rip rap aprons are clear of woody and/or vegetative growth.	
		Sediment Forebay	
		Forebay is free of vegetative or woody growth.	
		Forebay is free of debris such as leaf litter, branches, or trash debris.	
		Sediment build-up within the forebay is less than 25% of design volume or channel capacity.	
		Rip rap slopes appear to stable with no signs of erosion.	
		Sediment forebay is not being used for snow storage.	
		Embankments/Soil Filter Surface	
		Embankments appear to be stable with no signs of erosion.	
		Embankments are free of woody growth on side slopes.	

GRASSED UNDERDRAINED SOIL FILTER | CHECKLIST:

Yes	No		Comments:
		Inlets and Outlets	
		Inlets and Outlets are clear of debris/obstructions.	
		No signs of erosion in rip rap outlet aprons.	
		Rip rap outlet aprons are clear of woody and/or vegetative growth.	
		Sediment Forebay	
		Forebay is free of vegetative or woody growth.	
		Rip rap slopes appear to stable with no signs of erosion.	
		Sediment forebay is not being used for snow storage.	
		Embankments/Soil Filter Surface	
		Embankments appear to be stable with no signs of erosion.	
		Embankments are free of woody growth on side slopes.	
		Grass cover is greater than 90%.	
		Soil Filter is free of invasive/unwanted plants.	
		Soil Filter surface is clear of trash debris.	
		Soil Filter is not being used for snow storage.	
	1	Outlet Control Structure 5	
		Sump is clear of sediment accumulation.	
		Inlet and outlets within structure are clear of debris/obstructions.	
		Trash rack is clear of debris/obstructions.	
		Outlet control valve set to allow filter to completely drain in 24 to 48 hours after 1" or greater storm.	

GRASSED UNDERDRAINED SOIL FILTER 2 CHECKLIST:

Yes	No		Comments:
		Inlets and Outlets	
		Inlets and Outlets are clear of debris/obstructions.	
		No signs of erosion in rip rap outlet aprons.	
		Rip rap outlet aprons are clear of woody and/or vegetative growth.	
		Sediment Forebay	
		Forebay is free of vegetative or woody growth.	
		Rip rap slopes appear to stable with no signs of erosion.	
		Sediment forebay is not being used for snow storage.	
		Embankments/Soil Filter Surface	
		Embankments appear to be stable with no signs of erosion.	
		Embankments are free of woody growth on side slopes.	
		Grass cover is greater than 90%.	
		Soil Filter Surface is free of invasive/unwanted plants.	
		Soil Filter Surface is clear of trash debris.	
		Soil Filter is not being used for snow storage.	
	1	Outlet Control Structure 6	
		Sump is clear of sediment accumulation.	
		Inlet and outlets within structure are clear of debris/obstructions.	
		Trash rack is clear of debris/obstructions.	
		Outlet control valve set to allow filter to completely drain in 24 to 48 hours after 1" or greater storm.	

GRASSED UNDERDRAINED SOIL FILTER 3 CHECKLIST:

Yes	No		Comments:
		Inlets and Outlets	
		Inlets and Outlets are clear of debris/obstructions.	
		No signs of erosion in rip rap outlet aprons.	
		Rip rap outlet aprons are clear of woody and/or vegetative growth.	
		Sediment Forebay	
		Forebay is free of vegetative or woody growth.	
		Rip rap slopes appear to stable with no signs of erosion.	
		Sediment forebay is not being used for snow storage.	
		Embankments/Soil Filter Surface	
		Embankments appear to be stable with no signs of erosion.	
		Embankments are free of woody growth on side slopes.	
		Grass cover is greater than 90%.	
		Soil Filter Surface is free of invasive/unwanted plants.	
		Soil Filter Surface is clear of trash debris.	
		Soil Filter is not being used for snow storage.	
	1	Outlet Control Structure 7	
		Sump is clear of sediment accumulation.	
		Inlet and outlets within structure are clear of debris/obstructions.	
		Trash rack is clear of debris/obstructions.	
		Outlet control valve set to allow filter to completely drain in 24 to 48 hours after 1" or greater storm.	

GRASSED UNDERDRAINED SOIL FILTER 4 CHECKLIST:

Yes	No		Comments:
	1	Inlets and Outlets	
		Inlets and Outlets are clear of debris/obstructions.	
		No signs of erosion in rip rap outlet aprons.	
		Rip rap outlet aprons are clear of woody and/or vegetative growth.	
		Sediment Forebay	
		Forebay is free of vegetative or woody growth.	
		Rip rap slopes appear to stable with no signs of erosion.	
		Sediment forebay is not being used for snow storage.	
		Embankments/Soil Filter Surface	
		Embankments appear to be stable with no signs of erosion.	
		Embankments are free of woody growth on side slopes.	
		Grass cover is greater than 90%.	
		Soil Filter Surface is free of invasive/unwanted plants.	
		Soil Filter Surface is clear of trash debris.	
		Soil Filter is not being used for snow storage.	
	1	Outlet Control Structure 8	
		Sump is clear of sediment accumulation.	
		Inlet and outlets within structure are clear of debris/obstructions.	
		Trash rack is clear of debris/obstructions.	
		Outlet control valve set to allow filter to completely drain in 24 to 48 hours after 1" or greater storm.	

GRASSED UNDERDRAINED SOIL FILTER 5 CHECKLIST:

Yes	No		Comments:
	ī	Inlets and Outlets	
		Inlets and Outlets are clear of debris/obstructions.	
		No signs of erosion in rip rap outlet aprons.	
		Rip rap outlet aprons are clear of woody and/or vegetative growth.	
		Sediment Forebay	
		Forebay is free of vegetative or woody growth.	
		Rip rap slopes appear to stable with no signs of erosion.	
		Sediment forebay is not being used for snow storage.	
	•	Embankments/Soil Filter Surface	
		Embankments appear to be stable with no signs of erosion.	
		Embankments are free of woody growth on side slopes.	
		Grass cover is greater than 90%.	
		Soil Filter Surface is free of invasive/unwanted plants.	
		Soil Filter Surface is clear of trash debris.	
		Soil Filter is not being used for snow storage.	
	1	Outlet Control Structure 9	
		Sump is clear of sediment accumulation.	
		Inlet and outlets within structure are clear of debris/obstructions.	
		Trash rack is clear of debris/obstructions.	
		Outlet control valve set to allow filter to completely drain in 24 to 48 hours after 1" or greater storm.	

GRASSED UNDERDRAINED SOIL FILTER 6 CHECKLIST:

Yes	No		Comments:
		Inlets and Outlets	
		Inlets and Outlets are clear of debris/obstructions.	
		No signs of erosion in rip rap outlet aprons.	
		Rip rap outlet aprons are clear of woody and/or vegetative growth.	
		Sediment Forebay	
		Forebay is free of vegetative or woody growth.	
		Rip rap slopes appear to stable with no signs of erosion.	
		Sediment forebay is not being used for snow storage.	
		Embankments/Soil Filter Surface	
		Embankments appear to be stable with no signs of erosion.	
		Embankments are free of woody growth on side slopes.	
		Grass cover is greater than 90%.	
		Soil Filter Surface is free of invasive/unwanted plants.	
		Soil Filter Surface is clear of trash debris.	
		Soil Filter is not being used for snow storage.	
	1	Outlet Control Structure 10	
		Sump is clear of sediment accumulation.	
		Inlet and outlets within structure are clear of debris/obstructions.	
		Trash rack is clear of debris/obstructions.	
		Outlet control valve set to allow filter to completely drain in 24 to 48 hours after 1" or greater storm.	

GRASSED UNDERDRAINED SOIL FILTER 7 CHECKLIST:

Yes	No		Comments:
	ī	Inlets and Outlets	
		Inlets and Outlets are clear of debris/obstructions.	
		No signs of erosion in rip rap outlet aprons.	
		Rip rap outlet aprons are clear of woody and/or vegetative growth.	
		Sediment Forebay	
		Forebay is free of vegetative or woody growth.	
		Rip rap slopes appear to stable with no signs of erosion.	
		Sediment forebay is not being used for snow storage.	
	•	Embankments/Soil Filter Surface	
		Embankments appear to be stable with no signs of erosion.	
		Embankments are free of woody growth on side slopes.	
		Grass cover is greater than 90%.	
		Soil Filter Surface is free of invasive/unwanted plants.	
		Soil Filter Surface is clear of trash debris.	
		Soil Filter is not being used for snow storage.	
	1	Outlet Control Structure 10	
		Sump is clear of sediment accumulation.	
		Inlet and outlets within structure are clear of debris/obstructions.	
		Trash rack is clear of debris/obstructions.	
		Outlet control valve set to allow filter to completely drain in 24 to 48 hours after 1" or greater storm.	

GRASSED UNDERDRAINED SOIL FILTER 8 CHECKLIST:

Yes	No		Comments:
	1	Inlets and Outlets	
		Inlets and Outlets are clear of debris/obstructions.	
		No signs of erosion in rip rap outlet aprons.	
		Rip rap outlet aprons are clear of woody and/or vegetative growth.	
		Sediment Forebay	
		Forebay is free of vegetative or woody growth.	
		Rip rap slopes appear to stable with no signs of erosion.	
		Sediment forebay is not being used for snow storage.	
		Embankments/Soil Filter Surface	
		Embankments appear to be stable with no signs of erosion.	
		Embankments are free of woody growth on side slopes.	
		Grass cover is greater than 90%.	
		Soil Filter Surface is free of invasive/unwanted plants.	
		Soil Filter Surface is clear of trash debris.	
		Soil Filter is not being used for snow storage.	
	1	Outlet Control Structure 11	
		Sump is clear of sediment accumulation.	
		Inlet and outlets within structure are clear of debris/obstructions.	
		Trash rack is clear of debris/obstructions.	
		Outlet control valve set to allow filter to completely drain in 24 to 48 hours after 1" or greater storm.	

GRASSED UNDERDRAINED SOIL FILTER 9 CHECKLIST:

Yes	No		Comments:
	1	Inlets and Outlets	
		Inlets and Outlets are clear of debris/obstructions.	
		No signs of erosion in rip rap outlet aprons.	
		Rip rap outlet aprons are clear of woody and/or vegetative growth.	
		Sediment Forebay	
		Forebay is free of vegetative or woody growth.	
		Rip rap slopes appear to stable with no signs of erosion.	
		Sediment forebay is not being used for snow storage.	
		Embankments/Soil Filter Surface	
		Embankments appear to be stable with no signs of erosion.	
		Embankments are free of woody growth on side slopes.	
		Grass cover is greater than 90%.	
		Soil Filter Surface is free of invasive/unwanted plants.	
		Soil Filter Surface is clear of trash debris.	
		Soil Filter is not being used for snow storage.	
	1	Outlet Control Structure 12	
		Sump is clear of sediment accumulation.	
		Inlet and outlets within structure are clear of debris/obstructions.	
		Trash rack is clear of debris/obstructions.	
		Outlet control valve set to allow filter to completely drain in 24 to 48 hours after 1" or greater storm.	

FOCAL POINT | CHECKLIST:

Yes	No		Comments:
		Focal Point	
		Debris blocking orifice.	
		Check overflow structure and clear debris.	
		Clogging, or signs water is not draining freely through media filter	
		If applicable, flush underdrain pipe	

Other Comments:

FOCAL POINT 2 CHECKLIST:

Yes	No		Comments:
		Focal Point	
		Debris blocking orifice.	
		Check overflow structure and clear debris.	
		Clogging, or signs water is not draining freely through media filter	
		If applicable, flush underdrain pipe	

Other Comments:

FOCAL POINT 3 CHECKLIST:

Yes	No		Comments:
		Focal Point	
		Debris blocking orifice.	
		Check overflow structure and clear debris.	
		Clogging, or signs water is not draining freely through media filter	
		If applicable, flush underdrain pipe	

FOCAL POINT 4 CHECKLIST:

Yes	No		Comments:
		Focal Point	
		Debris blocking orifice.	
		Check overflow structure and clear debris.	
		Clogging, or signs water is not draining freely through media filter	
		If applicable, flush underdrain pipe	

Other Comments:

SUBSURFACE CHAMBER | CHECKLIST:

Yes	No		Comments:
		Inlets and Outlets	
		Inlets and Outlets are clear of debris/obstructions.	
		Inspection Port clear of debris	
		Surface clear of trash and debris.	
		Clogging, or signs water is not draining freely through media filter.	
		Check overflow structure and clear debris.	

SUBSURFACE CHAMBER 2 CHECKLIST:

Yes	No		Comments:
		Inlets and Outlets	
		Inlets and Outlets are clear of debris/obstructions.	
		Inspection Port clear of debris	
		Surface clear of trash and debris.	
		Clogging, or signs water is not draining freely through media filter.	
		Check overflow structure and clear debris.	

Other Comments:

DRIPLINE FILTERS CHECKLIST:

Yes	No		Comments:
		Inlets and Outlets	
		Inlets and Outlets are clear of debris/obstructions.	
		No signs of erosion in rip rap inlet.	
		Surface clear of trash and debris.	
		Dripline is clear of invasive/unwanted plants.	
		Dripline is not being used for snow storage.	

ATTACHMENT E

TEMPORARY SEDIMENT BASIN CALCULATIONS

Sedimentation Basin 1 Calculations

Task:	Determine Max. allowable discharge from Sedimentation Basin						
Reference:	2. Erosion and Sedimentation Contr	 Maine Erosion and Sediment Control BMPs - 2016 Erosion and Sedimentation Control Plan for Scarborough Downs as prepared by Gorrill Palmer Urban Hydrology for Small Watersheds (TR-55) 					
Assumptions:	 Sedimentation Basin is to be designed for a 10- Year Storm Event - 4.9 inches Delay time within the Basin of 24 hours. Assumed Time of Concentration (Tc) of 10 minutes 						
Calculations: Following the procedure in Ref 1 on Page 31							
	Area tributary to Basin (DA) CN		234733.84 5.39 94	Square Feet Acres			
	Tc		10	Minutes			
	P=10 - Year Rainfall	P=10 - Year Rainfall					
	1. From TR-55	S= 1000/CN - 10	0.64				
		$Vr = (P - 0.2S)^2 / (P+0.8S)$	4.21	Inches			
	2. Flow (Qi) =	From Attached HydroCAD Calcs	30.23	CFS			
	3	Qi / DA	5.61	CFS/Acre			
	4. From Graph C.1. From Ref 1	Qo / Qi	0.02				
	5. Maximum Discharge	Qmax = Qo/Qi x Qi	0.60	CFS			
	HydroCAD Discharge		0.55	CFS			
	Orifice Size	3 Discharge Multiplier, 1 Row	2	Inches			

Sedimentation Basin 2 Calculations

Task:	Determine Max. allowable discharge from Sedimentation Basin					
Reference:	 Maine Erosion and Sediment Control BMPs - 2016 Erosion and Sedimentation Control Plan for Scarborough Downs as prepared by Gorrill Palmer Urban Hydrology for Small Watersheds (TR-55) 					
Assumptions:	 Sedimentation Basin is to be designed for a 10- Year Storm Event - 4.9 inches Delay time within the Basin of 24 hours. Assumed Time of Concentration (Tc) of 10 minutes 					
Calculations:	Following the procedure in Ref 1 on F	Page 31				
	Area trbutary to Basin (DA) CN		132668.51 3.05 94	Square Feet Acres		
	Tç			Minutes		
	P=10 - Year Rainfall		4.9	Inches		
	1. From TR-55	S= 1000/CN - 10	0.64			
		Vr = (P - 0.2S)^2 / (P+0.8S)	4.21	Inches		
	2. Flow (Qi) =	From Attached HydroCAD Calcs	17.08	CFS		
	3	Qi / DA	5.61	CFS/Acre		
	4. From Graph C.1. From Ref 1	Qo / Qi	0.02			
	5. Maximum Discharge	Qmax = Qo/Qi x Qi	0.34	CFS		
	HydroCAD Discharge		0.33	CFS		
	Orifice Size	4 Discharge Multiplier, 1 Row	1.3	Inches		

Sedimentation Basin 3 Calculations

Task:	Determine Max. allowable discharge from Sedimentation Basin					
Reference:	1. Maine Erosion and Sediment Control BMPs - 2016 2. Erosion and Sedimentation Control Plan for Scarborough Downs as prepared by Gorrill Palmer 3. Urban Hydrology for Small Watersheds (TR-55)					
Assumptions:	 Sedimentation Basin is to be designed for a 10- Year Storm Event - 4.9 inches Delay time within the Basin of 24 hours. Assumed Time of Concentration (Tc) of 10 minutes 					
Calculations: Following the procedure in Ref 1 on Page 31						
	Area trbutary to Basin (DA) CN		101577.11 2.33 94	Square Feet Acres		
	Tc			Minutes		
	P=10 - Year Rainfall			Inches		
	1. From TR-55 S= 1000/CN - 10		0.64			
	2. Flow (Qi) =	Vr = (P - 0.2S)^2 / (P+0.8S) From Attached HydroCAD Calcs	4.21 13.08	Inches CFS		
	3	Qi / DA	5.61	CFS/Acre		
	4. From Graph C.1. From Ref 1	0.02				
	5. Maximum Discharge	Qmax = Qo/Qi x Qi	0.26	CFS		
	HydroCAD Discharge		0.25	CFS		
	Orifice Size	2 Discharge Multiplier, 1 Row	1.7	Inches		

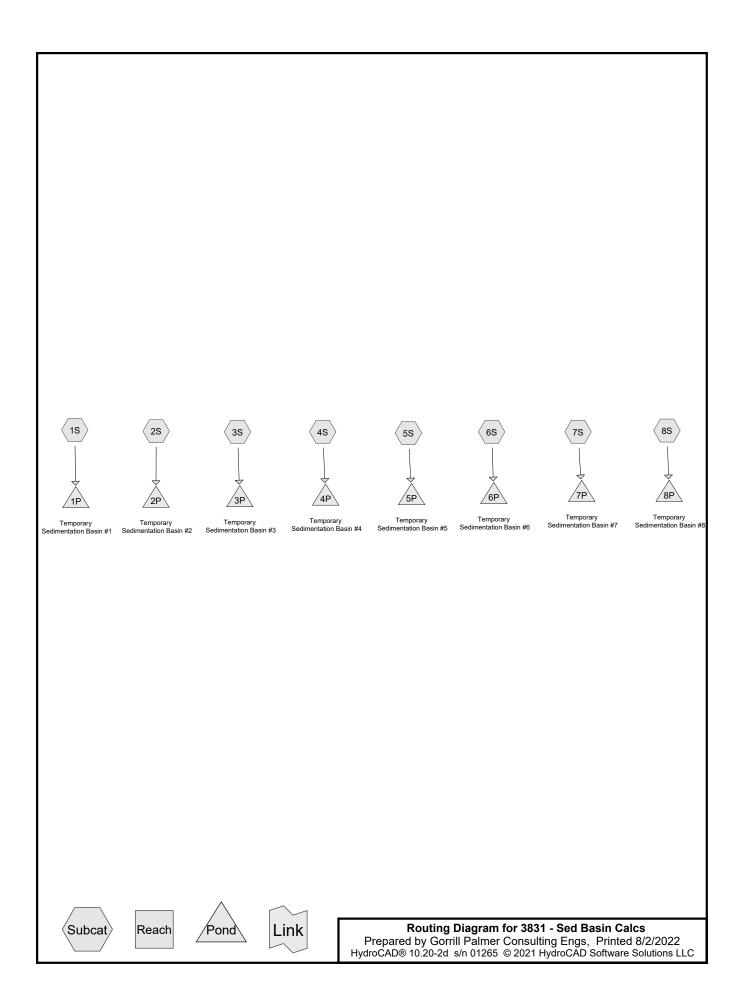
Sedimentation Basin 4 Calculations

Task:	Determine Max. allowable discharge from Sedimentation Basin					
Reference:	1. Maine Erosion and Sediment Control BMPs - 2016 2. Erosion and Sedimentation Control Plan for Scarborough Downs as prepared by Gorrill Palmer 3. Urban Hydrology for Small Watersheds (TR-55)					
Assumptions:	 Sedimentation Basin is to be designed for a 10- Year Storm Event - 4.9 inches Delay time within the Basin of 24 hours. Assumed Time of Concentration (Tc) of 10 minutes 					
Calculations:	Following the procedure in Ref 1 on Page 31					
	Area trbutary to Basin (DA) CN		71886.33 1.65 94	Square Feet Acres		
	Tc		10	Minutes		
	P=10 - Year Rainfall		4.9	Inches		
	1. From TR-55	S= 1000/CN - 10	0.64			
	2. Flow (Qi) =	Vr = (P - 0.2S)^2 / (P+0.8S) From Attached HydroCAD Calcs	4.21 9.26	Inches CFS		
	3	Qi / DA	5.61	CFS/Acre		
	4. From Graph C.1. From Ref 1	Qo / Qi	0.02			
	5. Maximum Discharge	Qmax = Qo/Qi x Qi	0.19	CFS		
	HydroCAD Discharge		0.18	CFS		
	Orifice Size	3 Discharge Multiplier, 1 Row	1.2	Inches		

Sedimentation Basin 5 Calculations

Task:	Determine Max. allowable discharge from Sedimentation Basin					
Reference:	1. Maine Erosion and Sediment Control BMPs - 2016 2. Erosion and Sedimentation Control Plan for Scarborough Downs as prepared by Gorrill Palmer 3. Urban Hydrology for Small Watersheds (TR-55)					
Assumptions:	 Sedimentation Basin is to be designed for a 10- Year Storm Event - 4.9 inches Delay time within the Basin of 24 hours. Assumed Time of Concentration (Tc) of 10 minutes 					
Calculations: Following the procedure in Ref 1 on Page 31						
	Area trbutary to Basin (DA) CN		69917.44 1.61 94	Square Feet Acres		
	Tc			Minutes		
	P=10 - Year Rainfall			Inches		
	1. From TR-55 S= 1000/CN - 10		0.64			
		Vr = (P - 0.2S)^2 / (P+0.8S)	4.21	Inches		
	2. Flow (Qi) =	From Attached HydroCAD Calcs	9	CFS		
	3	Qi / DA	5.61	CFS/Acre		
	4. From Graph C.1. From Ref 1	Qo / Qi	0.02			
	5. Maximum Discharge	Qmax = Qo/Qi x Qi	0.18	CFS		
	HydroCAD Discharge		0.16	CFS		
	Orifice Size	2 Discharge Multiplier, 1 Row	1.4	Inches		

Sedimentation Basin 6 Calculations


Task:	Determine Max. allowable discharge from Sedimentation Basin				
Reference:	1. Maine Erosion and Sediment Control BMPs - 2016 2. Erosion and Sedimentation Control Plan for Scarborough Downs as prepared by Gorrill Palmer 3. Urban Hydrology for Small Watersheds (TR-55)				
Assumptions:	 Sedimentation Basin is to be designed for a 10- Year Storm Event - 4.9 inches Delay time within the Basin of 24 hours. Assumed Time of Concentration (Tc) of 10 minutes 				
Calculations: Following the procedure in Ref 1 on Page 31					
	Area trbutary to Basin (DA) CN		156294.22 3.59 94	Square Feet Acres	
	Тс	34 10	Minutes		
	P=10 - Year Rainfall	4.9	Inches		
	1. From TR-55 S= 1000/CN - 10		0.64		
	2. Flow (Qi) =	Vr = (P - 0.2S)^2 / (P+0.8S) From Attached HydroCAD Calcs	4.21 20.13	Inches CFS	
	3	Qi / DA	5.61	CFS/Acre	
4. From Graph C.1. From Ref 1 Qo / Qi			0.02		
	5. Maximum Discharge Qmax = Qo/Qi x Qi 0.40				
	HydroCAD Discharge		0.37	CFS	
	Orifice Size	2 Columns, 2 Rows, 2" Spacing	1.4	Inches	

Sedimentation Basin 7 Calculations

Task:	Determine Max. allowable discharge from Sedimentation Basin				
Reference:	1. Maine Erosion and Sediment Control BMPs - 2016 2. Erosion and Sedimentation Control Plan for Scarborough Downs as prepared by Gorrill Palmer 3. Urban Hydrology for Small Watersheds (TR-55)				
Assumptions:	 Sedimentation Basin is to be designed for a 10- Year Storm Event - 4.9 inches Delay time within the Basin of 24 hours. Assumed Time of Concentration (Tc) of 10 minutes 				
Calculations:	Following the procedure in Ref 1 on	Page 31			
	Area trbutary to Basin (DA) CN		125952.63 2.89 94	Square Feet Acres	
	Tc P=10 - Year Rainfall			Minutes	
				Inches	
	1. From TR-55	S= 1000/CN - 10	0.64		
		Vr = (P - 0.2S)^2 / (P+0.8S)	4.21	Inches	
	2. Flow (Qi) =	From Attached HydroCAD Calcs	16.22	CFS	
	3	Qi / DA	5.61	CFS/Acre	
	4. From Graph C.1. From Ref 1	Qo / Qi	0.02		
	5. Maximum Discharge	Qmax = Qo/Qi x Qi	0.32	CFS	
	HydroCAD Discharge		0.31	CFS	
	Orifice Size	3 Columns, 2 Rows	1.1	Inches	

Sedimentation Basin 8 Calculations

Task:	Determine Max. allowable discharge from Sedimentation Basin				
Reference:	1. Maine Erosion and Sediment Control BMPs - 2016 2. Erosion and Sedimentation Control Plan for Scarborough Downs as prepared by Gorrill Palmer 3. Urban Hydrology for Small Watersheds (TR-55)				
Assumptions:	 Sedimentation Basin is to be designed for a 10- Year Storm Event - 4.9 inches Delay time within the Basin of 24 hours. Assumed Time of Concentration (Tc) of 10 minutes 				
Calculations: Following the procedure in Ref 1 on Page 31					
	Area trbutary to Basin (DA) CN		130887.59 3.00 94	Square Feet Acres	
	Tc			Minutes	
	P=10 - Year Rainfall	10 4.9	Inches		
	1. From TR-55 S= 1000/CN - 10		0.64		
		$Vr = (P - 0.2S)^2 / (P + 0.8S)$	4.21	Inches	
	2. Flow (Qi) =	From Attached HydroCAD Calcs	16.92	CFS	
	3	Qi / DA	5.63	CFS/Acre	
	4. From Graph C.1. From Ref 1	Qo / Qi	0.02		
	5. Maximum Discharge Qmax = Qo/Qi x Qi 0.34 0				
	HydroCAD Discharge		0.34	CFS	
	Orifice Size	4 Discharge Multiplier, 1 Row	1.5	Inches	

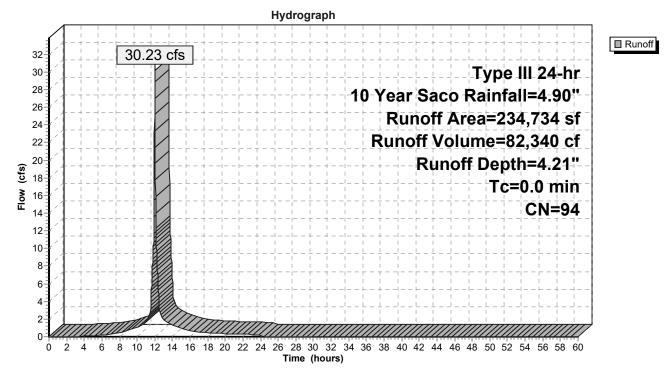
3831 - Sed Basin Calcs	Type III 24-hr 10 Year Saco Rainfall=4	4.90"
Prepared by Gorrill Palmer Consulting Engs	Printed 8/2/2	2022
HydroCAD® 10.20-2d s/n 01265 © 2021 HydroCAD Software	e Solutions LLC Pa	age 2

Time span=0.00-60.00 hrs, dt=0.01 hrs, 6001 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Stor-Ind method - Pond routing by Stor-Ind method

Subcatchment1S:	Runoff Area=234,734 sf 0.00% Impervious Runoff Depth=4.21" Tc=0.0 min CN=94 Runoff=30.23 cfs 82,340 cf
Subcatchment2S:	Runoff Area=132,669 sf 0.00% Impervious Runoff Depth=4.21" Tc=0.0 min CN=94 Runoff=17.08 cfs 46,537 cf
Subcatchment3S:	Runoff Area=101,577 sf 0.00% Impervious Runoff Depth=4.21" Tc=0.0 min CN=94 Runoff=13.08 cfs 35,631 cf
Subcatchment4S:	Runoff Area=71,886 sf 0.00% Impervious Runoff Depth=4.21" Tc=0.0 min CN=94 Runoff=9.26 cfs 25,216 cf
Subcatchment5S:	Runoff Area=69,917 sf 0.00% Impervious Runoff Depth=4.21" Tc=0.0 min CN=94 Runoff=9.00 cfs 24,525 cf
Subcatchment6S:	Runoff Area=156,294 sf 0.00% Impervious Runoff Depth=4.21" Tc=0.0 min CN=94 Runoff=20.13 cfs 54,825 cf
Subcatchment7S:	Runoff Area=125,953 sf 0.00% Impervious Runoff Depth=4.21" Tc=0.0 min CN=94 Runoff=16.22 cfs 44,182 cf
Subcatchment8S:	Runoff Area=131,389 sf 0.00% Impervious Runoff Depth=4.21" Tc=0.0 min CN=94 Runoff=16.92 cfs 46,088 cf
Pond 1P: Temporary Sedimentation	Peak Elev=100.62' Storage=63,713 cf Inflow=30.23 cfs 82,340 cf Outflow=0.55 cfs 66,337 cf
Pond 2P: Temporary Sedimentation	Peak Elev=101.87' Storage=35,346 cf Inflow=17.08 cfs 46,537 cf Outflow=0.33 cfs 39,647 cf
Pond 3P: Temporary Sedimentation	Peak Elev=105.97' Storage=27,235 cf Inflow=13.08 cfs 35,631 cf Outflow=0.25 cfs 29,318 cf
Pond 4P: Temporary Sedimentation Basi	in Peak Elev=100.79' Storage=19,233 cf Inflow=9.26 cfs 25,216 cf Outflow=0.18 cfs 20,683 cf
Pond 5P: Temporary Sedimentation Basi	in Peak Elev=101.77' Storage=19,015 cf Inflow=9.00 cfs 24,525 cf Outflow=0.16 cfs 19,593 cf
Pond 6P: Temporary Sedimentation Basi	in Peak Elev=97.79' Storage=42,170 cf Inflow=20.13 cfs 54,825 cf Outflow=0.37 cfs 45,154 cf
Pond 7P: Temporary Sedimentation	Peak Elev=100.65' Storage=33,989 cf Inflow=16.22 cfs 44,182 cf Outflow=0.31 cfs 35,435 cf
Pond 8P: Temporary Sedimentation Basi	in Peak Elev=98.98' Storage=35,396 cf Inflow=16.92 cfs 46,088 cf Outflow=0.34 cfs 35,048 cf

Total Runoff Area = 1,024,419 sf Runoff Volume = 359,344 cf Average Runoff Depth = 4.21" 100.00% Pervious = 1,024,419 sf 0.00% Impervious = 0 sf

Summary for Subcatchment 1S:


[46] Hint: Tc=0 (Instant runoff peak depends on dt)

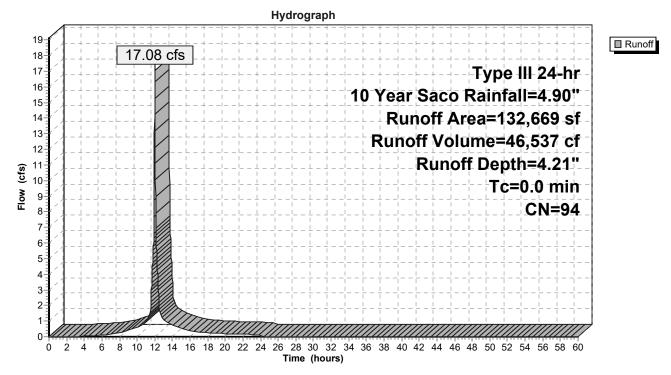
Runoff = 30.23 cfs @ 12.00 hrs, Volume= 82,340 cf, Depth= 4.21" Routed to Pond 1P : Temporary Sedimentation Basin #1

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-60.00 hrs, dt= 0.01 hrs Type III 24-hr 10 Year Saco Rainfall=4.90"

 Area (sf)	CN	Description
234,734	94	Newly graded area, HSG D
 234,734		100.00% Pervious Area

Subcatchment 1S:

Summary for Subcatchment 2S:


[46] Hint: Tc=0 (Instant runoff peak depends on dt)

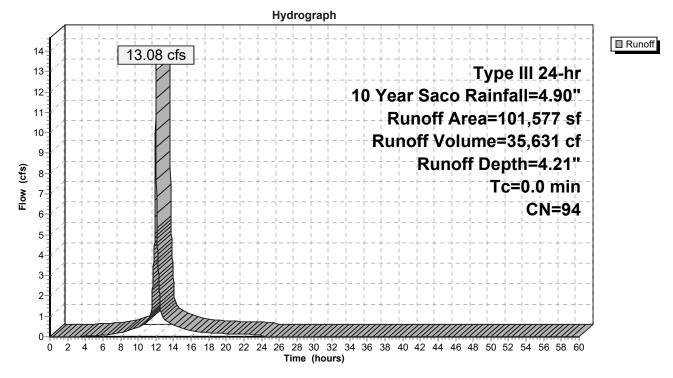
Runoff = 17.08 cfs @ 12.00 hrs, Volume= 46,537 cf, Depth= 4.21" Routed to Pond 2P : Temporary Sedimentation Basin #2

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-60.00 hrs, dt= 0.01 hrs Type III 24-hr 10 Year Saco Rainfall=4.90"

 Area (sf)	CN	Description
132,669	94	Newly graded area, HSG D
 132,669		100.00% Pervious Area

Subcatchment 2S:

Summary for Subcatchment 3S:


[46] Hint: Tc=0 (Instant runoff peak depends on dt)

Runoff = 13.08 cfs @ 12.00 hrs, Volume= 35,631 cf, Depth= 4.21" Routed to Pond 3P : Temporary Sedimentation Basin #3

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-60.00 hrs, dt= 0.01 hrs Type III 24-hr 10 Year Saco Rainfall=4.90"

 Area (sf)	CN	Description			
101,577	94	Newly graded area, HSG D			
 101,577		100.00% Pervious Area			

Subcatchment 3S:

Summary for Subcatchment 4S:

[46] Hint: Tc=0 (Instant runoff peak depends on dt)

9.26 cfs @ 12.00 hrs, Volume= 25,216 cf, Depth= 4.21" Runoff = Routed to Pond 4P : Temporary Sedimentation Basin #4

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-60.00 hrs, dt= 0.01 hrs Type III 24-hr 10 Year Saco Rainfall=4.90"

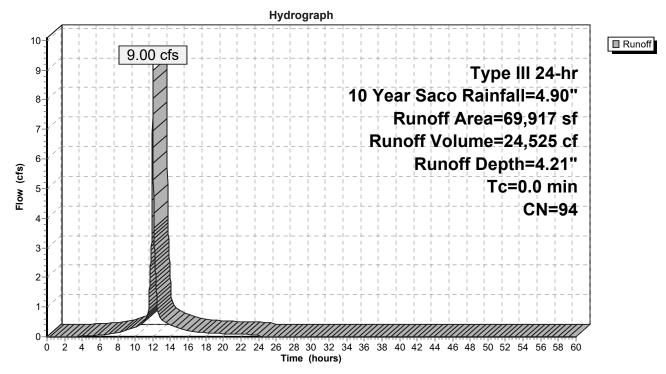
 Area (sf)	CN	Description
71,886	94	Newly graded area, HSG D
 71,886		100.00% Pervious Area

Hydrograph 10-9.26 cfs Type III 24-hr 9-10 Year Saco Rainfall=4.90" 8-Runoff Area=71,886 sf 7. Runoff Volume=25,216 cf Runoff Depth=4.21" 6 Flow (cfs) Tc=0.0 min 5 CN=94 4 3 2-1 0-0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 Time (hours)

Subcatchment 4S:

Runoff

Summary for Subcatchment 5S:


[46] Hint: Tc=0 (Instant runoff peak depends on dt)

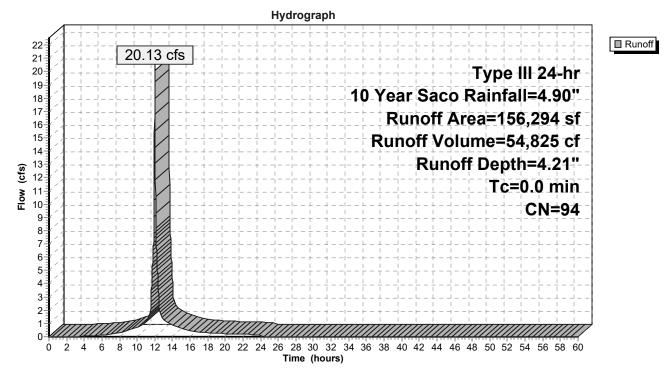
Runoff = 9.00 cfs @ 12.00 hrs, Volume= 24,525 cf, Depth= 4.21" Routed to Pond 5P : Temporary Sedimentation Basin #5

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-60.00 hrs, dt= 0.01 hrs Type III 24-hr 10 Year Saco Rainfall=4.90"

 Area (sf)	CN	Description
69,917	94	Newly graded area, HSG D
 69,917		100.00% Pervious Area

Subcatchment 5S:

Summary for Subcatchment 6S:


[46] Hint: Tc=0 (Instant runoff peak depends on dt)

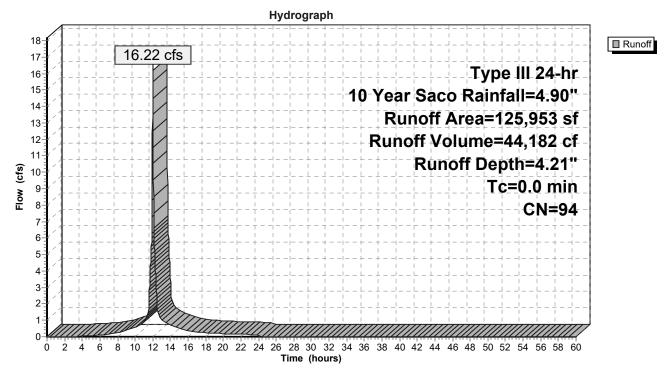
Runoff = 20.13 cfs @ 12.00 hrs, Volume= 54,825 cf, Depth= 4.21" Routed to Pond 6P : Temporary Sedimentation Basin #6

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-60.00 hrs, dt= 0.01 hrs Type III 24-hr 10 Year Saco Rainfall=4.90"

 Area (sf)	CN	Description
156,294	94	Newly graded area, HSG D
 156,294		100.00% Pervious Area

Subcatchment 6S:

Summary for Subcatchment 7S:


[46] Hint: Tc=0 (Instant runoff peak depends on dt)

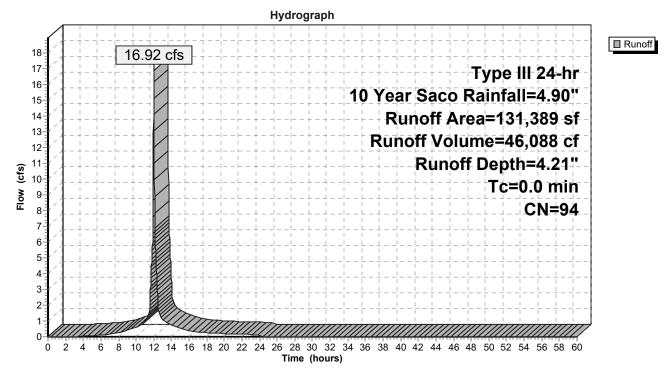
Runoff = 16.22 cfs @ 12.00 hrs, Volume= 44,182 cf, Depth= 4.21" Routed to Pond 7P : Temporary Sedimentation Basin #7

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-60.00 hrs, dt= 0.01 hrs Type III 24-hr 10 Year Saco Rainfall=4.90"

 Area (sf)	CN	Description
125,953	94	Newly graded area, HSG D
 125,953		100.00% Pervious Area

Subcatchment 7S:

Summary for Subcatchment 8S:


[46] Hint: Tc=0 (Instant runoff peak depends on dt)

Runoff = 16.92 cfs @ 12.00 hrs, Volume= 46,088 cf, Depth= 4.21" Routed to Pond 8P : Temporary Sedimentation Basin #8

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-60.00 hrs, dt= 0.01 hrs Type III 24-hr 10 Year Saco Rainfall=4.90"

 Area (sf)	CN	Description
131,389	94	Newly graded area, HSG D
 131,389		100.00% Pervious Area

Subcatchment 8S:

Summary for Pond 1P: Temporary Sedimentation Basin #1

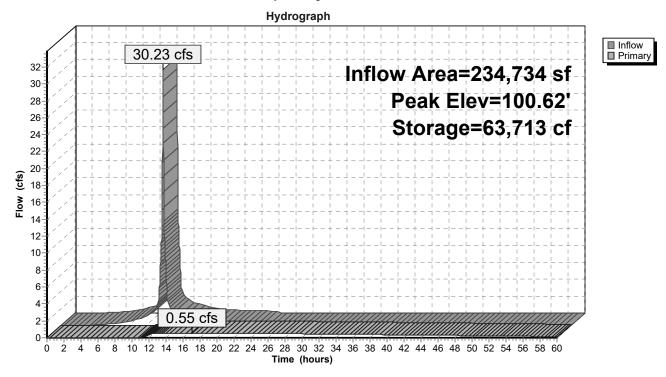
 Inflow Area =
 234,734 sf, 0.00% Impervious, Inflow Depth = 4.21" for 10 Year Saco event

 Inflow =
 30.23 cfs @
 12.00 hrs, Volume=
 82,340 cf

 Outflow =
 0.55 cfs @
 17.01 hrs, Volume=
 66,337 cf, Atten= 98%, Lag= 300.5 min

 Primary =
 0.55 cfs @
 17.01 hrs, Volume=
 66,337 cf

 Routed to nonexistent node 4R
 4R


Routing by Stor-Ind method, Time Span= 0.00-60.00 hrs, dt= 0.01 hrs Peak Elev= 100.62' @ 17.01 hrs Surf.Area= 18,998 sf Storage= 63,713 cf

Plug-Flow detention time= 1,165.4 min calculated for 66,337 cf (81% of inflow) Center-of-Mass det. time= 1,091.2 min (1,859.7 - 768.5)

Volume	Inve	ert Ava	il.Storage	Storage Descrip	otion		
#1	93.3	33'	91,761 cf	Custom Stage	Data (Prismatic)	_isted below (Recalc)	
Elevatio (fee		Surf.Area (sq-ft)	Voids (%)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)		
93.3		12,072	0.0	0	0		
96.1		12,072	0.0	0	0		
96.4	49	12,072	0.0	0	0		
96.5	50	12,072	100.0	121	121		
97.0		12,858	100.0	6,233	6,353		
98.0		14,474	100.0	13,666	20,019		
99.0		16,151	100.0	15,313	35,332		
100.0		17,890	100.0	17,021	52,352		
101.0		19,689	100.0	18,790	71,142		
102.0	00	21,549	100.0	20,619	91,761		
Device	Routing	Ir	vert Out	tlet Devices			
#1	Primary	97	7.50' 36.	0" Round Culver	rt		
#2	L: Ir n: #2 Device 1 97.50' 2		Inle n= 7.50' 2.0 '	28.0' CPP, square edge headwall, Ke= 0.500 t / Outlet Invert= 97.50' / 97.00' S= 0.0179 '/' Cc= 0.900 0.013 Corrugated PE, smooth interior, Flow Area= 7.07 sf '' Vert. Orifice/Grate X 3.00 C= 0.600 ited to weir flow at low heads			

Primary OutFlow Max=0.55 cfs @ 17.01 hrs HW=100.62' (Free Discharge)

1–2=Orifice/Grate (Orifice Controls 0.55 cfs @ 8.39 fps)

Pond 1P: Temporary Sedimentation Basin #1

Summary for Pond 2P: Temporary Sedimentation Basin #2

 Inflow Area =
 132,669 sf, 0.00% Impervious, Inflow Depth = 4.21" for 10 Year Saco event

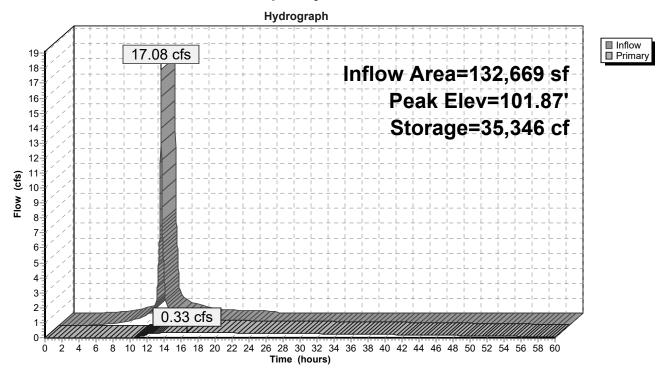
 Inflow =
 17.08 cfs @
 12.00 hrs, Volume=
 46,537 cf

 Outflow =
 0.33 cfs @
 16.69 hrs, Volume=
 39,647 cf, Atten= 98%, Lag= 281.4 min

 Primary =
 0.33 cfs @
 16.69 hrs, Volume=
 39,647 cf

 Routed to nonexistent node 1R
 18

Routing by Stor-Ind method, Time Span= 0.00-60.00 hrs, dt= 0.01 hrs Peak Elev= 101.87' @ 16.69 hrs Surf.Area= 10,101 sf Storage= 35,346 cf


Plug-Flow detention time= 1,122.3 min calculated for 39,641 cf (85% of inflow) Center-of-Mass det. time= 1,059.2 min (1,827.7 - 768.5)

Volume	Inv	vert Ava	il.Stora	age Storage Desc	ription	
#1	95.	09'	36,618	8 cf Custom Stag	ge Data (Prismatic)	Listed below (Recalc)
Flavesti		Curf Amer	\ / a : a a		Ourse Oteres	
Elevatio		Surf.Area	Voids		Cum.Store	
(fee	et)	(sq-ft)	(%)) (cubic-feet)	(cubic-feet)	
95.0)9	5,486	0.0	0 C	0	
97.2	28	5,486	0.0	0 0	0	
97.2	29	5,486	100.0) 55	55	
98.0	00	6,122	100.0) 4,121	4,176	
99.0	00	7,067	100.0	0 6,595	10,770	
100.0	00	8,068	100.0	7,568	18,338	
101.0	00	9,126	100.0	,	26,935	
102.0		10,240	100.0	,	36,618	
		-) -				
Device	Routing	lr	nvert	Outlet Devices		
#1	Primary	98	3.29'	18.0" Round Culv	/ert	
	,				jecting, no headwa	ll. Ke= 0.900
						= 0.0050 '/' Cc= 0.900
						rior, Flow Area= 1.77 sf
#2	Device	1 98		0	Grate X 4.00 C= 0.	,
112	Dovido			Limited to weir flow		

Primary OutFlow Max=0.33 cfs @ 16.69 hrs HW=101.87' (Free Discharge)

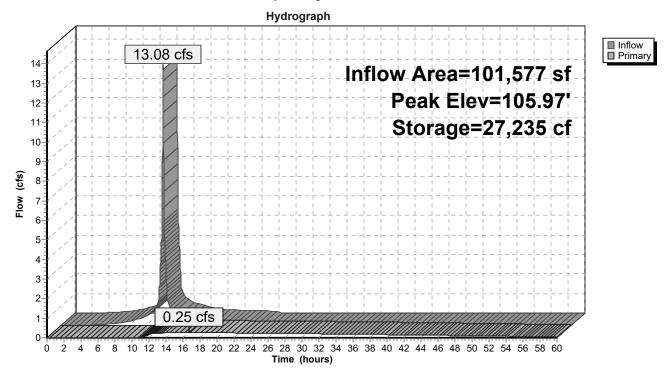
-1=Culvert (Passes 0.33 cfs of 11.31 cfs potential flow)

2=Orifice/Grate (Orifice Controls 0.33 cfs @ 9.05 fps)

Pond 2P: Temporary Sedimentation Basin #2

Summary for Pond 3P: Temporary Sedimentation Basin #3

Inflow Area	a =	101,577 sf,	0.00% Impervious,	Inflow Depth =	4.21"	for 10	Year Saco event
Inflow	=	13.08 cfs @ 1	12.00 hrs, Volume=	35,631 cl			
Outflow	=	0.25 cfs @ 1	16.70 hrs, Volume=	29,318 cl	f, Atter	n= 98%,	Lag= 282.0 min
Primary	=	0.25 cfs @ 1	16.70 hrs, Volume=	29,318 ct	f		


Routing by Stor-Ind method, Time Span= 0.00-60.00 hrs, dt= 0.01 hrs Peak Elev= 105.97' @ 16.70 hrs Surf.Area= 8,974 sf Storage= 27,235 cf

Plug-Flow detention time= 1,109.4 min calculated for 29,313 cf (82% of inflow) Center-of-Mass det. time= 1,039.2 min (1,807.7 - 768.5)

Volume	١n	vert Ava	il.Stor	age	Storage Descrip	otion		
#1	99.	87'	27,50	9 cf	Custom Stage	Data (Prismatic	JListed below (Recalc)	
- 1						0		
Elevatio	on	Surf.Area	Void		Inc.Store	Cum.Store		
(fee	et)	(sq-ft)	(%	5)	(cubic-feet)	(cubic-feet)		
99.8	37	5,142	0.	0	0	0		
102.0)7	5,142	0.	0	0	0		
102.0)8	5,142	100.	0	51	51		
103.0	00	5,968	100.	0	5,111	5,162		
104.0	00	6,923	100.	0	6,446	11,608		
105.0	00	7,936	100.	0	7,430	19,037		
106.0	00	9,007	100.	0	8,472	27,509		
Device	Routing	lr	nvert	Outl	et Devices			
#1	Primary	103	3.08'	18.0	" Round Culver	rt		
				L= 1	5.0' CPP, proje	cting, no headwa	all. Ke= 0.900	
							S= 0.0053 '/' Cc= 0.900	
							erior, Flow Area= 1.77 sf	
#2	Device	1 10:	3.08'		Vert. Orifice/Grate X 2.00 C= 0.600			
	201100	. 100			ted to weir flow a			

Primary OutFlow Max=0.25 cfs @ 16.70 hrs HW=105.97' (Free Discharge)

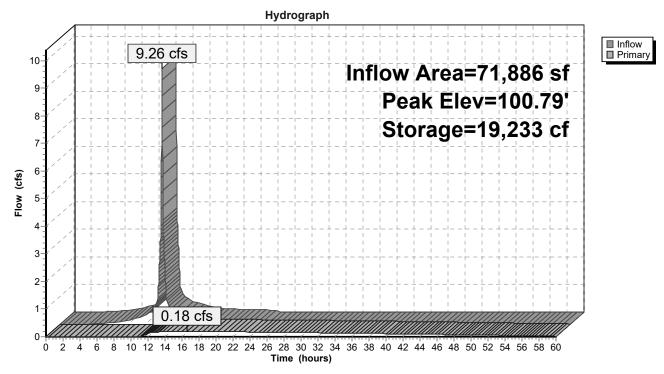
-1=Culvert (Passes 0.25 cfs of 9.83 cfs potential flow) —2=Orifice/Grate (Orifice Controls 0.25 cfs @ 8.08 fps)

Pond 3P: Temporary Sedimentation Basin #3

Summary for Pond 4P: Temporary Sedimentation Basin #4

Inflow Are	a =	71,886 sf, 0.00% Impervious, Inflow Depth = 4.21" for 10 Year Saco even	ent						
Inflow	=	0.26 cfs @ 12.00 hrs, Volume= 25,216 cf							
Outflow	=).18 cfs @ 16.62 hrs, Volume= 20,683 cf, Atten= 98%, Lag= 277.2 m	nin						
Primary	=	0.18 cfs @ 16.62 hrs, Volume= 20,683 cf							
Routed to nonexistent node 2R									

Routing by Stor-Ind method, Time Span= 0.00-60.00 hrs, dt= 0.01 hrs Peak Elev= 100.79' @ 16.62 hrs Surf.Area= 6,766 sf Storage= 19,233 cf


Plug-Flow detention time= 1,090.2 min calculated for 20,679 cf (82% of inflow) Center-of-Mass det. time= 1,019.5 min (1,788.0 - 768.5)

Volume	Inve	rt Avai	I.Storage	Storage Descrip	otion		
#1	94.9	2'	20,687 cf	Custom Stage	Data (Prismatic)Liste	d below (Recalc)	
Elevatio		Surf.Area	Voids	Inc.Store	Cum.Store		
(fee	et)	(sq-ft)	(%)	(cubic-feet)	(cubic-feet)		
94.9	92	3,822	0.0	0	0		
97.´	11	3,822	0.0	0	0		
97.´	12	3,822	100.0	38	38		
98.0	00	4,458	100.0	3,643	3,681		
99.0	00	5,234	100.0	4,846	8,527		
100.0	00	6,066	100.0	5,650	14,177		
101.0	00	6,954	100.0	6,510	20,687		
Device	Routing	In	vert Out	let Devices			
#1	Primary	98	.12' 18.0)" Round Culve	rt		
#2 Device 1		98	Inle n= (.12' 1.2'	24.0' CPP, projecting, no headwall, Ke= 0.900 t / Outlet Invert= 98.12' / 98.00' S= 0.0050 '/' Cc= 0.900 0.013 Corrugated PE, smooth interior, Flow Area= 1.77 sf ' Vert. Orifice/Grate X 3.00 C= 0.600 ited to weir flow at low heads			

Primary OutFlow Max=0.18 cfs @ 16.62 hrs HW=100.79' (Free Discharge)

-**1=Culvert** (Passes 0.18 cfs of 9.30 cfs potential flow)

1–2=Orifice/Grate (Orifice Controls 0.18 cfs @ 7.79 fps)

Pond 4P: Temporary Sedimentation Basin #4

Summary for Pond 5P: Temporary Sedimentation Basin #5

 Inflow Area =
 69,917 sf, 0.00% Impervious, Inflow Depth = 4.21" for 10 Year Saco event

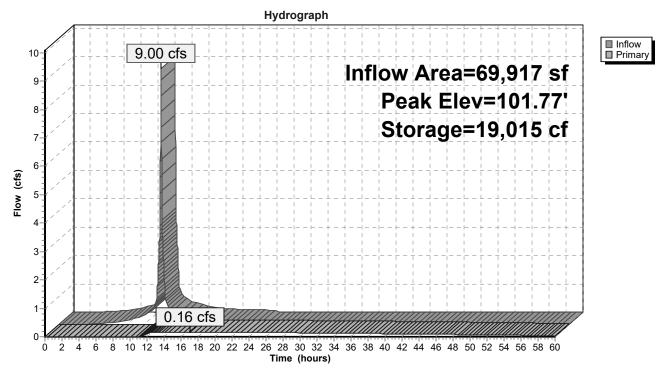
 Inflow =
 9.00 cfs @
 12.00 hrs, Volume=
 24,525 cf

 Outflow =
 0.16 cfs @
 17.03 hrs, Volume=
 19,593 cf, Atten= 98%, Lag= 302.0 min

 Primary =
 0.16 cfs @
 17.03 hrs, Volume=
 19,593 cf

 Routed to nonexistent node 3R
 3R

Routing by Stor-Ind method, Time Span= 0.00-60.00 hrs, dt= 0.01 hrs Peak Elev= 101.77' @ 17.03 hrs Surf.Area= 7,049 sf Storage= 19,015 cf


Plug-Flow detention time= 1,163.4 min calculated for 19,593 cf (80% of inflow) Center-of-Mass det. time= 1,087.7 min (1,856.2 - 768.5)

Volume	١nv	vert Ava	il.Stora	ge Storage Desc	ription	
#1	96.	02'	20,662	cf Custom Stag	je Data (Prismatio	c)Listed below (Recalc)
Elovatio		Surf.Area	Voido	Inc.Store	Cum.Store	
Elevatio			Voids			
(fee		(sq-ft)	(%)		(cubic-feet)	
96.0)2	3,758	0.0	0	0	
98.2	21	3,758	0.0	0	0	
98.2	22	3,758	100.0	38	38	
99.0	00	4,418	100.0	3,189	3,226	
100.0	00	5,316	100.0		8,093	
101.0	00	6,270	100.0	,	13,886	
102.0	00	7,281	100.0	,	20,662	
Device	Routing	Ir	vert	Outlet Devices		
#1	Primary	99	9.22'	18.0" Round Culv	vert	
	,			L= 43.0' CPP, pro	iecting, no headwa	all. Ke= 0.900
						S= 0.0051 '/' Cc= 0.900
						erior, Flow Area= 1.77 sf
#2	Device	1 00		1.4" Vert. Orifice/0		
π∠	Device	1 0.		Limited to weir flow		5.000
			l		at IOW HEads	

Primary OutFlow Max=0.16 cfs @ 17.03 hrs HW=101.77' (Free Discharge)

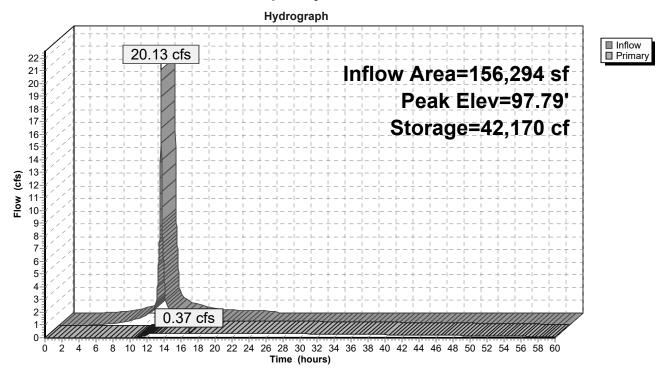
-**1=Culvert** (Passes 0.16 cfs of 9.01 cfs potential flow)

2=Orifice/Grate (Orifice Controls 0.16 cfs @ 7.60 fps)

Pond 5P: Temporary Sedimentation Basin #5

Summary for Pond 6P: Temporary Sedimentation Basin #6

156,294 sf, 0.00% Impervious, Inflow Depth = 4.21" for 10 Year Saco event Inflow Area = 20.13 cfs @ 12.00 hrs, Volume= Inflow = 54.825 cf 0.37 cfs @ 16.92 hrs, Volume= 45,154 cf, Atten= 98%, Lag= 295.4 min Outflow = 0.37 cfs @ 16.92 hrs, Volume= 45,154 cf Primary = Routed to nonexistent node 5R


Routing by Stor-Ind method, Time Span= 0.00-60.00 hrs, dt= 0.01 hrs Peak Elev= 97.79' @ 16.92 hrs Surf.Area= 12,460 sf Storage= 42,170 cf

Plug-Flow detention time= 1,155.1 min calculated for 45,154 cf (82% of inflow) Center-of-Mass det. time= 1,084.8 min (1,853.3 - 768.5)

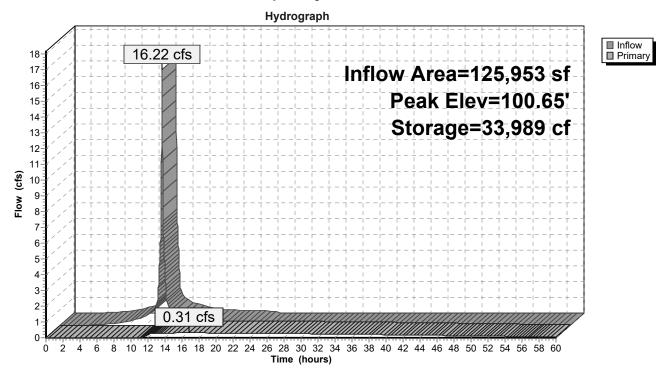
Volume	Inve	rt Ava	il.Storag	ge Storage Descr	ription
#1	91.17	7'	44,825	cf Custom Stage	e Data (Prismatic)Listed below (Recalc)
Elevatio (fee		Surf.Area (sq-ft)	Voids (%)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
91.1		<u>(3q-11)</u> 6,774	0.0	0	0
93.3		6,774	0.0	0	0
93.3		6,774	100.0	68	68
94.0	00	7,516	100.0	4,501	4,569
95.0	00	8,740	100.0	8,128	12,697
96.0	00	10,022	100.0	9,381	22,078
97.0	00	11,359		10,691	32,769
98.0	00	12,754	100.0	12,057	44,825
Device	Routing	In	vert C	outlet Devices	
#1	Primary	94	.37' 1	8.0" Round Culve	ert
	-		L	= 39.0' CPP, proj	jecting, no headwall, Ke= 0.900
			lr	nlet / Outlet Invert=	= 94.37' / 94.17' S= 0.0051 '/' Cc= 0.900
					ed PE, smooth interior, Flow Area= 1.77 sf
#2	Device 1	94			Grate X 2.00 columns
					cc spacing C= 0.600
			L	imited to weir flow	at low heads
				16.92 hrs HW=97.7 .98 cfs potential flo	79' (Free Discharge) ow)

uivert (Passes 0.37 cfs of 10.98 cfs potential flow

1-2=Orifice/Grate (Orifice Controls 0.37 cfs @ 8.72 fps)

Pond 6P: Temporary Sedimentation Basin #6

Summary for Pond 7P: Temporary Sedimentation Basin #7


125,953 sf, 0.00% Impervious, Inflow Depth = 4.21" for 10 Year Saco event Inflow Area = 16.22 cfs @ 12.00 hrs, Volume= Inflow 44.182 cf = 0.31 cfs @ 16.81 hrs, Volume= 35,435 cf, Atten= 98%, Lag= 288.7 min Outflow = 0.31 cfs @ 16.81 hrs, Volume= Primary = 35,435 cf Routed to nonexistent node 2R

Routing by Stor-Ind method, Time Span= 0.00-60.00 hrs, dt= 0.01 hrs Peak Elev= 100.65' @ 16.81 hrs Surf.Area= 11,665 sf Storage= 33,989 cf

Plug-Flow detention time= 1,116.9 min calculated for 35,435 cf (80% of inflow) Center-of-Mass det. time= 1,041.9 min (1,810.4 - 768.5)

Volume	Inve	rt Ava	il.Storag	e Storage Desci	ription	
#1	93.74	4'	38,127	cf Custom Stag	e Data (Prismatio	c)Listed below (Recalc)
Elevatio		Surf.Area	Voids	Inc.Store	Cum.Store	
(fee		(sq-ft)	(%)	(cubic-feet)	(cubic-feet)	
93.7		6,607	0.0	0	0	
96.5	58	6,607	0.0	0	0	
96.9	90	6,607	0.0	0	0	
96.9	91	6,607	100.0	66	66	
97.0	00	6,719	100.0	600	666	
98.0	00	7,986	100.0	7,353	8,018	
99.0	00	9,317	100.0	8,652	16,670	
100.0	00	10,713	100.0	10,015	26,685	
101.0		12,172	100.0	11,443	38,127	
Dovice	Douting	In	wort C	outlet Devices		
Device	Routing					
#1	Primary	97		4.0" Round Culve		
				= 17.0' CPP, squ		
						S= 0.0053 '/' Cc= 0.900
						erior, Flow Area= 3.14 sf
#2	Device 1	97		.1" Vert. Orifice/G		
			Х	2 rows with 2.0" c	c spacing C= 0.60	00
			L	imited to weir flow	at low heads	
. .						、 、
				6.81 hrs HW=100		arge)

1=Culvert (Passes 0.31 cfs of 17.58 cfs potential flow) **2=Orifice/Grate** (Orifice Controls 0.31 cfs @ 7.78 fps)

Pond 7P: Temporary Sedimentation Basin #7

Summary for Pond 8P: Temporary Sedimentation Basin #8

 Inflow Area =
 131,389 sf, 0.00% Impervious, Inflow Depth = 4.21" for 10 Year Saco event

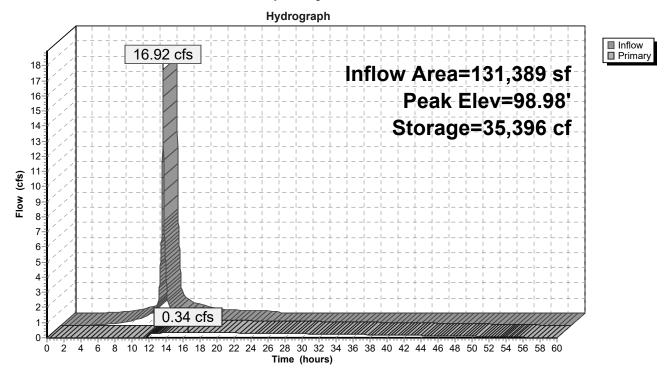
 Inflow =
 16.92 cfs @
 12.00 hrs, Volume=
 46,088 cf

 Outflow =
 0.34 cfs @
 16.62 hrs, Volume=
 35,048 cf, Atten= 98%, Lag= 277.5 min

 Primary =
 0.34 cfs @
 16.62 hrs, Volume=
 35,048 cf

 Routed to nonexistent node 6R
 16.02 hrs, Volume=
 35,048 cf

Routing by Stor-Ind method, Time Span= 0.00-60.00 hrs, dt= 0.01 hrs Peak Elev= 98.98' @ 16.62 hrs Surf.Area= 13,377 sf Storage= 35,396 cf

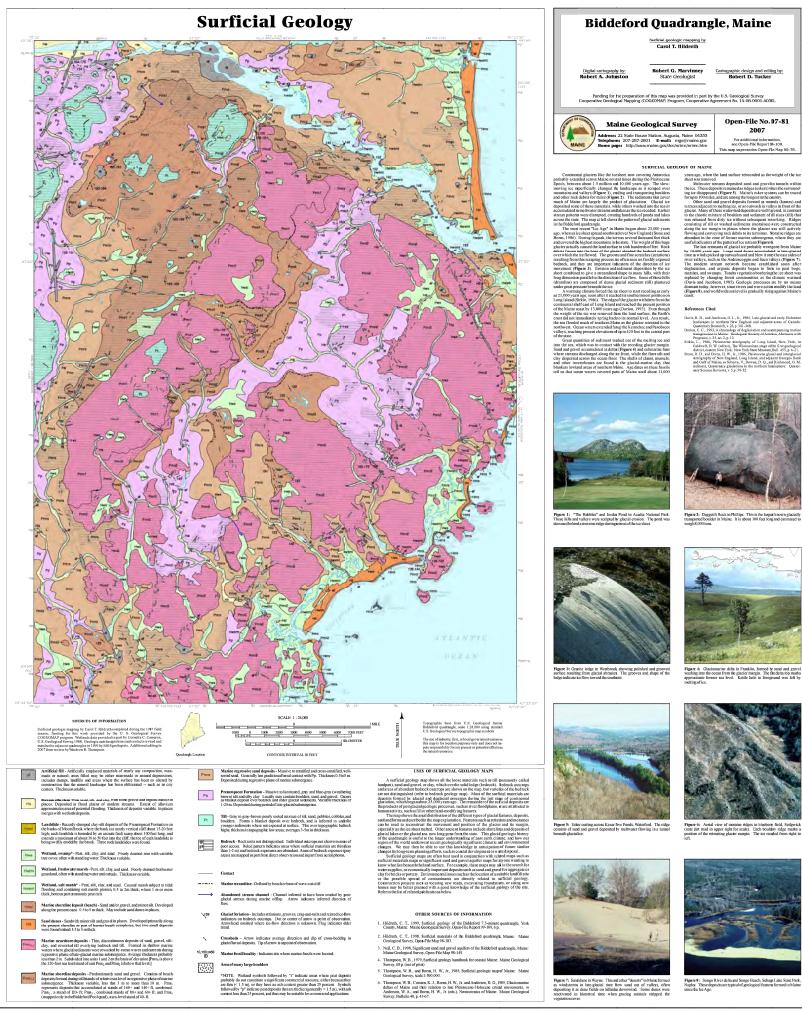

Plug-Flow detention time= 1,043.9 min calculated for 35,048 cf (76% of inflow) Center-of-Mass det. time= 961.0 min (1,729.5 - 768.5)

Volume	Inve	ert Ava	il.Storage	Storage Descript	tion	
#1	93.7	71'	35,609 cf	Custom Stage I	Data (Prismatic)Listed	d below (Recalc)
Elevatio		Surf.Area	Voids	Inc.Store	Cum.Store	
(fee	et)	(sq-ft)	(%)	(cubic-feet)	(cubic-feet)	
93.7	71	9,672	0.0	0	0	
95.9	90	9,672	0.0	0	0	
95.9	91	9,672	100.0	97	97	
96.0	00	9,773	100.0	875	972	
97.0	00	10,922	100.0	10,348	11,319	
98.0	00	12,130	100.0	11,526	22,845	
99.0	00	13,397	100.0	12,764	35,609	
Device	Routing	In	vert Out	let Devices		
#1	Primary	96	6.91' 18.0)" Round Culvert	t	
#2	Device 1		L= 3 Inle n= (6.91' 1.5'	37.0' CPP, projec t / Outlet Invert= 9 0.013 Corrugated	ting, no headwall, Ke 6.91' / 96.72' S= 0.00 PE, smooth interior, 1 t e X 4.00 C= 0.600	051 '/' Cc= 0.900

Primary OutFlow Max=0.34 cfs @ 16.62 hrs HW=98.98' (Free Discharge)

-**1=Culvert** (Passes 0.34 cfs of 7.72 cfs potential flow)

2=Orifice/Grate (Orifice Controls 0.34 cfs @ 6.83 fps)


Pond 8P: Temporary Sedimentation Basin #8

ATTACHMENT ||

SURFICIAL GEOLOGY, SIGNIFICANT SAND AND GRAVEL AQUIFERS, & FEMA MAPS

ATTACHMENT II

SURFICIAL GEOLOGY MAPS

Biddeford Quadrangle, Maine

Surficial geologic mapping by Carol T. Hildreth

praphic design and editing by: Robert D. Tucker

Punding for the preparation of this map was provided in part by the U.S. Geological Survey erative Geological Mapping (COGEOMAP) Program, Cooperative Agreement No. 14-08-0001-AOM

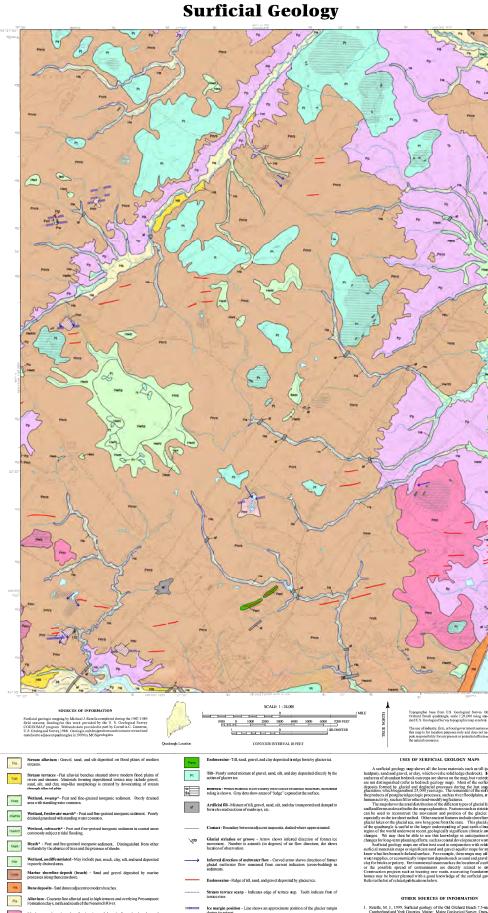
Open-File No. 07-81 2007 dditional in en-File Rep

dorma (Figu References Cited

Cart

Figure 4: Glaciomarine delta in Franklin, formed by sand and gravel washing into the ocean from the glacier margin. The flit delta top marks approximate former sea level. Kettle hole in foreground was left by meltine after.

Figure 6: Aerial view of moraine ridges in blueberry field, Sedgwich (note dirt road in upper right for scale). Each bouldry ridge marks a position of the retreating glacier margin. The ice recaled from right to


Figure 8 : Songo River delta and Songo Beach, Sebage Lake State Park Naples. These deposits are typical of geological features formed in Maine since the loc Ase.

Flood plain scroll - Curved lines indicating former position of meanders on food plain as observed from aerial photography.

Modified ground - Pattern shows areas affected by change in topography resulting from development or excavation subsequent to publication of topographic base

d symbols followed by "t" indicate areas where peat deputis somiture a significant commercial resource, either becausethey), or they have an ash content granter than 25 percent. Symbols indicate peat deposite that are thicker (generally -1 -1 m), with ash discate peat deposite that are thicker (generally -1 - 1 m), with ash

sarshore deposits - Sand and gravel deposits formed as b trine sand bodies during marine submergence and regression

Marine fan - Layered gravel and sand deposited in wedge or mound form at the glacier margin during marine submergence.

Esker - Gravel and sand deposited in ice tunnel by subglacial meltwater stream (northwestern part of the quadrangle).

regressive sand deposits - Sand deposited in marine waters during on of the sa from the coastal zone. Sand is commonly interbedded with ined sediments of the December of Manual in -

or Fornation - Fine-grained silt and clay with minor marine fossils nes deposited in deeper, quiet water during the marine submergence of

Finn

Dmire.

Pest

Punding for the preparation of this map was provided in part by the U.S. Geological Survey erative Geological Mapping (COGEOMAP) Program, Cooperative Agreement No. 14-08-0001-A0341

Open-File No. 99-94 1999 For additional information, see Open-File Report 99-125.

ided as the weight of the ice

SURFICIAL GEOLOGY OF MAINE years ago, when th sheet was removed

Conductantal gluciers like the locabate two covering, Attanction books of the second second second second second second second Espech, between about 1.5 million and 10,000 years area. The slow-nowing ice superficially changed the landscope as it scoped over momination and valleys (Pigner 1), crading and ransporting bookders much of Maias are langely the product of gluciation. Okcial ice deposited source of these materials, while others washed into the second scormalized an interview retransminadades as the key recorded. Earlier

Vally's, fixe and percent or evaluations on the 16-10-test into central pairs Great quantities of sediment where of our of the meeting less and into the sea, which was in contact with the recoding Electra margin Standand great's communities of sediment (great's and subsorming finane clay dispersed across the occur flow. The balls is of chains, musels and other invertentness are found in the glucial-martine clay that balances to valuate covered pairs of Mains until about 11,000

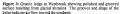
streams deposited sand and gravel in tunnels with eposits remained as ridges (eskers) when the surroun red (Figure 5). Maine's esker systems can be trac-es, and are mone the located of the surround of the surround streams of the located of the surround es adjacent to me

zone or 1... s of the pattern ner marine submergenci, mofice retreat (Figure 4), acial ice probably werego soud dance accumulate ash sand and blew it onto droscoggin and Saco vall ul indicator The last re time ust remnants of glaci by 10,000 years ago. Large a time as winds picked up outwas river valleys, such as the Andr The modern stream netwo dealariation and converts. stream network became established and organic deposits began to form in

References Cited

enbion, G. L., Jr., 1985, Late-glacial and early Holocent northern New England and adjacent areas of Canada search, v. 23, p. 341-368. A chronology of deglaciation and noompanying marina n Maina: Gaological Society of Armeira, Abstracts will Davis, R. B., and J snuscapes in Quaternary Res n, C. C., 1993,

Bubblest and Jordat Pond in Acadia National Park, alleys were sculpted by glacial erosion. The pond was moraine ridge during etreat of the ice sheet



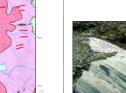

Figure 4: Glaciomarine delta in Franklin, formed by sand and gravel washing into the ocean from the glacier margin. The flit delta top marks approximate former sea level. Kettle hole in foreground was left by meltine after.

Figure 6: Aerial view of moraine ridges in blueberry field, Sedgwich (note dirt road in upper right for scale). Each bouldry ridge marks a position of the retreating glacier margin. The ice recaled from right to

Figure 8 : Songo River delta and Songo Beach, Sebage Lake State Park Naples. These deposits are typical of geological features formed in Maine since the loc Ase.

#-9

e state. This glac in of past earth of we may more its which to use this incorrection in anticeptonic of finities studies that the second structure of the second structure studies and the second structure studies and the second structure studies and the second structure studies and the second structure studies. For example, the second structure studies are not structure studies and the second structure studies are structure structures and the second structure studies are structured as the second structure studies are structured as the second structure studies are structured as the second structure studies are structured as the second structure studies are structured as the second structure studies are structured as the second structure structur

OTHER SOURCES OF INFORMATION

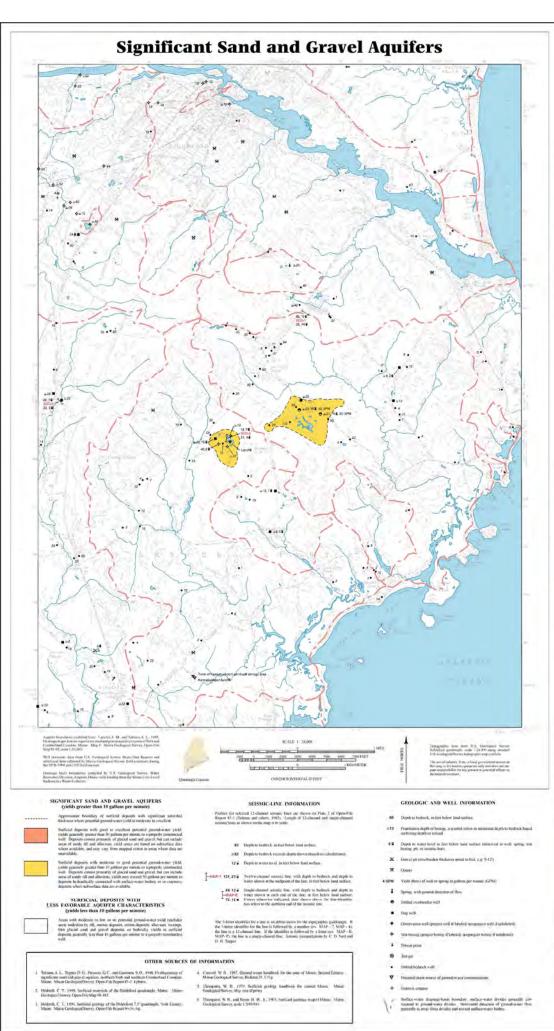
- Cumber 125, 7 p.
- Retelle, M. J., 1998, Surficial materials of the Old Orchard Beach que Maine Geological Survey, Open-File Map 98-180. Neil, C. D., 1998, Significant sand and gravel aquifers of the Old Orchard Beach quadrangle Maine: Maine Geological Survey, Open-File Map 98-146.
- Thompson, W. B., 1979, Surficial geology handbook for coastal Maine: Maine Geo Survey, 68 p. (out of print)
- survey, op J. Out of pain/ Thompson, W. B., and Borns, H. W., Jr., 1985, Surficial geologic map of Maine: Main Geological Survey, scale 1:500,000.
- Thompson, W. B., Crossen, K. J., Borns, H. W., Ji, and Andersen, B. G., 1889, Glaciomarine deltas of Maine and their relations to late Piestocene-Holocene enauli movements. in Autenson, W. A., and Borns, H. W., Jr. (eds.), Neotectonics of Maine: Maine Geological Survey, Bulletin 40, p. 43–67.

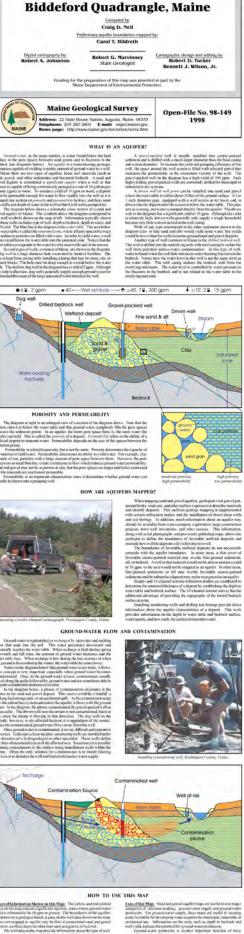
ar local government names ar purposes only and does not in-ny present or potential effects sr

USES OF SURFICIAL GEOLOGY MAPS

A surficial geology map shows all the loose materials such as till gommonly called hundpano, and and gravel or edue, which overfic solid ledge thedrock). Beloredo, enterpose and enterposed of the solid ledge thedrock of the solid ledge thedrock of the anne distinguished (refer to belored geology map). Most of the surficial insuremant deposits fromed by glicial and edgelacial processes during the last stage of construents and surficial geology and on 20.00 years go. The remainder of the surficial insuremant deposits fromed by glicial and edgelacial processes during the last stage of construents and the surficial deposits are staged and the solid processes of the surficial deposits are deposited by the solid processes of the surficial deposits are deposited by the solid processes of the surficial deposits are deposited by the solid processes of the surficial deposits are deposited by the surficial deposits are deposited by the solid processes of the surficial deposits are deposited by the solid processes of the surficial deposits are deposited by the solid processes of the surficial deposits are deposited by the surficial deposits are deposited by the surficial deposited by the surficial deposites are deposites are deposites are deposited by the sur men organ atomit 2,000 years ago. The remainder of this official depositions of postglacial geologic processes, such as river floodplains, er are attributed to y, such as fillor other land-modifying features, shows the arral distribution of the different types of glacial leatures, depositis as described in the map explanation. Features such as striations and morning

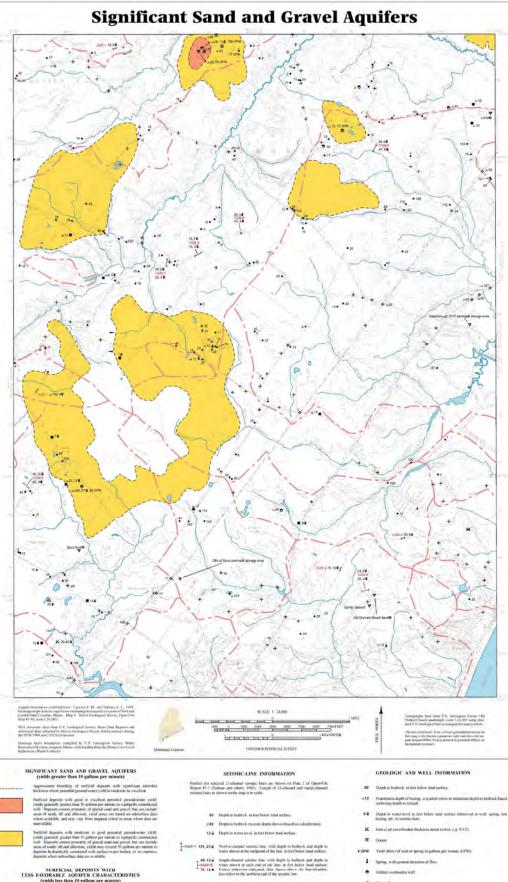
- M. J., 1999, Surficial geology of the Old Orchard Beach 7.5-minute quadrangle, land and York Counties, Maine: Maine Geological Survey, Open-File Report 999-





ATTACHMENT II

SIGNIFICANT SAND AND GRAVEL AQUIFERS MAPS



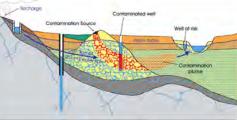
Kno si whi si' fit

ter comprised in occurs, the ground trund of the

catel flow generally is an ap then

35

Old Orchard Beach Quadrangle, Maine


arficial goology mup es and the installation to much information company explo

info perv n about the squifer characteristi aformation on the depth to wate

GROUND-WATER FLOW AND CONTAMINATION

the soil. This spring and the r when fall mire. mount of ground water increases an rge is low during the late summer or the unity table becames lower endus, e diagrams, sery important, see in the gr "-flowed

HOW TO USE THIS MAP

ation Shown on this Map: Uns of this Map. pers or grantas. The seed, in grant, on the in many be thin or a

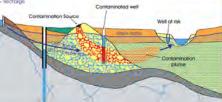
underes any also deserve on the rate flow generally is alway true 32

a Knos al white age fault

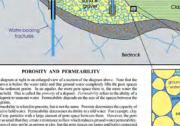
d-under communities second, the general trend of the ion car for deduced from these tasks by dealy-day for

OTHER SOURCES OF INFORMATION

- Talama A. L. Baper D. U. Presant G.C. and Canners S.O. 1997. Homosong of Spectrack and and you digative southers Wat and southers Cambridge Composed Mana Mana Cambridge Composed Spectra (Spectra Cambridge Composed) Mana Mana Cambridge Composed Spectra (Spectra Cambridge Composed)
- Kontle, M. J., 1918. Surface in means of the Old Occlust React science & Alima Main Geological Survey. Open-Hile Magninism.
-) Rentle, M. (. 1999), Softical protogy of the OALORISoft Desch quadranity: Mane Abine Communit Son by Open-Pile Map (9-94

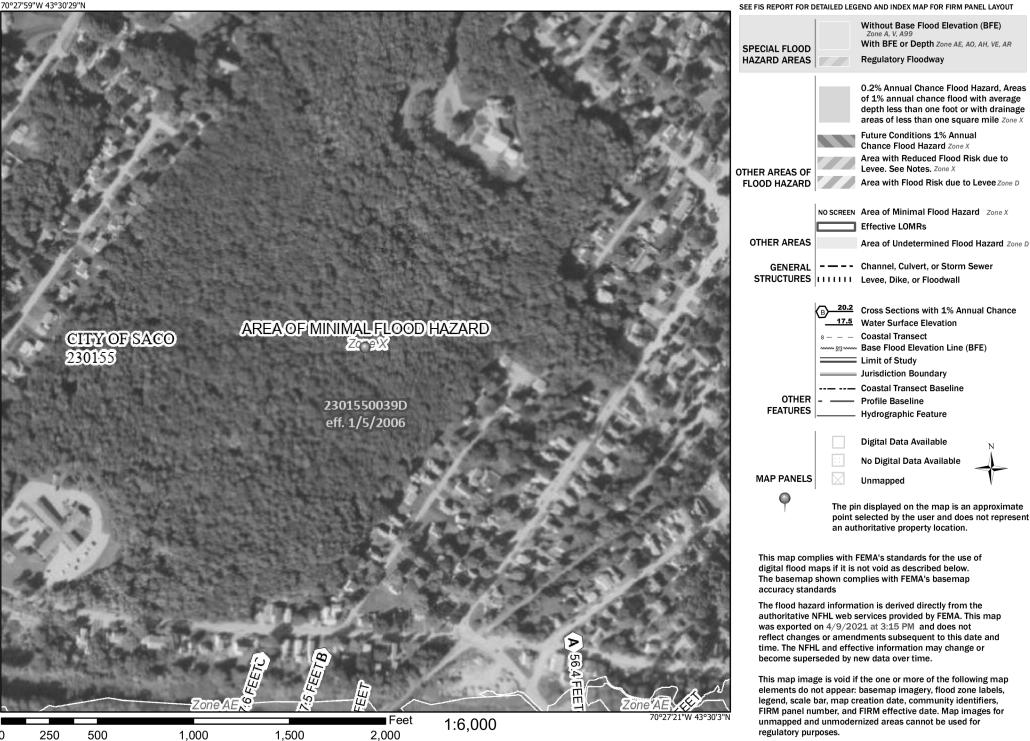

- de line is a 12-MAP-P), the line If the idea

- Thompson, W.B., and Berm, H. W. Jf., 1984. Surficial prolonger (hep-of Mane: Marie (confederal Survey, see b 12011101)


- 3 Thompson, W. G., 1979, Burlstein geology landbook for crossal Masse Garkgigh/Survey M.p. martifiptini
 - Vé
- Inflace-out dramac-basic bondary, ordace-outer antijes associate co-topoid to ground-outer doutes. Itemanial discriment ground-outer from randolf to anny illum doubes and unrust unflace-outer holes.

- . Dug koll
- + Otwarvaines well (prejuce well if binded acceptation well if artificies)
- This Install, (project being if Edicle), unproject Service if unitalities)
- . Union point
- O Intel
- . Della) folged a dil V Recentil onist source of an
- Halrock oncom

HOW ARE AQUIFERS MAPPEDS


ATTACHMENT II

FEMA MAPS

National Flood Hazard Layer FIRMette

Legend

Basemap: USGS National Map: Orthoimagery: Data refreshed October, 2020

NOTES TO USERS

This map is for use in administering the National Flood Insurance Program. It does not necessarily identify all areas subject to flooding, particularly from local drainage sources of small size. The community map repository should be consulted for possible updated or additional flood hazard information.

To obtain more detailed information in areas where Base Flood Elevations (BFEs) and /or floodways have been determined, users are encouraged to consult the Flood Profiles, Floodway Data and/or Summary of Stillwater Elevations tables contained within the Flood Insurance Study (FIS) report that accompanies this FIRM. Users should be aware that BFEs shown on the FIRM represent rounded whole-foot elevations. These BFEs are intended for flood insurance rating purposes only and should not be used as the sole source of flood elevation information. Accordingly, flood elevation data presented in the FIS report should be utilized in conjunction with the FIRM for purposes of construction and/or floodplain management.

Coastal Base Flood Elevations shown on this map apply only landward of 0.0' North American Vertical Datum of 1988 (NAVD 88). Users of this FIRM should be aware that coastal flood elevations are also provided in the Summary of Stillwater Elevations tables in the Flood Insurance Study report for this jurisdiction. Elevations shown in the Summary of Stillwater Elevations tables should be used for construction and/or floodplain management purposes when they are higher than the elevations shown on this FIRM.

Boundaries of the **floodways** were computed at cross sections and interpolated between cross sections. The floodways were based on hydraulic considerations with regard to requirements of the National Flood Insurance Program. Floodway widths and other pertinent floodway data are provided in the Flood Insurance Study report for this jurisdiction.

Certain areas not in Special Flood Hazard Areas may be protected by flood control structures. Refer to Section 2.4 "Flood Protection Measures" of the Flood Insurance Study report for information on flood control structures in this jurisdiction.

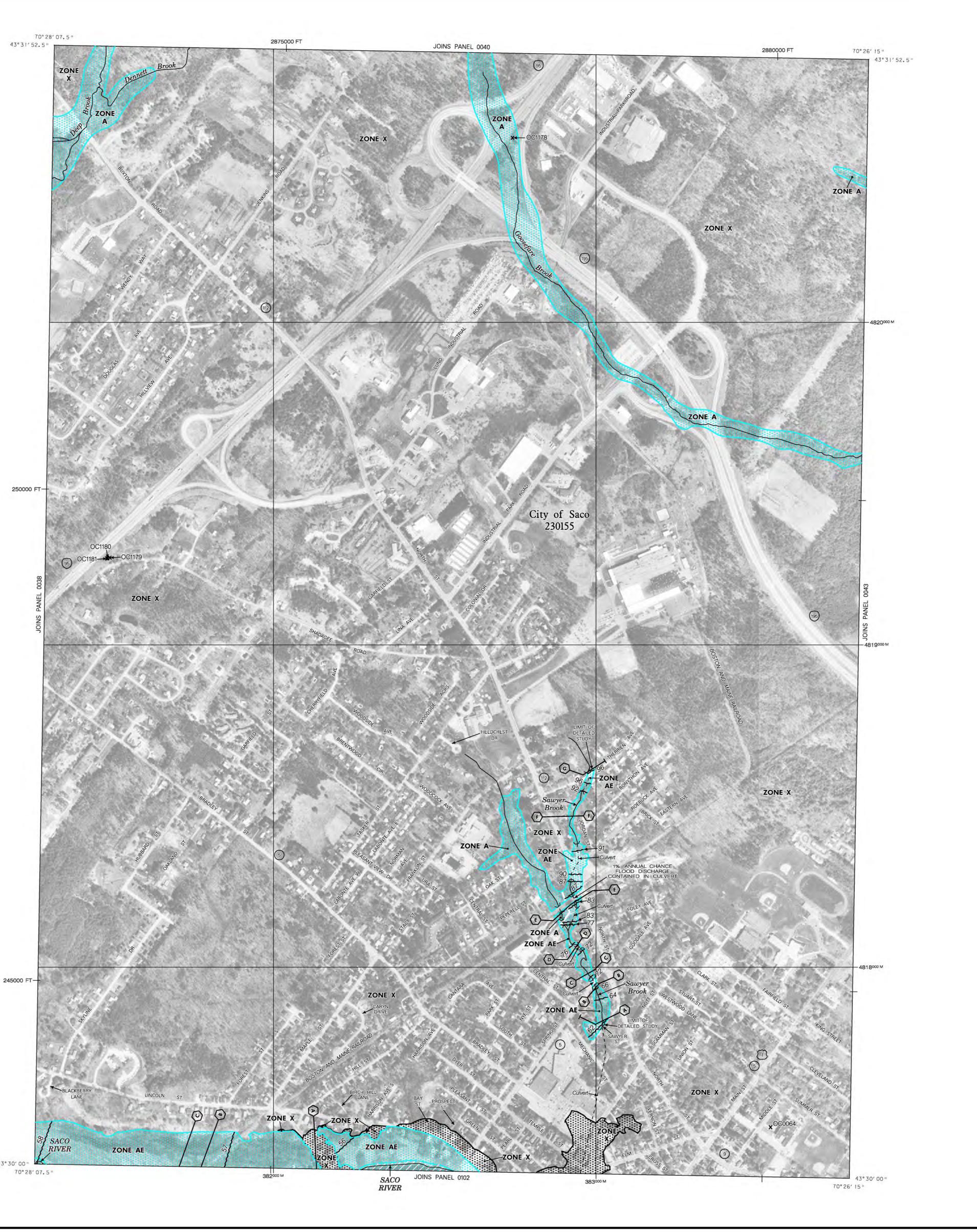
The **projection** used in the preparation of this map was Universal Transverse Mercator (UTM) zone 19. The horizontal datum was NAD 83, GRS80 spheroid. Differences in datum, spheroid, projection or UTM zones used in the production of FIRMs for adjacent jurisdictions may result in slight positional differences in map features across jurisdiction boundaries. These differences do not affect the accuracy of this FIRM.

Flood elevations on this map are referenced to the North American Vertical Datum of 1988. These flood elevations must be compared to structure and ground elevations referenced to the same vertical datum. For information regarding conversion between the National Geodetic Vertical Datum of 1929 and the North American Vertical Datum of 1988, visit the National Geodetic Survey website at www.ngs.noaa.gov or contact the National Geodetic Survey at the following address:

Spatial Reference System Division National Geodetic Survey, NOAA Silver Spring Metro Center 1315 East-West Highway Silver Spring, Maryland 20910 (301) 713-3191

To obtain current elevation, description, and /or location information for bench marks shown on this map, please contact the Information Services Branch of the National Geodetic Survey at (301) 713-3242, or visit their website at www.ngs.noaa.gov.

Base map information shown on this FIRM was derived from U.S. Geological Survey Digital Orthophoto Quadrangles produced at a scale of 1:12,000 from photography dated 1998 or later.


Based on updated topographic information, this map reflects more detailed and up-to-date stream channel configurations and floodplain delineations than those shown on the previous FIRM for this jurisdiction. As a result, the Flood Profiles and Floodway Data tables for Goosefare Brook, Saco River, and Sawyer Brook in the Flood Insurance Study report (which contains authoritative hydraulic data) may reflect stream channel distances that differ from what is shown on this map. Also, the road to floodplain relationships for unrevised streams may differ from what is shown on previous maps.

Corporate limits shown on this map are based on the best data available at the time of publication. Because changes due to annexations or de-annexations may have occurred after this map was published map users should contact appropriate community officials to verify current corporate limit locations.

Please refer to the separately printed Map Index for an overview map showing the layout of map panels for this jurisdiction.

Contact the FEMA Map Service Center at 1-800-358-9616 for information on available products associated with this FIRM. Available products may include previously issued Letters of Map Change, a Flood Insurance Study report, and/or digital versions of this map. The FEMA Map Service Center may also be reached by Fax at 1-800-358-9620 and their website at http://www.msc.fema.gov.

If you have **questions about this map** or questions concerning the National Flood Insurance Program in general, please call **1-877-FENA MAP** (1-877-336-2627) or visit the FEMA website at www.fema.gov.

43° 30' 00 " 70°28'07.5"

	LEGEND
188888	
00000	SPECIAL FLOOD HAZARD AREAS SUBJECT TO INUNDATION BY THE 1 % ANNUAL CHANCE FLOOD
that has a	nual chance flood (100-year flood), also known as the base flood, is the flood 1% chance of being equaled or exceeded in any given year. The Special
Flood Hazar of Special F	d Area is the area subject to flooding by the 1% annual chance flood. Areas flood Hazard include Zones A, AE, AH, AO, AR, A99, V, and VE. The Base ion is the water-surface elevation of the 1% annual chance flood.
ZONE A	No Base Flood Elevations determined.
ZONE AE	Base Flood Elevations determined.
ZONE AH	Flood depths of 1 to 3 feet (usually areas of ponding); Base Flood Elevations determined.
ZONE AO	Flood depths of 1 to 3 feet (usually sheet flow on sloping terrain); average depths determined. For areas of alluvial fan flooding, velocities
ZONE AR	also determined. Special Flood Hazard Area formerly protected from the 1% annual
	chance flood by a flood control system that was subsequently decertified. Zone AR indicates that the former flood control system is being restored to provide protection from the 1% annual chance or
	greater flood.
ZONE A99	Area to be protected from 1% annual chance flood by a Federal flood protection system under construction; no Base Flood Elevations determined.
ZONE V	Coastal flood zone with velocity hazard (wave action); no Base Flood
ZONE VE	Elevations determined. Coastal flood zone with velocity hazard (wave action); Base Flood Elevations
	determined.
	FLOODWAY AREAS IN ZONE AE
kept free of	y is the channel of a stream plus any adjacent floodplain areas that must be encroachment so that the 1% annual chance flood can be carried without
substantial in	creases in flood heights.
	OTHER FLOOD AREAS
ZONE X	Areas of 0.2% annual chance flood; areas of 1% annual chance flood with average depths of less than 1 foot or with drainage areas less than 1 square mile; and areas protected by levees from 1% annual chance
<u> </u>	flood.
	OTHER AREAS
ZONE X	Areas determined to be outside the 0.2% annual chance floodplain. Areas in which flood hazards are undetermined, but possible.
111	
	COASTAL BARRIER RESOURCES SYSTEM (CBRS) AREAS
1.1	OTHERWISE PROTECTED AREAS (OPAs)
CBRS areas	and OPAs are normally located within or adjacent to Special Flood Hazard Areas.
	1% annual chance floodplain boundary 0.2% annual chance floodplain boundary
	Floodway boundary
1888888	Boundary dividing Special Flood Hazard Area Zones and boundary dividing Special Flood Hazard Areas of different
000000	Base Flood Elevations, flood depths, or flood velocities.
51	Base Flood Elevation value where uniform within zone:
(EL 9	87) elevation in feet* to the North American Vertical Datum of 1988
	Cross section line
©	(23) Transect line
97° 07′ 30″,	Geographic coordinates referenced to the North American
1070	Datum of 1983 (NAD 83) Western Hemisphere
4276 6000	5000-foot grid ticks : Maine State Plane coordinate system, west
DX5510	
• M1	this FIRM panel)
Con Chall	MAP REPOSITORY
	III, Office of The Building Inspector, 300 Main Street, Saco, Maine 04072 (Maps reference only, not for distribution.) INITIAL IDENTIFICATION
	SEPTEMBER 20, 1974 FLOOD HAZARD BOUNDARY MAP REVISIONS
	JANUARY 14, 1977 FLOOD INSURANCE RATE MAP EFFECTIVE
	JANUARY 5, 1984 FLOOD INSURANCE RATE MAP REVISIONS
March 16, 19 to change z	98 – to change and add Base Flood Elevations and Special Flood Hazard Areas, one designations, to update map format, to add and update roads and road
	to reflect updated topographical information.
add and upa	106 – to update map format, and to change Special Flood Hazard Areas, to
	006 – to update map format, and to change Special Flood Hazard Areas, to adate roads and road names, and to reflect updated topographical information.
	106 – to update map format, and to change Special Flood Hazard Areas, to Indate roads and road names, and to reflect updated topographical information.
To determin agent or call	adate roads and road names, and to reflect updated topographical information.
To determin agent or call	adate roads and road names, and to reflect updated topographical information.
To determin agent or call	adate roads and road names, and to reflect updated topographical information.
To determin agent or call	adate roads and road names, and to reflect updated topographical information. e if flood insurance is available in this community, contact your insurance the National Flood Insurance Program at 1–800–638–6620. MAP SCALE 1" = 500' 250 0 500 1000
To determin agent or call	adate roads and road names, and to reflect updated topographical information. e if flood insurance is available in this community, contact your insurance the National Flood Insurance Program at 1–800–638–6620. MAP SCALE 1" = 500'
To determin agent or call	adate roads and road names, and to reflect updated topographical information. e if flood insurance is available in this community, contact your insurance the National Flood Insurance Program at 1–800–638–6620. MAP SCALE 1" = 500' 250 0 500 1000 FEET
To determin agent or call	adate roads and road names, and to reflect updated topographical information. e if flood insurance is available in this community, contact your insurance the National Flood Insurance Program at 1–800–638–6620. MAP SCALE 1" = 500' 250 0 500 1000 FEET METERS
To determin agent or call	adate roads and road names, and to reflect updated topographical information. e if flood insurance is available in this community, contact your insurance the National Flood Insurance Program at 1–800–638–6620. MAP SCALE 1" = 500' 250 0 500 1000 FEET METERS
To determin agent or call	adate roads and road names, and to reflect updated topographical information. e if flood insurance is available in this community, contact your insurance the National Flood Insurance Program at 1–800–638–6620. MAP SCALE 1" = 500' 250 0 500 1000 FEET 150 0 150 300 METERS
To determin agent or call	adate roads and road names, and to reflect updated topographical information. e if flood insurance is available in this community, contact your insurance the National Flood Insurance Program at 1–800–638–6620. MAP SCALE 1" = 500' 250 0 1000 FEET 150 0 150 300 PANEL 0039D
To determin agent or call	adate roads and road names, and to reflect updated topographical information. e if flood insurance is available in this community, contact your insurance the National Flood Insurance Program at 1–800–638–6620. MAP SCALE 1 " = 500 ' 250 0 1000 FEET 150 0 150 300 PANEL 0039D FIRM
To determin agent or call	adate roads and road names, and to reflect updated topographical information. e if flood insurance is available in this community, contact your insurance the National Flood Insurance Program at 1–800–638–6620. MAP SCALE 1" = 500' 250 0 1000 FEET 150 0 150 300 PANEL 0039D
To determin agent or call	adate roads and road names, and to reflect updated topographical information. e if flood insurance is available in this community, contact your insurance the National Flood Insurance Program at 1–800–638–6620. MAP SCALE 1 " = 500 ' 250 0 1000 FEET 150 0 150 300 PANEL 0039D FIRM
To determin agent or call	Adate roads and road names, and to reflect updated topographical information. the if flood insurance is available in this community, contact your insurance the National Flood Insurance Program at 1–800–638–6620. MAP SCALE 1 " = 500 ' 250 0 1000 FEET 150 0 1000 150 0 100
To determin agent or call	adate roads and road names, and to reflect updated topographical information. e if flood insurance is available in this community, contact your insurance the National Flood Insurance Program at 1–800–638–6620. MAP SCALE 1" = 500' 250 1000 FEET 150 0 1000 FEET 150 0 1000 FEET 150 0 1000 FEET FLOOD INSURANCE RATE MAP CITY OF
To determin agent or call	Adate roads and road names, and to reflect updated topographical information. e if flood insurance is available in this community, contact your insurance the National Flood Insurance Program at 1–800–638–6620. MAP SCALE 1" = 500 ' 250 0 1000 FEET 500 1000 FEET 500 0 150 300 PANEL 0039D FIRM FLOOD INSURANCE RATE MAP CITY OF SACO,
To determin agent or call	Adate roads and road names, and to reflect updated topographical information. e if flood insurance is available in this community, contact your insurance the National Flood Insurance Program at 1-800-638-6620. MAP SCALE 1" = 500' 250 0 1000 FEET 150 0 150 300 PANEL 0039D FIRM FLOOD INSURANCE RATE MAP CITY OF SACO, MAINE YORK COUNTY
To determin agent or call	Adate roads and road names, and to reflect updated topographical information. e if flood insurance is available in this community, contact your insurance the National Flood Insurance Program at 1–800–638–6620. MAP SCALE 1 " = 500' 500 1000 FEET 500 1000 FEET 500 0 1000 FEET 500 1000 FEET 500 0 1000 FEET 500 1000 FEET
To determin agent or call	Adate roads and road names, and to reflect updated topographical information. e if flood insurance is available in this community, contact your insurance MAP SCALE 1" = 500' 500 1000 FEET 500 1000 FEET 150 0 150 1000 FEET 150 0 150 1000 FEET 150 1000 FEET 150 1000 FEET 150 1000 FEET 150 1000 FEET 150 1000 FEET 150 1000 FEET 150 1000 1000 FEET 150 1000 FEET 150 1000 FEET 150 1000 FEET 150 1000 1000 FEET 150 1000 1000 FEET 150 1000 1000 FEET 150 1000 1000 FEET 150 1000 1000 FEET 150 1000 1000 FEET 150 1000 1000 FEET 150 1000 1000 1000 1000 FEET 150 1000
To determin agent or call	Adate roads and road names, and to reflect updated topographical information. the National Flood Insurance Program at 1–800–638–6620. MAP SCALE 1 " = 500 ' 50 1000 FEET 150 0 150 300 PANEL 0039D FIRM FLOOD INSURANCE RATE MAP CITY OF SACO, MAINE YORK COUNTY PANEL 39 OF 135 (SEE MAP INDEX FOR FIRM PANEL LAYOUT)
To determin agent or call	Adate roads and road names, and to reflect updated topographical information. e if flood insurance is available in this community, contact your insurance the National Flood Insurance Program at 1-800-638-6620. MAP SCALE 1 " = 500' 20 0 150 150 1000 FEET 150 METERS 150 METERS 150 METERS 150 METERS 150 METERS 150 METERS 150 150 150 150 150 150 150 150
To determin agent or call	Adate roads and road names, and to reflect updated topographical information. e if flood insurance is available in this community, contact your insurance the National Flood Insurance Program at 1-800-638-6620. MAP SCALE 1 " = 500' 20 0 150 1000 FEET 150 0 METERS 150 0 METERS 150 0 METERS 150 0 METERS 150 0 METERS 150 0 METERS 150 150 150 150 1000 150 1000 150 1000 150 1000 150 1000 150 1000 1000 1000 1000 150 100
To determin agent or call	e if flood insurance is available in this community, contact your insurance the National Flood Insurance Program at 1-800-638-6620. MAP SCALE 1 " = 500 ' 500 1000 MAP SCALE 1 " = 500 ' 500 1000 FEET 150 0 100 FEET 150 0 0039D FIRM FLOOD INSURANCE RATE MAP CITY OF SACO, MAINE YORK COUNTY PANEL 39 OF 135 ISEE MAP INDEX FOR FIRM PANEL LAYOUTI CONTAINS: COMMUNITY NUMBER PANEL SUFFX SACO, CITY OF SACO, CITY OF SACO, DATE SACO, CITY OF SACO, DATE SACO, CITY OF SACO, DATE SACO, CITY OF SACO, DATE SACO, DATE
To determin agent or call	Adate roads and road names, and to reflect updated topographical information. e if flood insurance is available in this community, contact your insurance the National Flood Insurance Program at 1-800-638-6620. MAP SCALE 1 " = 500' 20 0 150 1000 FEET 150 0 METERS 150 0 METERS 150 0 METERS 150 0 METERS 150 0 METERS 150 0 METERS 150 150 150 150 1000 150 1000 150 1000 150 1000 150 1000 150 1000 1000 1000 1000 150 100
To determin agent or call	e if flood insurance is available in this community, contact your insurance the National Flood Insurance Program at 1-800-638-6620. MAP SCALE 1 " = 500 ' 500 1000 MAP SCALE 1 " = 500 ' 500 1000 FEET 150 0 100 FEET 150 0 0039D FIRM FLOOD INSURANCE RATE MAP CITY OF SACO, MAINE YORK COUNTY PANEL 39 OF 135 ISEE MAP INDEX FOR FIRM PANEL LAYOUTI CONTAINS: COMMUNITY NUMBER PANEL SUFFX SACO, CITY OF SACO, CITY OF SACO, DATE SACO, CITY OF SACO, DATE SACO, CITY OF SACO, DATE SACO, CITY OF SACO, DATE SACO, DATE
To determin agent or call	Addee roads and road names, and to reflect updated topographical information.
To determin agent or call	edate roads and road names, and to reflect updated topographical information. the National Flood Insurance Program at 1-800-638-6620. MAP SCALE 1 " = 500' 20 0 0 0 0 0 0 0 0 0 0 0 0 0
To determin agent or call	Addee roads and road names, and to reflect updated topographical information.
To determin agent or call	Addee roads and road names, and to reflect updated topographical information. the National Flood Insurance Program at 1-800-638-6620. MAP SCALE 1" = 500' 0 0 0 000 MAP SCALE 1" = 500' 0 0 0 000 FET 0 0 0 0 000 FET 0 0 0 0 000 FET 0 0 0 0 000 FET 0 0 0 0 000 FET 0 0 0 0 000 FET 0 0 0 0 000 FET 0 0 0 0 000 FET 0 0 0 0 000 FET 0 0 0 0 000 FET 0 0 0 0 000 FET 0 0 0 0 000 FET 0 0 0 0 000 FET 0 0 0 0 000 FET 0 0 0 0 000 FET 0 0 0 0 000 FET 0 0 0 0 000 FET 0 0 0 0 000 FET 0 0 0 0 0 000 FET 0 0 0 0 0 000 FET 0 0 0 0 0 000 FET 0 0 0 0 0 000 FET 0 0 0 0 0 000 FET 0 0 0 0 0 000 FET 0 0 0 0 0 000 FET 0 0 0 0 0 000 FET 0 0 0 0 0 0 000 FET 0 0 0 0 0 000 FET 0 0 0 0 0 000 FET 0 0 0 0 0 000 FET 0 0 0 0 0 0 000 FET 0 0 0 0 0 0 000 FET 0 0 0 0 0 000 FET 0 0 0 0 0 000 FET 0 0 0 0 0 000 FET 0 0 0 0 0 000 FET 0 0 0 0 0 0 000 FET 0 0 0 0 0 0 0 000 FET 0 0 0 0 0 0 0 000 FET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
To determin agent or call	Addee roads and road names, and to reflect updated topographical information. the National Flood Insurance Program at 1-800-638-6620. MAP SCALE 1 * = 500' 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
To determin agent or call	Addee roads and road names, and to reflect updated topographical information. The National Flood Insurance Program at 1-800-638-6620. MAP SCALE 1 " = 500" 50 100 PET 50 0 100 PET 50 0 0 100 PET 50 0 0 0 00 PET 50 0 0 0 00 PET 50 0 0 0 00 PANEL 0039D FIRM FIRM FLOOD INSURANCE RATE MAP CITY OF SACO, MAINE YORK COUNTY DANEL 39 0F 135 ISEE MAP INDEX FOR FIRM PANEL LAYOUT COTAINS COTAI
To determin agent or call	Addee roads and road names, and to reflect updated topographical information. the National Flood Insurance Program at 1-800-638-6620 MP SCALE 1" = 500' 0 0 0 0 0 000 MP SCALE 1" = 500' 0 0 0 0 0 000 0 0 0 0 0 000 0 0 0 0
To determin agent or call	Addee roads and road names, and to reflect updated topographical information. the National Flood Insurance Program at 1-800-638-6620. MAP SCALE 1 " = 500' 0 100 0 160 0 FEFT 10 0 FEFT 10 0 0 FEFT 10 0 0 FEFT 10 0